organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-4-nitro­phenol

aCollege of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaiyin 223003, Jiangsu, People's Republic of China
*Correspondence e-mail: dsl710221@163.com

(Received 13 January 2012; accepted 20 January 2012; online 25 January 2012)

In the title mol­ecule, C7H7NO3, the nitro group is oriented at 14.4 (3)° with respect to the plane of the benzene ring. The crystal structure is stabilized by O—H⋯O hydrogen bonds and further consolidated by C—H⋯O inter­actions.

Related literature

For applications of the title compound in organo­phospho­rus pesticides and for the synthetic procedure, see: Yin & Shi (2005[Yin, W. P. & Shi, M. (2005). Tetrahedron, 61, 10861-10867.]). For a related structure, see: Barve & Pant (1971[Barve, J. V. & Pant, L. M. (1971). Acta Cryst. B27, 1158-1162.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO3

  • Mr = 153.14

  • Monoclinic, P 21 /c

  • a = 7.2993 (14) Å

  • b = 13.023 (3) Å

  • c = 7.4445 (16) Å

  • β = 91.217 (4)°

  • V = 707.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.978, Tmax = 0.983

  • 3860 measured reflections

  • 1293 independent reflections

  • 1071 reflections with I > 2σ

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.148

  • S = 1.00

  • 1293 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 2.00 2.811 (2) 169
C5—H5⋯O3ii 0.93 2.58 3.437 (2) 154
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound is an important intermediate which can be used in many fields such as organophosphorus pesticides (Yin & Shi, 2005).

In the title molecule (Fig. 1), the nitro group (N1/O1/O2) and the benzene ring (C2—C7) are oriented at 14.4 (3) ° with respect to each other. The molecular structure is stabilized by O3—H3···O2 intermolecular hydrogen bonds and further consolidated by C5—H5···O3 type intermolecular hydrogen bonding interactions (Tab. 2 and Fig. 2). The bond lengths and angles in the title compound are in agreement with the corresponding bond legths and angles reported for a closely related compound (Barve & Pant, 1971).

Related literature top

For applications of the title compound in organophosphorus pesticides and for the synthetic procedure, see: Yin & Shi (2005). For a related structure, see: Barve & Pant (1971).

Experimental top

The title compound was prepared by a method reported in the literature (Yin & Shi, 2005). A solution of sodium nitrite (5.11 g, 74 mmol) and nitric acid (13 g, 208 mmol) in dichloromethane (50 ml) was added slowly to a solution of m-cresol (5 g, 46.2 mmol). After stirring for 5 h at a tempeature of 323 K, the solvent was evaporated on a rotary evaporator to obtain the title compound. The crystals were grown from an ethanol solution by slow evaporaton of the solvent at room temperature in about 7 days.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with O—H = 0.82 Å and C—H = 0.93 and 0.96 for aryl and alkyl H atoms, respectively, with Uiso(H) = xUeq(C), where x = 1.2 for aryl and 1.5 for other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O—-H···O and C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound.
3-Methyl-4-nitrophenol top
Crystal data top
C7H7NO3F(000) = 320
Mr = 153.14Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2201 reflections
a = 7.2993 (14) Åθ = 2.8–29.8°
b = 13.023 (3) ŵ = 0.11 mm1
c = 7.4445 (16) ÅT = 296 K
β = 91.217 (4)°Block, colorless
V = 707.5 (2) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1071 reflections with I > 2σ
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.5°, θmin = 2.8°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.978, Tmax = 0.983l = 96
3860 measured reflections3 standard reflections every 200 reflections
1293 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.266P]
where P = (Fo2 + 2Fc2)/3
1293 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C7H7NO3V = 707.5 (2) Å3
Mr = 153.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2993 (14) ŵ = 0.11 mm1
b = 13.023 (3) ÅT = 296 K
c = 7.4445 (16) Å0.20 × 0.18 × 0.15 mm
β = 91.217 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1071 reflections with I > 2σ
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.978, Tmax = 0.9833 standard reflections every 200 reflections
3860 measured reflections intensity decay: 1%
1293 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
1293 reflectionsΔρmin = 0.21 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O31.09340 (18)0.37232 (10)0.0133 (2)0.0532 (4)
H31.16350.33010.02930.080*
C70.9309 (2)0.21737 (13)0.0839 (2)0.0388 (5)
H71.02950.17790.04760.047*
C30.6322 (2)0.23242 (13)0.1996 (2)0.0370 (4)
C50.8008 (3)0.38512 (14)0.1339 (2)0.0417 (5)
H50.81010.45630.13030.050*
C40.6461 (2)0.33913 (14)0.1958 (2)0.0402 (5)
H40.54970.37920.23560.048*
C10.7737 (3)0.05198 (14)0.1483 (3)0.0542 (6)
H1A0.73910.02880.26520.081*
H1B0.89400.02680.12260.081*
H1C0.68770.02660.05970.081*
C20.7745 (2)0.16801 (13)0.1442 (2)0.0366 (4)
C60.9445 (2)0.32372 (14)0.0763 (2)0.0378 (4)
N10.4618 (2)0.19093 (13)0.2651 (2)0.0467 (4)
O20.3574 (2)0.24929 (12)0.3445 (2)0.0635 (5)
O10.4233 (2)0.10112 (12)0.2411 (3)0.0868 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0443 (8)0.0454 (8)0.0708 (10)0.0081 (6)0.0235 (7)0.0031 (7)
C70.0350 (10)0.0421 (11)0.0396 (9)0.0033 (7)0.0062 (7)0.0029 (7)
C30.0335 (10)0.0432 (10)0.0344 (9)0.0041 (7)0.0044 (7)0.0012 (7)
C50.0458 (10)0.0327 (9)0.0470 (10)0.0005 (7)0.0102 (8)0.0002 (7)
C40.0369 (9)0.0416 (10)0.0423 (10)0.0039 (7)0.0085 (7)0.0010 (7)
C10.0606 (13)0.0382 (11)0.0643 (13)0.0016 (9)0.0113 (10)0.0002 (9)
C20.0409 (9)0.0348 (9)0.0340 (8)0.0015 (7)0.0012 (7)0.0006 (7)
C60.0367 (9)0.0396 (10)0.0373 (9)0.0061 (7)0.0069 (7)0.0009 (7)
N10.0381 (9)0.0517 (10)0.0507 (9)0.0072 (7)0.0075 (7)0.0021 (7)
O20.0437 (8)0.0656 (10)0.0823 (11)0.0005 (7)0.0253 (8)0.0006 (8)
O10.0719 (12)0.0569 (10)0.1333 (17)0.0280 (9)0.0428 (11)0.0163 (10)
Geometric parameters (Å, º) top
O3—C61.351 (2)C5—C61.393 (3)
O3—H30.8200C5—H50.9300
C7—C61.390 (3)C4—H40.9300
C7—C21.393 (2)C1—C21.511 (3)
C7—H70.9300C1—H1A0.9600
C3—C41.394 (3)C1—H1B0.9600
C3—C21.404 (2)C1—H1C0.9600
C3—N11.450 (2)N1—O11.215 (2)
C5—C41.367 (2)N1—O21.236 (2)
C6—O3—H3109.5C2—C1—H1B109.5
C6—C7—C2122.19 (15)H1A—C1—H1B109.5
C6—C7—H7118.9C2—C1—H1C109.5
C2—C7—H7118.9H1A—C1—H1C109.5
C4—C3—C2122.34 (15)H1B—C1—H1C109.5
C4—C3—N1116.23 (15)C7—C2—C3115.82 (15)
C2—C3—N1121.42 (16)C7—C2—C1118.12 (16)
C4—C5—C6118.99 (16)C3—C2—C1126.04 (16)
C4—C5—H5120.5O3—C6—C7122.66 (15)
C6—C5—H5120.5O3—C6—C5117.02 (16)
C5—C4—C3120.33 (16)C7—C6—C5120.31 (15)
C5—C4—H4119.8O1—N1—O2121.27 (16)
C3—C4—H4119.8O1—N1—C3120.45 (16)
C2—C1—H1A109.5O2—N1—C3118.28 (16)
C6—C5—C4—C30.6 (3)C2—C7—C6—O3178.06 (16)
C2—C3—C4—C51.1 (3)C2—C7—C6—C51.6 (3)
N1—C3—C4—C5179.15 (15)C4—C5—C6—O3178.90 (16)
C6—C7—C2—C31.0 (2)C4—C5—C6—C70.8 (3)
C6—C7—C2—C1179.66 (16)C4—C3—N1—O1165.72 (19)
C4—C3—C2—C70.4 (2)C2—C3—N1—O114.6 (3)
N1—C3—C2—C7179.95 (15)C4—C3—N1—O213.9 (2)
C4—C3—C2—C1178.20 (17)C2—C3—N1—O2165.86 (17)
N1—C3—C2—C11.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.002.811 (2)169
C4—H4···O20.932.352.671 (2)100
C5—H5···O3ii0.932.583.437 (2)154
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H7NO3
Mr153.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.2993 (14), 13.023 (3), 7.4445 (16)
β (°) 91.217 (4)
V3)707.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed (I > 2σ) reflections
3860, 1293, 1071
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.148, 1.00
No. of reflections1293
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.002.811 (2)169
C5—H5···O3ii0.932.583.437 (2)154
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+2, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection. We also thank the Contract grant sponsor, the Natural Science Foundation of Jiangsu Province of China (BK2008195), and the Science Research Foundation of Huaiyin Institute of Technology (2517045) for help.

References

First citationBarve, J. V. & Pant, L. M. (1971). Acta Cryst. B27, 1158–1162.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, W. P. & Shi, M. (2005). Tetrahedron, 61, 10861–10867.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds