organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2-meth­­oxy-4-{[(4-meth­­oxy­phen­yl)imino]­meth­yl}phenol monohydrate

aSchool of Life Sciences, ShanDong University of Technology, ZiBo 255049, People's Republic of China
*Correspondence e-mail: njuqss@yahoo.com.cn

(Received 16 December 2011; accepted 20 December 2011; online 7 January 2012)

The crystal structure of the title compound, C15H14BrNO3·H2O, has a trans configuration about the central C=N double bond. An intra­molecular O—H⋯O hydrogen bond occurs in the main mol­ecule. The crystal packing is stabilized by strong O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For related structures, see: Shao et al. (2004[Shao, S.-C., You, Z.-L., Fan, S.-H., Tang, L.-L., Xiong, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, o2183-o2184.]); Cheng et al. (2005)[Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137-o1138.].

[Scheme 1]

Experimental

Crystal data
  • C15H14BrNO3·H2O

  • Mr = 354.20

  • Orthorhombic, P b c a

  • a = 13.992 (4) Å

  • b = 7.219 (2) Å

  • c = 30.232 (9) Å

  • V = 3053.5 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.71 mm−1

  • T = 296 K

  • 0.23 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.575, Tmax = 0.813

  • 20409 measured reflections

  • 2836 independent reflections

  • 1831 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.113

  • S = 1.02

  • 2836 reflections

  • 201 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 2.24 2.683 (4) 114
O1—H1⋯O4 0.82 1.92 2.668 (5) 152
O4—H1W⋯O1i 0.85 (3) 2.03 (4) 2.880 (5) 176 (6)
O4—H2W⋯N1ii 0.85 (4) 2.05 (4) 2.903 (5) 176 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 2-bromo-4-hydroxy-5-methoxybenzaldehyde can react with organic amines to form a range of Schiff bases. Schiff base compounds are well known for their wide range of biological activities and have contributed to the development of coordination chemistry related to catalysis, enzymatic reactions, magnetism and molecular architecture (Zhu et al., 2005). Here, We report one of the schiff bases which is structrually characterized to promote the development of coordination chemistry. The title compound displays a trans-configuration with respect to the C(7)=N(1) double bond. The compound crystallized in the orthorhombic system with one title compound molecule and a water molecule in the asymmetric unit. There is a π-π interaction (symmetry code: 3/2-X,1/2+Y,Z) [centroid-centroid distance =3.758 (3) Å ] There are also O(4)—H(1W)···O(1) and O(4)—H(2W)···N(1) hydrogen bonds with symmetry codes (1-x,1/2+y,1/2-z)and (-1/2+x,y,1/2-z) respectively (Figure 2 and table 1).

Related literature top

For related structures, see: Shao et al. (2004); Cheng et al. (2005).

Experimental top

The 2-bromo-4-hydroxy-5-methoxybenzaldehyde (0.1155 g) and 4-methoxyaniline (0.0616 g) were dissolved in methanol (20 mL) and reacted at room temperature for 30 mins to give a clear solution. The solution after standingin in air for 5 days gave yellow block-shaped single crystals at the bottom of the reaction vessel which were suitable for X-ray diffraction analysis.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å, They were treated as riding atoms, with Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
5-Bromo-2-methoxy-4-{[(4-methoxyphenyl)imino]methyl}phenol monohydrate top
Crystal data top
C15H14BrNO3·H2ODx = 1.541 Mg m3
Mr = 354.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2836 reflections
a = 13.992 (4) Åθ = 2.7–25.5°
b = 7.219 (2) ŵ = 2.71 mm1
c = 30.232 (9) ÅT = 296 K
V = 3053.5 (15) Å3Block, yellow
Z = 80.23 × 0.12 × 0.08 mm
F(000) = 1440
Data collection top
Bruker APEXII CCD
diffractometer
2836 independent reflections
Radiation source: fine-focus sealed tube1831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1616
Tmin = 0.575, Tmax = 0.813k = 88
20409 measured reflectionsl = 3633
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0442P)2 + 3.2392P]
where P = (Fo2 + 2Fc2)/3
2836 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.39 e Å3
3 restraintsΔρmin = 0.46 e Å3
Crystal data top
C15H14BrNO3·H2OV = 3053.5 (15) Å3
Mr = 354.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.992 (4) ŵ = 2.71 mm1
b = 7.219 (2) ÅT = 296 K
c = 30.232 (9) Å0.23 × 0.12 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2836 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1831 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.813Rint = 0.082
20409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.39 e Å3
2836 reflectionsΔρmin = 0.46 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68925 (3)0.04514 (7)0.438691 (15)0.05101 (19)
C10.7051 (3)0.1140 (6)0.37837 (13)0.0341 (10)
C20.6237 (3)0.1493 (6)0.35403 (14)0.0377 (10)
H20.56400.14070.36740.045*
C30.6305 (3)0.1969 (6)0.31041 (14)0.0367 (10)
C40.7199 (3)0.2112 (6)0.29032 (14)0.0332 (10)
C50.8008 (3)0.1774 (6)0.31504 (13)0.0324 (9)
H50.86040.18650.30160.039*
C60.7955 (3)0.1300 (6)0.35947 (13)0.0324 (9)
C70.8840 (3)0.1008 (6)0.38482 (14)0.0365 (10)
H70.88030.04790.41280.044*
C81.0489 (3)0.1209 (6)0.39542 (14)0.0372 (10)
C91.1347 (3)0.1063 (6)0.37270 (14)0.0450 (12)
H91.13440.10480.34190.054*
C101.2206 (3)0.0938 (6)0.39508 (16)0.0469 (12)
H101.27730.08140.37930.056*
C111.2226 (3)0.0996 (6)0.44019 (15)0.0448 (11)
C121.1378 (3)0.1129 (7)0.46330 (15)0.0471 (12)
H121.13870.11520.49410.057*
C131.0520 (3)0.1227 (6)0.44131 (14)0.0432 (11)
H130.99540.13070.45730.052*
C140.8055 (3)0.2671 (7)0.22380 (14)0.0503 (12)
H14A0.84480.36090.23710.075*
H14B0.79400.29790.19340.075*
H14C0.83770.14980.22550.075*
C151.3933 (3)0.1070 (7)0.44297 (17)0.0636 (15)
H15A1.40200.00070.42480.095*
H15B1.44400.11400.46430.095*
H15C1.39410.21590.42470.095*
H1W0.510 (4)0.471 (4)0.2082 (17)0.08 (2)*
H2W0.511 (3)0.293 (5)0.1846 (12)0.068 (18)*
N10.9655 (2)0.1462 (5)0.36950 (11)0.0368 (8)
O10.54833 (18)0.2278 (5)0.28775 (10)0.0489 (8)
H10.56100.25200.26190.073*
O20.71757 (19)0.2562 (4)0.24658 (9)0.0446 (8)
O31.3042 (2)0.0951 (5)0.46530 (11)0.0578 (9)
O40.5312 (2)0.3608 (6)0.20578 (12)0.0569 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0582 (3)0.0610 (3)0.0338 (3)0.0061 (2)0.0028 (2)0.0022 (2)
C10.045 (2)0.027 (2)0.031 (2)0.0039 (18)0.0047 (18)0.0021 (18)
C20.034 (2)0.042 (3)0.038 (3)0.0044 (19)0.0021 (19)0.004 (2)
C30.034 (2)0.033 (3)0.043 (3)0.0006 (18)0.0071 (19)0.002 (2)
C40.036 (2)0.031 (2)0.033 (2)0.0013 (18)0.0013 (18)0.0012 (19)
C50.029 (2)0.035 (2)0.034 (2)0.0016 (17)0.0002 (17)0.0022 (19)
C60.039 (2)0.031 (2)0.027 (2)0.0005 (18)0.0050 (18)0.0033 (19)
C70.045 (2)0.032 (3)0.032 (2)0.0017 (19)0.007 (2)0.0027 (19)
C80.036 (2)0.037 (3)0.038 (3)0.0013 (18)0.0040 (19)0.001 (2)
C90.049 (3)0.056 (3)0.030 (2)0.009 (2)0.002 (2)0.003 (2)
C100.036 (2)0.053 (3)0.051 (3)0.008 (2)0.001 (2)0.005 (2)
C110.047 (3)0.043 (3)0.045 (3)0.001 (2)0.015 (2)0.007 (2)
C120.050 (3)0.063 (3)0.028 (2)0.002 (2)0.005 (2)0.001 (2)
C130.042 (2)0.048 (3)0.040 (3)0.003 (2)0.001 (2)0.002 (2)
C140.049 (3)0.070 (4)0.032 (3)0.005 (3)0.004 (2)0.005 (2)
C150.046 (3)0.064 (4)0.081 (4)0.002 (2)0.009 (3)0.009 (3)
N10.0359 (19)0.042 (2)0.032 (2)0.0020 (16)0.0056 (15)0.0016 (17)
O10.0317 (16)0.068 (2)0.0469 (19)0.0015 (14)0.0065 (14)0.0111 (18)
O20.0406 (16)0.060 (2)0.0329 (17)0.0006 (14)0.0063 (13)0.0115 (15)
O30.0430 (18)0.078 (3)0.052 (2)0.0042 (16)0.0152 (16)0.0115 (18)
O40.057 (2)0.061 (3)0.052 (2)0.0146 (19)0.0209 (17)0.010 (2)
Geometric parameters (Å, º) top
Br1—C11.903 (4)C10—C111.365 (6)
C1—C21.380 (5)C10—H100.9300
C1—C61.393 (5)C11—O31.371 (5)
C2—C31.366 (5)C11—C121.381 (6)
C2—H20.9300C12—C131.374 (6)
C3—O11.356 (4)C12—H120.9300
C3—C41.395 (5)C13—H130.9300
C4—O21.362 (5)C14—O21.413 (5)
C4—C51.378 (5)C14—H14A0.9600
C5—C61.388 (5)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—C71.471 (5)C15—O31.421 (5)
C7—N11.275 (5)C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—C91.386 (5)C15—H15C0.9600
C8—C131.388 (6)O1—H10.8200
C8—N11.418 (5)O4—H1W0.855 (18)
C9—C101.383 (6)O4—H2W0.853 (18)
C9—H90.9300
C2—C1—C6121.0 (4)C11—C10—H10119.8
C2—C1—Br1117.6 (3)C9—C10—H10119.8
C6—C1—Br1121.4 (3)C10—C11—O3124.7 (4)
C3—C2—C1120.3 (4)C10—C11—C12119.3 (4)
C3—C2—H2119.9O3—C11—C12115.9 (4)
C1—C2—H2119.9C13—C12—C11120.7 (4)
O1—C3—C2118.0 (4)C13—C12—H12119.7
O1—C3—C4121.9 (4)C11—C12—H12119.7
C2—C3—C4120.1 (4)C12—C13—C8120.6 (4)
O2—C4—C5126.1 (4)C12—C13—H13119.7
O2—C4—C3114.8 (3)C8—C13—H13119.7
C5—C4—C3119.2 (4)O2—C14—H14A109.5
C4—C5—C6121.7 (4)O2—C14—H14B109.5
C4—C5—H5119.2H14A—C14—H14B109.5
C6—C5—H5119.2O2—C14—H14C109.5
C5—C6—C1117.8 (3)H14A—C14—H14C109.5
C5—C6—C7119.6 (4)H14B—C14—H14C109.5
C1—C6—C7122.6 (4)O3—C15—H15A109.5
N1—C7—C6121.8 (4)O3—C15—H15B109.5
N1—C7—H7119.1H15A—C15—H15B109.5
C6—C7—H7119.1O3—C15—H15C109.5
C9—C8—C13118.0 (4)H15A—C15—H15C109.5
C9—C8—N1116.6 (4)H15B—C15—H15C109.5
C13—C8—N1125.2 (4)C7—N1—C8120.2 (4)
C10—C9—C8121.0 (4)C3—O1—H1109.5
C10—C9—H9119.5C4—O2—C14117.7 (3)
C8—C9—H9119.5C11—O3—C15117.8 (4)
C11—C10—C9120.3 (4)H1W—O4—H2W119 (3)
C6—C1—C2—C31.4 (6)C13—C8—C9—C100.0 (7)
Br1—C1—C2—C3179.1 (3)N1—C8—C9—C10175.6 (4)
C1—C2—C3—O1179.1 (4)C8—C9—C10—C111.4 (7)
C1—C2—C3—C40.4 (6)C9—C10—C11—O3177.5 (4)
O1—C3—C4—O20.7 (6)C9—C10—C11—C121.8 (7)
C2—C3—C4—O2178.8 (4)C10—C11—C12—C130.9 (7)
O1—C3—C4—C5179.7 (4)O3—C11—C12—C13178.5 (4)
C2—C3—C4—C50.2 (6)C11—C12—C13—C80.5 (7)
O2—C4—C5—C6179.1 (4)C9—C8—C13—C120.9 (7)
C3—C4—C5—C60.2 (6)N1—C8—C13—C12174.3 (4)
C4—C5—C6—C11.2 (6)C6—C7—N1—C8178.2 (4)
C4—C5—C6—C7178.1 (4)C9—C8—N1—C7156.8 (4)
C2—C1—C6—C51.8 (6)C13—C8—N1—C728.0 (7)
Br1—C1—C6—C5178.8 (3)C5—C4—O2—C141.0 (6)
C2—C1—C6—C7177.5 (4)C3—C4—O2—C14178.0 (4)
Br1—C1—C6—C72.0 (6)C10—C11—O3—C157.8 (7)
C5—C6—C7—N111.5 (6)C12—C11—O3—C15171.6 (4)
C1—C6—C7—N1167.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.242.683 (4)114
O1—H1···O40.821.922.668 (5)152
O4—H1W···O1i0.85 (3)2.03 (4)2.880 (5)176 (6)
O4—H2W···N1ii0.85 (4)2.05 (4)2.903 (5)176 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14BrNO3·H2O
Mr354.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)13.992 (4), 7.219 (2), 30.232 (9)
V3)3053.5 (15)
Z8
Radiation typeMo Kα
µ (mm1)2.71
Crystal size (mm)0.23 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.575, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
20409, 2836, 1831
Rint0.082
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.02
No. of reflections2836
No. of parameters201
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.242.683 (4)114
O1—H1···O40.821.922.668 (5)152
O4—H1W···O1i0.85 (3)2.03 (4)2.880 (5)176 (6)
O4—H2W···N1ii0.85 (4)2.05 (4)2.903 (5)176 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y, z+1/2.
 

Acknowledgements

This project was sponsored by the ShanDong Province Science & Technology Innovation Foundation (People's Republic of China).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShao, S.-C., You, Z.-L., Fan, S.-H., Tang, L.-L., Xiong, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, o2183–o2184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds