organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Chloro­benzyl­­idene)-2-methyl­benzohydrazide

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: zhangweiguang1230@163.com

(Received 24 December 2011; accepted 5 January 2012; online 11 January 2012)

The title hydrazone compound, C15H13ClN2O, adopts an E configuration about the C=N double bond. The dihedral angle between the two benzene rings is 13.1 (2)°. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds, forming chains parallel to [101].

Related literature

For the biological properties of hydrazone compounds, see: Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Zhang et al. (2010[Zhang, Y. H., Zhang, L., Liu, L., Guo, J. X., Wu, D. L., Xu, G. C., Wang, X. H. & Jia, D. Z. (2010). Inorg. Chim. Acta, 363, 289-293.]); Horiuchi et al. (2009[Horiuchi, T., Nagata, M., Kitagawab, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850-7860.]). For the crystal structures of similar hydrazone comounds, see: Ban (2010[Ban, H.-Y. (2010). Acta Cryst. E66, o3240.]); Hussain et al. (2010[Hussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]); Khaledi et al. (2009[Khaledi, H., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1920.]). For the crystal structure of the 2-fluorobenzohydrazide analoque, reported on recently by the author, see: Zhang (2011[Zhang, W.-G. (2011). Acta Cryst. E67, o233.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O

  • Mr = 272.72

  • Monoclinic, P 21 /n

  • a = 7.4305 (17) Å

  • b = 25.596 (2) Å

  • c = 7.7926 (18) Å

  • β = 113.505 (2)°

  • V = 1359.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.947

  • 7513 measured reflections

  • 2516 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.141

  • S = 1.08

  • 2516 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.90 (1) 2.00 (1) 2.876 (3) 164 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzoylhydrazones are a kind of special Schiff bases bearing the –C(O)—NH—N=CH– groups. The hydrazone compounds have been received much attention for their excellent biological properties (Ajani et al., 2010; Angelusiu et al., 2010; Zhang et al., 2010; Horiuchi et al., 2009) as well as their crystal structures (Ban, 2010; Hussain et al., 2010; Shalash et al., 2010; Khaledi et al., 2009). Recently, the author has reported a hydrazone compound derived from the reaction of 2-chlorobenzaldehyde with 2-fluorobenzohydrazide (Zhang, 2011). In the present paper, the title new hydrazone compound, derived from the reaction of 2-chlorobenzaldehyde with 2-methylbenzohydrazide, is reported.

The compound adopts an E configuration about the CN double bond (Fig. 1). The dihedral angle between the two substituted benzene rings is 13.1 (2)°. In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains parallel to the ac diagonal (Fig. 2).

Related literature top

For the biological properties of hydrazone compounds, see: Ajani et al. (2010); Angelusiu et al. (2010); Zhang et al. (2010); Horiuchi et al. (2009). For the crystal structures of similar hydrazone comounds, see: Ban (2010); Hussain et al. (2010); Shalash et al. (2010); Khaledi et al. (2009). For the compound the author reported recently, see: Zhang (2011).

Experimental top

2-Chlorobenzaldehyde (0.140 g, 1 mmol) and 2-methylbenzohydrazide (0.150 g, 1 mmol) were mixed in 50 ml me thanol. The mixture was stirred and refluxed for 30 min and cooled to room temperature to give a colorless solution. Colorless block-shaped single crystals were obtained on slow evaporation of the solution in air.

Refinement top

H2 was located in a difference Fourier map and refined with the N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed along the c axis. Hydrogen bonds are shown as dashed lines. H-atoms not involved in hydrogen bonding have been omitted for clarity.
N'-(2-Chlorobenzylidene)-2-methylbenzohydrazide top
Crystal data top
C15H13ClN2OF(000) = 568
Mr = 272.72Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4305 (17) ÅCell parameters from 2213 reflections
b = 25.596 (2) Åθ = 2.7–24.5°
c = 7.7926 (18) ŵ = 0.27 mm1
β = 113.505 (2)°T = 298 K
V = 1359.1 (5) Å3Block, colorless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2516 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.947, Tmax = 0.947k = 2531
7513 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0445P)2 + 1.1147P]
where P = (Fo2 + 2Fc2)/3
2516 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C15H13ClN2OV = 1359.1 (5) Å3
Mr = 272.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4305 (17) ŵ = 0.27 mm1
b = 25.596 (2) ÅT = 298 K
c = 7.7926 (18) Å0.20 × 0.20 × 0.20 mm
β = 113.505 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2516 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1870 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.947Rint = 0.043
7513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.24 e Å3
2516 reflectionsΔρmin = 0.33 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29514 (17)0.04920 (3)0.54672 (14)0.0790 (4)
N10.1795 (3)0.21108 (8)0.4023 (3)0.0380 (5)
N20.2213 (3)0.24341 (8)0.5565 (3)0.0388 (6)
O10.0050 (3)0.30528 (7)0.3860 (2)0.0468 (5)
C10.2276 (4)0.12767 (10)0.2918 (4)0.0374 (6)
C20.2488 (4)0.07402 (11)0.3250 (4)0.0465 (7)
C30.2323 (5)0.03896 (12)0.1830 (5)0.0581 (9)
H30.24480.00330.20690.070*
C40.1976 (5)0.05753 (14)0.0072 (5)0.0611 (9)
H40.18650.03430.08820.073*
C50.1791 (5)0.11049 (13)0.0288 (4)0.0546 (8)
H50.15730.12290.14760.066*
C60.1931 (4)0.14482 (11)0.1120 (4)0.0442 (7)
H60.17920.18040.08630.053*
C70.2488 (4)0.16495 (10)0.4419 (4)0.0386 (6)
H70.31310.15490.56640.046*
C80.1263 (4)0.28972 (10)0.5363 (3)0.0331 (6)
C90.1778 (4)0.31909 (10)0.7153 (4)0.0349 (6)
C100.2087 (4)0.37314 (11)0.7235 (4)0.0432 (7)
C110.2488 (5)0.39768 (14)0.8949 (5)0.0634 (10)
H110.27180.43350.90460.076*
C120.2553 (5)0.37064 (17)1.0496 (5)0.0728 (11)
H120.28110.38831.16120.087*
C130.2242 (5)0.31800 (17)1.0403 (4)0.0663 (10)
H130.22820.29971.14500.080*
C140.1869 (4)0.29217 (12)0.8746 (4)0.0475 (7)
H140.16730.25620.86860.057*
C150.2020 (5)0.40465 (12)0.5579 (5)0.0598 (9)
H15A0.27800.38740.49980.090*
H15B0.25540.43880.59900.090*
H15C0.06850.40780.46930.090*
H20.312 (4)0.2342 (13)0.669 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1180 (9)0.0447 (5)0.0724 (6)0.0103 (5)0.0360 (6)0.0145 (4)
N10.0397 (13)0.0355 (12)0.0320 (11)0.0014 (10)0.0069 (10)0.0057 (9)
N20.0427 (14)0.0341 (12)0.0288 (11)0.0062 (10)0.0031 (10)0.0042 (9)
O10.0516 (12)0.0383 (10)0.0342 (10)0.0068 (9)0.0002 (9)0.0008 (8)
C10.0312 (14)0.0343 (14)0.0432 (15)0.0029 (11)0.0111 (12)0.0065 (12)
C20.0450 (18)0.0389 (16)0.0532 (18)0.0018 (13)0.0172 (14)0.0017 (13)
C30.058 (2)0.0368 (17)0.082 (2)0.0037 (14)0.0298 (19)0.0161 (16)
C40.060 (2)0.061 (2)0.066 (2)0.0093 (17)0.0283 (18)0.0288 (18)
C50.0511 (19)0.070 (2)0.0457 (17)0.0116 (16)0.0223 (15)0.0140 (15)
C60.0418 (16)0.0439 (16)0.0436 (16)0.0045 (13)0.0134 (13)0.0057 (13)
C70.0382 (16)0.0374 (15)0.0344 (14)0.0021 (12)0.0084 (12)0.0002 (12)
C80.0316 (14)0.0319 (13)0.0313 (13)0.0028 (11)0.0078 (11)0.0004 (11)
C90.0266 (14)0.0389 (15)0.0357 (14)0.0043 (11)0.0087 (11)0.0038 (11)
C100.0307 (15)0.0389 (15)0.0531 (17)0.0001 (12)0.0096 (13)0.0090 (13)
C110.050 (2)0.054 (2)0.074 (2)0.0003 (15)0.0113 (18)0.0291 (18)
C120.062 (2)0.097 (3)0.0458 (19)0.013 (2)0.0072 (17)0.033 (2)
C130.057 (2)0.103 (3)0.0362 (17)0.022 (2)0.0159 (15)0.0005 (18)
C140.0462 (18)0.0549 (18)0.0384 (15)0.0074 (14)0.0137 (13)0.0003 (13)
C150.054 (2)0.0391 (17)0.085 (2)0.0032 (15)0.0269 (18)0.0055 (16)
Geometric parameters (Å, º) top
Cl1—C21.742 (3)C7—H70.9300
N1—C71.276 (3)C8—C91.494 (3)
N1—N21.388 (3)C9—C141.397 (4)
N2—C81.356 (3)C9—C101.400 (4)
N2—H20.899 (10)C10—C111.396 (4)
O1—C81.225 (3)C10—C151.505 (4)
C1—C61.391 (4)C11—C121.374 (5)
C1—C21.395 (4)C11—H110.9300
C1—C71.468 (4)C12—C131.364 (5)
C2—C31.392 (4)C12—H120.9300
C3—C41.374 (5)C13—C141.377 (4)
C3—H30.9300C13—H130.9300
C4—C51.380 (5)C14—H140.9300
C4—H40.9300C15—H15A0.9600
C5—C61.377 (4)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—H60.9300
C7—N1—N2114.4 (2)O1—C8—C9123.1 (2)
C8—N2—N1119.6 (2)N2—C8—C9113.8 (2)
C8—N2—H2120 (2)C14—C9—C10119.9 (3)
N1—N2—H2121 (2)C14—C9—C8119.0 (2)
C6—C1—C2117.3 (2)C10—C9—C8121.0 (2)
C6—C1—C7121.0 (2)C11—C10—C9117.2 (3)
C2—C1—C7121.6 (2)C11—C10—C15120.0 (3)
C3—C2—C1121.3 (3)C9—C10—C15122.8 (3)
C3—C2—Cl1118.3 (2)C12—C11—C10122.1 (3)
C1—C2—Cl1120.4 (2)C12—C11—H11118.9
C4—C3—C2119.5 (3)C10—C11—H11118.9
C4—C3—H3120.3C13—C12—C11120.3 (3)
C2—C3—H3120.3C13—C12—H12119.8
C3—C4—C5120.4 (3)C11—C12—H12119.8
C3—C4—H4119.8C12—C13—C14119.4 (3)
C5—C4—H4119.8C12—C13—H13120.3
C6—C5—C4119.7 (3)C14—C13—H13120.3
C6—C5—H5120.2C13—C14—C9121.1 (3)
C4—C5—H5120.2C13—C14—H14119.4
C5—C6—C1121.7 (3)C9—C14—H14119.4
C5—C6—H6119.1C10—C15—H15A109.5
C1—C6—H6119.1C10—C15—H15B109.5
N1—C7—C1120.3 (2)H15A—C15—H15B109.5
N1—C7—H7119.9C10—C15—H15C109.5
C1—C7—H7119.9H15A—C15—H15C109.5
O1—C8—N2123.1 (2)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)2.00 (1)2.876 (3)164 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O
Mr272.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.4305 (17), 25.596 (2), 7.7926 (18)
β (°) 113.505 (2)
V3)1359.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.947, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
7513, 2516, 1870
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.141, 1.08
No. of reflections2516
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.899 (10)2.000 (14)2.876 (3)164 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from Qiqihar University is acknowledged.

References

First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBan, H.-Y. (2010). Acta Cryst. E66, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoriuchi, T., Nagata, M., Kitagawab, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850–7860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W.-G. (2011). Acta Cryst. E67, o233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y. H., Zhang, L., Liu, L., Guo, J. X., Wu, D. L., Xu, G. C., Wang, X. H. & Jia, D. Z. (2010). Inorg. Chim. Acta, 363, 289–293.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds