organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o364-o365

3,3-Di­methyl-1,2,3,4-tetra­hydro­cyclo­penta­[b]indole-1,2-dione (bruceolline E)

aDepartment of Biological and Chemical Sciences, University of the West Indies, Cave Hill, Barbados, bDepartment Chemistry, Dartmouth College, Hanover, NH 03755-3564, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 28 December 2011; accepted 5 January 2012; online 11 January 2012)

The title compound, C13H11NO2, crystallizes with two mol­ecules in the asymmetric unit. The crystal packing is stabilized by N—H⋯O hydrogen bonds, which link the mol­ecules into chains along [10[\overline1]], and weak C—H⋯O inter­actions.

Related literature

For the first isolation of bruceolline E as yellow needles, see: Ouyang et al. (1994[Ouyang, Y., Koike, K. & Ohmoto, T. (1994). Phytochemistry, 37, 575-578.]). For the first total synthesis of bruceolline E in three steps from the known ethyl indole-1-carboxyl­ate, see: Jordan et al. (2011[Jordan, J. A., Gribble, G. W. & Badenock, J. C. (2011). Tetrahedron Lett. 52, 6772-6774.]). For examples of similar tandem acyl­ation/Naza­rov cyclization with pyrroles, see: Song et al. (2006[Song, C., Knight, D. W. & Whatton, M. A. (2006). Org. Lett. 8, 163-166.]). For examples of Naza­rov cyclizations with indoles, see: Bergman & Venemalm (1992[Bergman, J. & Venemalm, L. (1992). Tetrahedron 48, 759-768.]); Cheng & Cheung (1996[Cheng, K.-F. & Cheung, M.-K. (1996). J. Chem. Soc., Perkin Trans. 1, pp. 1213-1218.]); Ishikura et al. (2000[Ishikura, M., Imaizumi, K. & Katagiri, N. (2000). Heterocycles, 53, 2201-2220.]); Miki et al. (2001[Miki, Y., Hachiken, H., Kawazoe, A., Tsuzaki, Y. & Yanase, N. (2001). Heterocycles, 55, 1291-1299.]); Churruca et al. (2010[Churruca, F., Fousteris, M., Ishikawa, Y., von Wantoch Rekowski, M., Hounsou, C., Surrey, T. & Giannis, A. (2010). Org. Lett. 12, 2096-2099.]). For examples of α-diketone oxidations using selenium dioxide, see: Gribble et al. (1988[Gribble, G. W., Barden, T. C. & Johnson, D. A. (1988). Tetrahedron, 44, 3195-3202.]); Xu et al. (2002[Xu, P.-F., Chen, Y.-S., Lin, S.-I. & Lu, T.-J. (2002). J. Org. Chem. 67, 2309-2314.]); Belsey et al. (2006[Belsey, S., Danks, T. N. & Wagner, G. (2006). Synth. Commun. 36, 1019-1024.]). For related cyclo­penta­[b]indolone alkaloids and their ana­logues, see: Cheng et al. (1991[Cheng, K.-F., Chan, K.-P. & Lai, T.-F. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2461-2465.]); Garcia-Pichel & Castenholz (1991[Garcia-Pichel, F. & Castenholz, R. W. (1991). J. Phycol. 27, 395-409.]); Garcia-Pichel et al. (1992[Garcia-Pichel, F., Sherry, N. D. & Castenholz, R. W. (1992). Photochem. Photobiol. 56, 17-23.]); Proteau et al. (1993[Proteau, P. J., Gerwick, W. H., Garcia-Pichel, F. & Castenholz, R. (1993). Cell. Mol. Life Sci. 49, 825-829.]); Ekebergh et al. (2011[Ekebergh, A., Karlsson, I., Mete, R., Pan, Y., Börje, A. & Mårtensson, J. (2011). Org. Lett. 13, 4458-4461.]); Kobayashi et al. (1994[Kobayashi, A., Kajiyama, S.-I., Inawaka, K., Kanzaki, H. & Kawazu, K. Z. (1994). Z. Naturforsch. Teil C, 49, 464-470.]); Jacquemard et al. (2004[Jacquemard, U., Bénéteau, V., Lefoix, M., Routier, S., Mérour, J.-Y. & Coudert, G. (2004). Tetrahedron, 60, 10039-10047.]); Ploutno & Carmeli (2001[Ploutno, A. & Carmeli, S. (2001). J. Nat. Prod. 64, 544-545.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO2

  • Mr = 213.23

  • Triclinic, [P \overline 1]

  • a = 9.1091 (7) Å

  • b = 11.5337 (8) Å

  • c = 11.8745 (9) Å

  • α = 63.230 (7)°

  • β = 80.596 (6)°

  • γ = 79.970 (6)°

  • V = 1091.69 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 170 K

  • 0.28 × 0.25 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.976, Tmax = 0.979

  • 10062 measured reflections

  • 5644 independent reflections

  • 4698 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.157

  • S = 1.05

  • 5644 reflections

  • 299 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O2A 0.89 (1) 1.95 (1) 2.8025 (16) 161 (2)
N1A—H1NB⋯O2i 0.92 (1) 1.87 (1) 2.7686 (16) 164 (2)
C9A—H9AA⋯O1i 0.95 2.51 3.376 (2) 152
C12A—H12B⋯O2i 0.98 2.57 3.430 (2) 146
Symmetry code: (i) x-1, y, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The fused indole alkaloid bruceolline E was first isolated as yellow needles from the root wood Brucea mollis Wall. Var. tonkinensis Lecomte and reported by Ohmoto (Ouyang et al., 1994). Our synthesis of this cyclopenta[b]indolone natural product included a tandem acylation/Nazarov cyclization sequence (Song et al., 2006) and insertion of the α-diketone functionality using selenium dioxide (Gribble et al., 1988) in 60% yield. Similar Nazarov cyclizations with indoles (Bergman & Venemalm, 1992; Cheng & Cheung, 1996; Ishikura et al., 2000; Miki et al., 2001; Churruca et al., 2010) have been reported. Related α-diketone oxidations using selenium dioxide (Xu et al., 2002; Belsey et al., 2006) and cyclopenta[b]indolone natural product alkaloid analogues such as scytonemin (Garcia-Pichel & Castenholz 1991; Garcia-Pichel et al. 1992; Proteau et al. 1993; Ekebergh et al. 2011), nostodione (Kobayashi et al., 1994) and prenostodione (Ploutno & Carmeli, 2001) have also been reported. Our efforts have yielded the first total synthesis of bruceolline E (Jordan et al., 2011), in three steps from the known ethyl indole-1-carboxylate.

We now report herein the first crystal structure of the title compound, C13H11NO2, bruceolline E, which confirms the cyclopenta[b] indole moiety and the α-diketone functionalities earlier assigned by NMR methods.

In the crystal structure of the title compound, C13H11NO2, two molecules crystallize in the asymmetric unit (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by N—H···O hydrogen bonds (Table 1) and weak C—H···O intermolecular interactions linking these 1-D chains along [011] (Fig. 2).

Related literature top

For the first isolation of bruceolline E as yellow needles, see: Ouyang et al. (1994). For the first total synthesis of bruceolline E in three steps from the known ethyl indole-1-carboxylate, see: Jordan et al. (2011). For examples of similar tandem acylation/Nazarov cyclization with pyrroles, see: Song et al. (2006). For examples of Nazarov cyclizations with indoles, see: Bergman & Venemalm (1992); Cheng & Cheung (1996); Ishikura et al. (2000); Miki et al. (2001); Churruca et al. (2010). For examples of α-diketone oxidations using selenium dioxide, see: Gribble et al. (1988); Xu et al. (2002); Belsey et al. (2006). For related cyclopenta[b]indolone alkaloids and their analogues, see: Cheng et al. (1991); Garcia-Pichel & Castenholz (1991); Garcia-Pichel et al. (1992); Proteau et al. (1993); Ekebergh et al. (2011); Kobayashi et al. (1994); Jacquemard et al. (2004); Ploutno & Carmeli (2001). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A solution of 3,3-dimethyl-1,2-dioxo-2,3-dihydro-1H-cyclopenta[b] indole-4-carboxylic acid ethyl ester (0.58 g, 2.03 mmol, 1 eq.), anhydrous THF (30 mL) and TBAF (10.2 mL, 1.0 M in THF, 10.2 mmol, 5.02 eq.) was stirred under argon at reflux for 2 h (Jacquemard et al., 2004). The mixture was allowed to cool before quenching with saturated NH4Cl. After extraction with CH2Cl2 (3 x 40 mL), the organic layers were combined, dried over MgSO4 and concentrated in vacuo to give a yellow solid. Flash column chromatography (100% EtOAc) gave the product as a yellow solid (0.42 g, 97%). Crystals suitable for X-ray diffraction were grown from methanol [m.p. 562- 563 K (dec); literature value 562- 564 K (dec)].

Refinement top

H1NA and H1NB were located by a Fourier map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19-1.20 (CH) or 1.4-1,50 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with two molecules in the asymmetric unit showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate N—H···O hydrogen bonds forming infinite 1-D chains along [011]. The remaining H atoms have been removed for clarity.
3,3-Dimethyl-1,2,3,4-tetrahydrocyclopenta[b]indole-1,2-dione top
Crystal data top
C13H11NO2Z = 4
Mr = 213.23F(000) = 448
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1091 (7) ÅCell parameters from 5810 reflections
b = 11.5337 (8) Åθ = 3.3–32.3°
c = 11.8745 (9) ŵ = 0.09 mm1
α = 63.230 (7)°T = 170 K
β = 80.596 (6)°Block, yellow
γ = 79.970 (6)°0.28 × 0.25 × 0.24 mm
V = 1091.69 (14) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
5644 independent reflections
Radiation source: Enhance (Mo) X-ray Source4698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 16.1500 pixels mm-1θmax = 28.7°, θmin = 3.3°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1515
Tmin = 0.976, Tmax = 0.979l = 1516
10062 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0864P)2 + 0.2278P]
where P = (Fo2 + 2Fc2)/3
5644 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.36 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H11NO2γ = 79.970 (6)°
Mr = 213.23V = 1091.69 (14) Å3
Triclinic, P1Z = 4
a = 9.1091 (7) ÅMo Kα radiation
b = 11.5337 (8) ŵ = 0.09 mm1
c = 11.8745 (9) ÅT = 170 K
α = 63.230 (7)°0.28 × 0.25 × 0.24 mm
β = 80.596 (6)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
5644 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
4698 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.979Rint = 0.012
10062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
5644 reflectionsΔρmin = 0.20 e Å3
299 parameters
Special details top

Experimental. 1H NMR (600 MHz, DMSO-d6) δ 12.9 (bs, 1H), 7.85 7.84 (d, J = 8.0 Hz, 1H), 7.62 7.61 (d, J = 8.1 Hz, 1H), 7.42 7.39 (t, J = 7.4 Hz, 1H), 7.34–7.31 (t, J = 7.7 Hz, 1H), 1.44 (s, 6H). 13C NMR (150 MHz, DMSO-d6) δ 206.6, 175.2, 171.0, 140.0, 125.4, 123.4, 121.5, 121.1, 121.0, 113.6, 41.6, 22.9; IR ν(KBr) 3418, 1750, 1665, 1469, 1453, 1210, 1152, 1094, 1013; UV λmax (95% MeOH) 256, 264, 272, 342 nm. Anal. Calcd for C13H11NO2: C, 73.22; H, 5.20; N 6.57. Found: C, 72.48; H, 5.30; N 6.40.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75420 (16)0.86467 (16)0.18664 (11)0.0673 (4)
O21.05510 (14)0.75658 (14)0.25613 (11)0.0591 (3)
N10.76832 (12)0.67293 (11)0.63752 (10)0.0329 (2)
H1NA0.6811 (16)0.6811 (16)0.6806 (15)0.039*
C10.67431 (15)0.78837 (13)0.41344 (12)0.0330 (3)
C20.78552 (17)0.80931 (15)0.29437 (13)0.0413 (3)
C30.94630 (16)0.75106 (15)0.33304 (13)0.0398 (3)
C40.93046 (14)0.69760 (13)0.46734 (12)0.0330 (3)
C51.01358 (15)0.62976 (14)0.57632 (13)0.0358 (3)
C61.16300 (17)0.58148 (19)0.59556 (18)0.0522 (4)
H6A1.23610.59070.52600.063*
C71.2022 (2)0.5200 (2)0.7181 (2)0.0653 (5)
H7A1.30380.48620.73260.078*
C81.0970 (2)0.5060 (2)0.82122 (19)0.0618 (5)
H8A1.12800.46260.90440.074*
C90.94890 (19)0.55398 (18)0.80488 (15)0.0496 (4)
H9A0.87710.54530.87510.060*
C100.90872 (15)0.61552 (14)0.68187 (13)0.0351 (3)
C110.78265 (14)0.71996 (12)0.51124 (11)0.0289 (3)
C120.6013 (2)0.92013 (15)0.40795 (16)0.0497 (4)
H12D0.53380.90610.48510.074*
H12E0.54420.96640.33380.074*
H12F0.67910.97240.40140.074*
C130.55503 (18)0.70394 (18)0.42566 (17)0.0495 (4)
H13D0.48780.68990.50290.074*
H13E0.60360.61940.43000.074*
H13F0.49720.74840.35190.074*
N1A0.10484 (12)0.81468 (12)1.00094 (10)0.0343 (3)
H1NB0.0732 (19)0.8074 (16)1.0812 (13)0.041*
O1A0.61629 (13)0.64860 (15)0.94255 (14)0.0651 (4)
O2A0.46978 (13)0.73188 (12)0.71755 (11)0.0529 (3)
C1A0.38431 (14)0.72921 (13)1.03441 (13)0.0336 (3)
C2A0.48880 (15)0.69922 (14)0.93239 (15)0.0390 (3)
C3A0.40683 (16)0.74091 (13)0.81363 (13)0.0370 (3)
C4A0.25841 (14)0.78537 (13)0.84578 (12)0.0320 (3)
C5A0.11410 (15)0.83713 (13)0.79856 (12)0.0333 (3)
C6A0.05507 (19)0.87076 (16)0.68526 (14)0.0452 (3)
H6AA0.11590.86000.61690.054*
C7A0.0938 (2)0.92010 (18)0.67500 (16)0.0538 (4)
H7AA0.13530.94430.59800.065*
C8A0.18450 (19)0.93526 (19)0.77470 (18)0.0568 (4)
H8AA0.28670.96920.76440.068*
C9A0.12946 (17)0.90208 (18)0.88854 (16)0.0490 (4)
H9AA0.19160.91200.95680.059*
C10A0.02018 (15)0.85378 (13)0.89824 (12)0.0345 (3)
C11A0.24447 (14)0.77534 (12)0.96840 (12)0.0292 (3)
C12A0.37519 (19)0.60627 (17)1.15941 (16)0.0512 (4)
H12A0.34340.53711.14560.077*
H12B0.30250.62551.22110.077*
H12C0.47380.57721.19190.077*
C13A0.43957 (19)0.83897 (17)1.04967 (18)0.0518 (4)
H13A0.37130.85991.11250.078*
H13B0.44240.91680.96810.078*
H13C0.54030.81041.07810.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0641 (8)0.0963 (10)0.0291 (6)0.0029 (7)0.0074 (5)0.0196 (6)
O20.0437 (6)0.0938 (9)0.0361 (6)0.0042 (6)0.0117 (5)0.0315 (6)
N10.0271 (5)0.0433 (6)0.0241 (5)0.0003 (4)0.0009 (4)0.0134 (4)
C10.0307 (6)0.0383 (6)0.0268 (6)0.0014 (5)0.0042 (5)0.0127 (5)
C20.0429 (8)0.0511 (8)0.0273 (6)0.0021 (6)0.0012 (5)0.0165 (6)
C30.0350 (7)0.0536 (8)0.0310 (7)0.0033 (6)0.0050 (5)0.0217 (6)
C40.0268 (6)0.0428 (7)0.0290 (6)0.0010 (5)0.0014 (5)0.0175 (5)
C50.0284 (6)0.0448 (7)0.0356 (7)0.0001 (5)0.0040 (5)0.0200 (6)
C60.0291 (7)0.0757 (11)0.0557 (10)0.0045 (7)0.0059 (6)0.0351 (9)
C70.0378 (8)0.0923 (14)0.0728 (13)0.0151 (9)0.0260 (9)0.0432 (11)
C80.0568 (11)0.0806 (13)0.0488 (10)0.0086 (9)0.0269 (8)0.0273 (9)
C90.0471 (8)0.0654 (10)0.0334 (7)0.0002 (7)0.0100 (6)0.0190 (7)
C100.0308 (6)0.0429 (7)0.0306 (6)0.0012 (5)0.0042 (5)0.0157 (5)
C110.0272 (6)0.0335 (6)0.0242 (6)0.0014 (4)0.0002 (4)0.0124 (5)
C120.0527 (9)0.0409 (8)0.0455 (8)0.0076 (7)0.0038 (7)0.0149 (7)
C130.0394 (8)0.0611 (9)0.0523 (9)0.0075 (7)0.0085 (7)0.0263 (8)
N1A0.0278 (5)0.0469 (6)0.0250 (5)0.0028 (4)0.0006 (4)0.0159 (5)
O1A0.0302 (6)0.0908 (10)0.0778 (9)0.0113 (6)0.0046 (6)0.0463 (8)
O2A0.0440 (6)0.0689 (7)0.0422 (6)0.0004 (5)0.0130 (5)0.0290 (6)
C1A0.0280 (6)0.0371 (6)0.0338 (6)0.0001 (5)0.0046 (5)0.0145 (5)
C2A0.0272 (6)0.0417 (7)0.0461 (8)0.0024 (5)0.0023 (5)0.0199 (6)
C3A0.0342 (7)0.0394 (7)0.0345 (7)0.0039 (5)0.0063 (5)0.0169 (5)
C4A0.0311 (6)0.0372 (6)0.0257 (6)0.0032 (5)0.0011 (5)0.0135 (5)
C5A0.0327 (6)0.0379 (6)0.0271 (6)0.0041 (5)0.0013 (5)0.0126 (5)
C6A0.0510 (9)0.0542 (8)0.0301 (7)0.0077 (7)0.0054 (6)0.0170 (6)
C7A0.0543 (10)0.0644 (10)0.0390 (8)0.0065 (8)0.0201 (7)0.0142 (7)
C8A0.0380 (8)0.0717 (11)0.0517 (10)0.0019 (7)0.0157 (7)0.0179 (8)
C9A0.0313 (7)0.0662 (10)0.0415 (8)0.0043 (7)0.0037 (6)0.0199 (7)
C10A0.0309 (6)0.0406 (7)0.0273 (6)0.0015 (5)0.0031 (5)0.0115 (5)
C11A0.0266 (6)0.0316 (6)0.0261 (6)0.0010 (4)0.0000 (4)0.0112 (5)
C12A0.0402 (8)0.0522 (9)0.0417 (8)0.0038 (6)0.0067 (6)0.0054 (7)
C13A0.0453 (9)0.0570 (9)0.0638 (11)0.0044 (7)0.0134 (8)0.0336 (8)
Geometric parameters (Å, º) top
O1—C21.2023 (18)N1A—C11A1.3301 (16)
O2—C31.2224 (17)N1A—C10A1.4057 (17)
N1—C111.3371 (16)N1A—H1NB0.919 (14)
N1—C101.4009 (17)O1A—C2A1.2042 (17)
N1—H1NA0.887 (14)O2A—C3A1.2304 (17)
C1—C111.4910 (17)C1A—C11A1.4949 (17)
C1—C121.5260 (19)C1A—C12A1.525 (2)
C1—C131.530 (2)C1A—C13A1.532 (2)
C1—C21.5470 (19)C1A—C2A1.5424 (19)
C2—C31.551 (2)C2A—C3A1.545 (2)
C3—C41.4192 (19)C3A—C4A1.4151 (18)
C4—C111.3863 (17)C4A—C11A1.3937 (17)
C4—C51.4359 (19)C4A—C5A1.4370 (18)
C5—C61.3920 (19)C5A—C6A1.3939 (19)
C5—C101.4100 (19)C5A—C10A1.4095 (18)
C6—C71.379 (3)C6A—C7A1.378 (2)
C6—H6A0.9500C6A—H6AA0.9500
C7—C81.392 (3)C7A—C8A1.390 (3)
C7—H7A0.9500C7A—H7AA0.9500
C8—C91.376 (2)C8A—C9A1.383 (2)
C8—H8A0.9500C8A—H8AA0.9500
C9—C101.386 (2)C9A—C10A1.3822 (19)
C9—H9A0.9500C9A—H9AA0.9500
C12—H12D0.9800C12A—H12A0.9800
C12—H12E0.9800C12A—H12B0.9800
C12—H12F0.9800C12A—H12C0.9800
C13—H13D0.9800C13A—H13A0.9800
C13—H13E0.9800C13A—H13B0.9800
C13—H13F0.9800C13A—H13C0.9800
C11—N1—C10108.76 (11)C11A—N1A—C10A108.31 (11)
C11—N1—H1NA121.8 (11)C11A—N1A—H1NB122.5 (11)
C10—N1—H1NA129.4 (11)C10A—N1A—H1NB129.0 (11)
C11—C1—C12113.21 (12)C11A—C1A—C12A114.55 (12)
C11—C1—C13113.17 (12)C11A—C1A—C13A111.77 (11)
C12—C1—C13110.52 (13)C12A—C1A—C13A111.60 (14)
C11—C1—C298.41 (10)C11A—C1A—C2A97.98 (10)
C12—C1—C2109.97 (12)C12A—C1A—C2A110.59 (12)
C13—C1—C2110.99 (12)C13A—C1A—C2A109.51 (12)
O1—C2—C1125.61 (14)O1A—C2A—C1A125.67 (14)
O1—C2—C3124.13 (14)O1A—C2A—C3A123.63 (14)
C1—C2—C3110.25 (11)C1A—C2A—C3A110.69 (11)
O2—C3—C4132.30 (14)O2A—C3A—C4A132.76 (14)
O2—C3—C2123.08 (13)O2A—C3A—C2A122.40 (13)
C4—C3—C2104.62 (11)C4A—C3A—C2A104.84 (11)
C11—C4—C3110.28 (12)C11A—C4A—C3A109.89 (12)
C11—C4—C5107.02 (11)C11A—C4A—C5A107.00 (11)
C3—C4—C5142.68 (12)C3A—C4A—C5A143.11 (13)
C6—C5—C10119.17 (14)C6A—C5A—C10A119.22 (13)
C6—C5—C4135.02 (13)C6A—C5A—C4A135.42 (13)
C10—C5—C4105.80 (11)C10A—C5A—C4A105.36 (11)
C7—C6—C5118.31 (16)C7A—C6A—C5A118.32 (15)
C7—C6—H6A120.8C7A—C6A—H6AA120.8
C5—C6—H6A120.8C5A—C6A—H6AA120.8
C6—C7—C8121.72 (16)C6A—C7A—C8A121.50 (14)
C6—C7—H7A119.1C6A—C7A—H7AA119.3
C8—C7—H7A119.1C8A—C7A—H7AA119.3
C9—C8—C7121.20 (16)C9A—C8A—C7A121.55 (15)
C9—C8—H8A119.4C9A—C8A—H8AA119.2
C7—C8—H8A119.4C7A—C8A—H8AA119.2
C8—C9—C10117.32 (16)C10A—C9A—C8A116.88 (15)
C8—C9—H9A121.3C10A—C9A—H9AA121.6
C10—C9—H9A121.3C8A—C9A—H9AA121.6
C9—C10—N1129.67 (13)C9A—C10A—N1A128.81 (13)
C9—C10—C5122.27 (13)C9A—C10A—C5A122.53 (13)
N1—C10—C5108.06 (11)N1A—C10A—C5A108.66 (11)
N1—C11—C4110.35 (11)N1A—C11A—C4A110.66 (11)
N1—C11—C1133.24 (11)N1A—C11A—C1A132.96 (12)
C4—C11—C1116.41 (11)C4A—C11A—C1A116.33 (11)
C1—C12—H12D109.5C1A—C12A—H12A109.5
C1—C12—H12E109.5C1A—C12A—H12B109.5
H12D—C12—H12E109.5H12A—C12A—H12B109.5
C1—C12—H12F109.5C1A—C12A—H12C109.5
H12D—C12—H12F109.5H12A—C12A—H12C109.5
H12E—C12—H12F109.5H12B—C12A—H12C109.5
C1—C13—H13D109.5C1A—C13A—H13A109.5
C1—C13—H13E109.5C1A—C13A—H13B109.5
H13D—C13—H13E109.5H13A—C13A—H13B109.5
C1—C13—H13F109.5C1A—C13A—H13C109.5
H13D—C13—H13F109.5H13A—C13A—H13C109.5
H13E—C13—H13F109.5H13B—C13A—H13C109.5
C11—C1—C2—O1178.28 (17)C11A—C1A—C2A—O1A174.04 (15)
C12—C1—C2—O159.7 (2)C12A—C1A—C2A—O1A54.0 (2)
C13—C1—C2—O162.9 (2)C13A—C1A—C2A—O1A69.41 (19)
C11—C1—C2—C30.43 (15)C11A—C1A—C2A—C3A4.93 (13)
C12—C1—C2—C3118.96 (14)C12A—C1A—C2A—C3A124.99 (13)
C13—C1—C2—C3118.44 (13)C13A—C1A—C2A—C3A111.62 (13)
O1—C2—C3—O20.2 (3)O1A—C2A—C3A—O2A4.3 (2)
C1—C2—C3—O2178.95 (15)C1A—C2A—C3A—O2A176.71 (13)
O1—C2—C3—C4179.30 (17)O1A—C2A—C3A—C4A175.40 (15)
C1—C2—C3—C40.57 (16)C1A—C2A—C3A—C4A3.60 (15)
O2—C3—C4—C11178.02 (17)O2A—C3A—C4A—C11A179.98 (16)
C2—C3—C4—C111.44 (16)C2A—C3A—C4A—C11A0.37 (15)
O2—C3—C4—C50.2 (3)O2A—C3A—C4A—C5A0.6 (3)
C2—C3—C4—C5179.69 (18)C2A—C3A—C4A—C5A179.08 (17)
C11—C4—C5—C6179.60 (17)C11A—C4A—C5A—C6A179.17 (16)
C3—C4—C5—C61.3 (3)C3A—C4A—C5A—C6A1.4 (3)
C11—C4—C5—C100.31 (15)C11A—C4A—C5A—C10A0.72 (15)
C3—C4—C5—C10177.97 (19)C3A—C4A—C5A—C10A178.74 (17)
C10—C5—C6—C70.7 (3)C10A—C5A—C6A—C7A0.4 (2)
C4—C5—C6—C7179.91 (18)C4A—C5A—C6A—C7A179.47 (16)
C5—C6—C7—C80.3 (3)C5A—C6A—C7A—C8A0.6 (3)
C6—C7—C8—C90.4 (3)C6A—C7A—C8A—C9A0.3 (3)
C7—C8—C9—C100.6 (3)C7A—C8A—C9A—C10A0.3 (3)
C8—C9—C10—N1179.92 (16)C8A—C9A—C10A—N1A178.99 (15)
C8—C9—C10—C50.2 (3)C8A—C9A—C10A—C5A0.6 (3)
C11—N1—C10—C9179.70 (16)C11A—N1A—C10A—C9A179.67 (15)
C11—N1—C10—C50.51 (16)C11A—N1A—C10A—C5A0.06 (16)
C6—C5—C10—C90.5 (2)C6A—C5A—C10A—C9A0.2 (2)
C4—C5—C10—C9179.92 (15)C4A—C5A—C10A—C9A179.88 (14)
C6—C5—C10—N1179.31 (14)C6A—C5A—C10A—N1A179.42 (13)
C4—C5—C10—N10.11 (15)C4A—C5A—C10A—N1A0.48 (15)
C10—N1—C11—C40.73 (15)C10A—N1A—C11A—C4A0.41 (15)
C10—N1—C11—C1179.04 (14)C10A—N1A—C11A—C1A176.95 (13)
C3—C4—C11—N1178.24 (12)C3A—C4A—C11A—N1A178.94 (11)
C5—C4—C11—N10.65 (16)C5A—C4A—C11A—N1A0.72 (15)
C3—C4—C11—C11.95 (17)C3A—C4A—C11A—C1A3.22 (16)
C5—C4—C11—C1179.16 (11)C5A—C4A—C11A—C1A177.13 (11)
C12—C1—C11—N162.8 (2)C12A—C1A—C11A—N1A60.7 (2)
C13—C1—C11—N163.97 (19)C13A—C1A—C11A—N1A67.49 (19)
C2—C1—C11—N1178.83 (15)C2A—C1A—C11A—N1A177.73 (14)
C12—C1—C11—C4117.46 (14)C12A—C1A—C11A—C4A122.05 (14)
C13—C1—C11—C4115.79 (14)C13A—C1A—C11A—C4A109.76 (14)
C2—C1—C11—C41.41 (15)C2A—C1A—C11A—C4A5.02 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O2A0.89 (1)1.95 (1)2.8025 (16)161 (2)
N1A—H1NB···O2i0.92 (1)1.87 (1)2.7686 (16)164 (2)
C9A—H9AA···O1i0.952.513.376 (2)152
C12A—H12B···O2i0.982.573.430 (2)146
Symmetry code: (i) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H11NO2
Mr213.23
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)9.1091 (7), 11.5337 (8), 11.8745 (9)
α, β, γ (°)63.230 (7), 80.596 (6), 79.970 (6)
V3)1091.69 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.25 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.976, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
10062, 5644, 4698
Rint0.012
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.05
No. of reflections5644
No. of parameters299
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O2A0.887 (14)1.950 (14)2.8025 (16)160.7 (16)
N1A—H1NB···O2i0.919 (14)1.874 (14)2.7686 (16)163.9 (16)
C9A—H9AA···O1i0.952.513.376 (2)151.6
C12A—H12B···O2i0.982.573.430 (2)146.3
Symmetry code: (i) x1, y, z+1.
 

Acknowledgements

JCB wishes to thank the School of Graduate Studies and Research, UWI, and the Government of Barbados for the funding of this research. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBelsey, S., Danks, T. N. & Wagner, G. (2006). Synth. Commun. 36, 1019–1024.  Web of Science CrossRef CAS Google Scholar
First citationBergman, J. & Venemalm, L. (1992). Tetrahedron 48, 759–768.  CrossRef CAS Web of Science Google Scholar
First citationCheng, K.-F., Chan, K.-P. & Lai, T.-F. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2461–2465.  CSD CrossRef Web of Science Google Scholar
First citationCheng, K.-F. & Cheung, M.-K. (1996). J. Chem. Soc., Perkin Trans. 1, pp. 1213–1218.  Google Scholar
First citationChurruca, F., Fousteris, M., Ishikawa, Y., von Wantoch Rekowski, M., Hounsou, C., Surrey, T. & Giannis, A. (2010). Org. Lett. 12, 2096–2099.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEkebergh, A., Karlsson, I., Mete, R., Pan, Y., Börje, A. & Mårtensson, J. (2011). Org. Lett. 13, 4458–4461.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGarcia-Pichel, F. & Castenholz, R. W. (1991). J. Phycol. 27, 395–409.  CAS Google Scholar
First citationGarcia-Pichel, F., Sherry, N. D. & Castenholz, R. W. (1992). Photochem. Photobiol. 56, 17–23.  PubMed CAS Web of Science Google Scholar
First citationGribble, G. W., Barden, T. C. & Johnson, D. A. (1988). Tetrahedron, 44, 3195–3202.  CrossRef CAS Web of Science Google Scholar
First citationIshikura, M., Imaizumi, K. & Katagiri, N. (2000). Heterocycles, 53, 2201–2220.  CrossRef CAS Google Scholar
First citationJacquemard, U., Bénéteau, V., Lefoix, M., Routier, S., Mérour, J.-Y. & Coudert, G. (2004). Tetrahedron, 60, 10039–10047.  Web of Science CrossRef CAS Google Scholar
First citationJordan, J. A., Gribble, G. W. & Badenock, J. C. (2011). Tetrahedron Lett. 52, 6772–6774.  Web of Science CrossRef CAS Google Scholar
First citationKobayashi, A., Kajiyama, S.-I., Inawaka, K., Kanzaki, H. & Kawazu, K. Z. (1994). Z. Naturforsch. Teil C, 49, 464–470.  CAS Google Scholar
First citationMiki, Y., Hachiken, H., Kawazoe, A., Tsuzaki, Y. & Yanase, N. (2001). Heterocycles, 55, 1291–1299.  CrossRef CAS Google Scholar
First citationOuyang, Y., Koike, K. & Ohmoto, T. (1994). Phytochemistry, 37, 575–578.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPloutno, A. & Carmeli, S. (2001). J. Nat. Prod. 64, 544–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationProteau, P. J., Gerwick, W. H., Garcia-Pichel, F. & Castenholz, R. (1993). Cell. Mol. Life Sci. 49, 825–829.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, C., Knight, D. W. & Whatton, M. A. (2006). Org. Lett. 8, 163–166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, P.-F., Chen, Y.-S., Lin, S.-I. & Lu, T.-J. (2002). J. Org. Chem. 67, 2309–2314.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o364-o365
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds