organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-({2-[(E)-(Hy­dr­oxy­imino)­meth­yl]phen­­oxy}meth­yl)-3-o-tolyl­acrylo­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 5 January 2012; accepted 12 January 2012; online 21 January 2012)

In the title compound, C18H16N2O2, the dihedral angle between the mean planes through the two benzene rings is 56.8 (6)°. The enoate group assumes an extended conformation. The hy­droxy­ethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being 0.047 (1) Å for the hy­droxy­imino O atom. In the crystal, the mol­ecules are linked into cyclic centrosymmetric dimers with R22(6) motifs via O—H⋯N hydrogen bonds.

Related literature

For the use of 2-cyano­acrylates and oximes as agrochemicals, see: Zhang et al. (2009[Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.]). For the use of oximes as chelating ligands in coordination and analytical chemistry, see: Chaudhuri et al. (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]). For a related structure, see: Govindan et al. (2011[Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O2

  • Mr = 292.33

  • Triclinic, [P \overline 1]

  • a = 7.0214 (2) Å

  • b = 10.5094 (3) Å

  • c = 10.8854 (3) Å

  • α = 97.636 (1)°

  • β = 95.953 (1)°

  • γ = 99.642 (1)°

  • V = 778.32 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.983

  • 21189 measured reflections

  • 5557 independent reflections

  • 3825 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.163

  • S = 1.06

  • 5557 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.07 2.7962 (13) 147
Symmetry code: (i) -x-1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other tolylacrylonitile derivatives (Govindan et al., 2011). The whole molecule is not planar as the dihedral angle between the two phenyl rings is 56.8 (6)°, The oxime group having the C=N forming an E configuration. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane of the hydroxyethanimine [C=N—OH] group is 0.047 (1) Å. for the O1 atom.

The enoate group assumes an extended conformation as can be seen from torsion angles C2—C1—N1—O1 [177.9 (2)°] and C1—C2—C3—C4 [-177.1 (2) °]. The atom C15 in the molecule (x,y,z) donate one proton to atom O1 of the molecule at (-1 - x,-y,1 - z) forming a C(6) chain along b axis. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6) (Fig. 2). In addition to van der Waals interaction, the crystal packing is stabilized by C—H···O interactions.

Related literature top

For the use of 2-cyanoacrylates and oximes as agrochemicals, see: Zhang et al. (2009). For the use of oximes as chelating ligands in coordination and analytical chemistry, see: Chaudhuri et al. (2003). For a related structure, see: Govindan et al. (2011)

Experimental top

To a stirred solution of (E)-2-((2-formylphenoxy)methyl)-3-o- tolylacrylonitrile (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 x 15 ml). The combined organic layer was washed with brine (2 x 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (2E)-2-((2-((Hydroxyimino)methyl) phenoxy)methyl)-3-o-tolylacrylonitrile as a colourless solid.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (-1 - x, -y, 1 - z). The dashed lines indicate the hydrogen bonds.
(E)-2-({2-[(E)-(Hydroxyimino)methyl]phenoxy}methyl)- 3-o-tolylacrylonitrile top
Crystal data top
C18H16N2O2Z = 2
Mr = 292.33F(000) = 308
Triclinic, P1Dx = 1.247 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0214 (2) ÅCell parameters from 5557 reflections
b = 10.5094 (3) Åθ = 1.9°
c = 10.8854 (3) ŵ = 0.08 mm1
α = 97.636 (1)°T = 293 K
β = 95.953 (1)°Block, white crystalline
γ = 99.642 (1)°0.25 × 0.22 × 0.19 mm
V = 778.32 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5557 independent reflections
Radiation source: fine-focus sealed tube3825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 34.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.978, Tmax = 0.983k = 1615
21189 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.0621P]
where P = (Fo2 + 2Fc2)/3
5557 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H16N2O2γ = 99.642 (1)°
Mr = 292.33V = 778.32 (4) Å3
Triclinic, P1Z = 2
a = 7.0214 (2) ÅMo Kα radiation
b = 10.5094 (3) ŵ = 0.08 mm1
c = 10.8854 (3) ÅT = 293 K
α = 97.636 (1)°0.25 × 0.22 × 0.19 mm
β = 95.953 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5557 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3825 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.029
21189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
5557 reflectionsΔρmin = 0.19 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15593 (16)0.00826 (11)0.65422 (11)0.0458 (3)
H10.11820.07600.72100.055*
C20.02936 (15)0.08709 (10)0.63051 (10)0.0403 (2)
C30.08597 (19)0.20010 (12)0.54286 (12)0.0537 (3)
H30.20680.21480.49430.064*
C40.0343 (2)0.29046 (12)0.52696 (13)0.0590 (3)
H40.00510.36490.46740.071*
C50.21237 (19)0.27051 (12)0.59921 (12)0.0536 (3)
H50.29190.33270.58970.064*
C60.27362 (17)0.15902 (11)0.68554 (11)0.0465 (3)
H60.39470.14550.73370.056*
C70.15422 (14)0.06683 (10)0.70047 (9)0.0381 (2)
C80.34958 (15)0.05707 (11)0.88418 (10)0.0430 (2)
H8A0.47950.07290.85980.052*
H8B0.33170.02400.91870.052*
C90.32336 (14)0.16826 (10)0.97920 (10)0.0387 (2)
C100.12321 (15)0.17173 (11)0.99392 (11)0.0467 (3)
C110.47398 (14)0.25582 (10)1.04165 (10)0.0395 (2)
H110.59580.24501.02030.047*
C120.47398 (15)0.36647 (10)1.13905 (10)0.0399 (2)
C130.3269 (2)0.36659 (13)1.21596 (12)0.0552 (3)
H130.22990.29301.20870.066*
C140.3234 (2)0.47427 (15)1.30267 (15)0.0735 (4)
H140.22380.47351.35270.088*
C150.4678 (3)0.58260 (15)1.31470 (16)0.0760 (5)
H150.46420.65631.37140.091*
C160.6170 (2)0.58189 (12)1.24310 (14)0.0609 (3)
H160.71490.65541.25330.073*
C170.62672 (16)0.47510 (11)1.15593 (11)0.0441 (2)
C180.79547 (18)0.47851 (14)1.08190 (15)0.0597 (3)
H18A0.88110.56161.10460.090*
H18B0.74840.46570.99430.090*
H18C0.86510.41041.09930.090*
N10.31578 (13)0.00044 (10)0.58572 (9)0.0461 (2)
N20.03874 (16)0.17076 (12)0.99832 (14)0.0698 (4)
O10.41663 (12)0.09866 (9)0.62794 (9)0.0605 (3)
H1A0.51630.09350.57970.091*
O20.20712 (11)0.04926 (7)0.77921 (7)0.0467 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0381 (5)0.0484 (6)0.0469 (6)0.0088 (4)0.0016 (4)0.0025 (5)
C20.0366 (5)0.0415 (5)0.0403 (5)0.0061 (4)0.0010 (4)0.0014 (4)
C30.0508 (6)0.0495 (6)0.0520 (7)0.0048 (5)0.0073 (5)0.0076 (5)
C40.0703 (8)0.0439 (6)0.0553 (7)0.0082 (6)0.0010 (6)0.0108 (5)
C50.0648 (7)0.0449 (6)0.0527 (7)0.0205 (5)0.0097 (6)0.0010 (5)
C60.0455 (6)0.0466 (6)0.0471 (6)0.0159 (5)0.0017 (4)0.0005 (5)
C70.0387 (5)0.0371 (5)0.0368 (5)0.0077 (4)0.0022 (4)0.0004 (4)
C80.0359 (5)0.0443 (5)0.0456 (6)0.0138 (4)0.0041 (4)0.0056 (4)
C90.0350 (4)0.0378 (5)0.0422 (5)0.0098 (4)0.0021 (4)0.0002 (4)
C100.0386 (5)0.0400 (5)0.0571 (7)0.0063 (4)0.0048 (5)0.0061 (5)
C110.0360 (5)0.0395 (5)0.0415 (5)0.0082 (4)0.0023 (4)0.0015 (4)
C120.0402 (5)0.0369 (5)0.0403 (5)0.0070 (4)0.0004 (4)0.0008 (4)
C130.0579 (7)0.0501 (6)0.0516 (7)0.0010 (5)0.0152 (5)0.0060 (5)
C140.0811 (10)0.0672 (9)0.0675 (9)0.0059 (7)0.0313 (8)0.0141 (7)
C150.0977 (12)0.0526 (8)0.0692 (9)0.0061 (7)0.0200 (8)0.0191 (7)
C160.0689 (8)0.0408 (6)0.0638 (8)0.0020 (6)0.0026 (6)0.0049 (5)
C170.0426 (5)0.0390 (5)0.0477 (6)0.0057 (4)0.0020 (4)0.0043 (4)
C180.0435 (6)0.0541 (7)0.0775 (9)0.0001 (5)0.0086 (6)0.0063 (6)
N10.0370 (4)0.0491 (5)0.0508 (5)0.0111 (4)0.0010 (4)0.0023 (4)
N20.0416 (5)0.0669 (7)0.0954 (9)0.0107 (5)0.0122 (5)0.0110 (6)
O10.0460 (5)0.0644 (6)0.0689 (6)0.0224 (4)0.0026 (4)0.0054 (4)
O20.0442 (4)0.0416 (4)0.0490 (4)0.0146 (3)0.0114 (3)0.0076 (3)
Geometric parameters (Å, º) top
C1—N11.2655 (14)C10—N21.1415 (15)
C1—C21.4621 (14)C11—C121.4658 (13)
C1—H10.9300C11—H110.9300
C2—C31.3932 (15)C12—C131.3950 (16)
C2—C71.3958 (14)C12—C171.4074 (16)
C3—C41.3783 (18)C13—C141.3793 (17)
C3—H30.9300C13—H130.9300
C4—C51.3751 (19)C14—C151.374 (2)
C4—H40.9300C14—H140.9300
C5—C61.3768 (16)C15—C161.369 (2)
C5—H50.9300C15—H150.9300
C6—C71.3880 (14)C16—C171.3859 (16)
C6—H60.9300C16—H160.9300
C7—O21.3658 (12)C17—C181.4987 (17)
C8—O21.4225 (12)C18—H18A0.9600
C8—C91.5032 (13)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C8—H8B0.9700N1—O11.4016 (12)
C9—C111.3364 (14)O1—H1A0.8200
C9—C101.4367 (14)
N1—C1—C2121.33 (10)C9—C11—C12129.04 (9)
N1—C1—H1119.3C9—C11—H11115.5
C2—C1—H1119.3C12—C11—H11115.5
C3—C2—C7118.07 (10)C13—C12—C17119.11 (10)
C3—C2—C1122.78 (10)C13—C12—C11121.69 (10)
C7—C2—C1119.13 (9)C17—C12—C11119.20 (10)
C4—C3—C2121.07 (11)C14—C13—C12120.96 (12)
C4—C3—H3119.5C14—C13—H13119.5
C2—C3—H3119.5C12—C13—H13119.5
C5—C4—C3119.99 (11)C15—C14—C13119.68 (13)
C5—C4—H4120.0C15—C14—H14120.2
C3—C4—H4120.0C13—C14—H14120.2
C4—C5—C6120.34 (11)C16—C15—C14119.93 (12)
C4—C5—H5119.8C16—C15—H15120.0
C6—C5—H5119.8C14—C15—H15120.0
C5—C6—C7119.82 (11)C15—C16—C17122.09 (12)
C5—C6—H6120.1C15—C16—H16119.0
C7—C6—H6120.1C17—C16—H16119.0
O2—C7—C6123.73 (9)C16—C17—C12118.08 (11)
O2—C7—C2115.58 (8)C16—C17—C18119.87 (11)
C6—C7—C2120.66 (10)C12—C17—C18122.04 (10)
O2—C8—C9107.03 (8)C17—C18—H18A109.5
O2—C8—H8A110.3C17—C18—H18B109.5
C9—C8—H8A110.3H18A—C18—H18B109.5
O2—C8—H8B110.3C17—C18—H18C109.5
C9—C8—H8B110.3H18A—C18—H18C109.5
H8A—C8—H8B108.6H18B—C18—H18C109.5
C11—C9—C10124.04 (9)C1—N1—O1111.76 (9)
C11—C9—C8122.27 (9)N1—O1—H1A109.5
C10—C9—C8113.68 (9)C7—O2—C8118.07 (8)
N2—C10—C9175.85 (13)
N1—C1—C2—C38.33 (19)C8—C9—C11—C12177.93 (10)
N1—C1—C2—C7173.47 (11)C9—C11—C12—C1326.68 (19)
C7—C2—C3—C41.03 (19)C9—C11—C12—C17153.67 (12)
C1—C2—C3—C4177.18 (13)C17—C12—C13—C143.8 (2)
C2—C3—C4—C50.8 (2)C11—C12—C13—C14176.50 (13)
C3—C4—C5—C61.6 (2)C12—C13—C14—C150.7 (3)
C4—C5—C6—C70.57 (19)C13—C14—C15—C161.8 (3)
C5—C6—C7—O2176.62 (11)C14—C15—C16—C171.1 (3)
C5—C6—C7—C21.26 (18)C15—C16—C17—C122.0 (2)
C3—C2—C7—O2176.01 (10)C15—C16—C17—C18178.74 (15)
C1—C2—C7—O25.71 (15)C13—C12—C17—C164.40 (18)
C3—C2—C7—C62.03 (17)C11—C12—C17—C16175.94 (11)
C1—C2—C7—C6176.25 (10)C13—C12—C17—C18176.37 (12)
O2—C8—C9—C11135.77 (11)C11—C12—C17—C183.29 (17)
O2—C8—C9—C1043.22 (13)C2—C1—N1—O1177.80 (10)
C11—C9—C10—N2151.8 (19)C6—C7—O2—C825.64 (15)
C8—C9—C10—N227 (2)C2—C7—O2—C8156.39 (10)
C10—C9—C11—C123.19 (19)C9—C8—O2—C7157.61 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.072.7962 (13)147
Symmetry code: (i) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H16N2O2
Mr292.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0214 (2), 10.5094 (3), 10.8854 (3)
α, β, γ (°)97.636 (1), 95.953 (1), 99.642 (1)
V3)778.32 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
21189, 5557, 3825
Rint0.029
(sin θ/λ)max1)0.798
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.163, 1.06
No. of reflections5557
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.072.7962 (13)146.7
Symmetry code: (i) x1, y, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGovindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds