metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nona­aqua­praseodymium triiodide–thio­urea (1/2)

aDepartment of Inorganic Chemistry, M. V. Lomonosov Moscow State University of Fine Chemical Technologies, 86 Vernadskogo Av., Moscow 119571, Russian Federation, and bChemistry Department, Moscow State University, Leninskiye Gory, Moscow 119992, Russian Federation
*Correspondence e-mail: dmitryalbov@yandex.ru

(Received 21 November 2011; accepted 19 December 2011; online 7 January 2012)

The title compound, [Pr(H2O)9]I3·2CS(NH2)2, an adduct of nona­aqua­praseodymium triiodide with two thio­urea mol­ecules, is composed from [Pr(H2O)9]3+ cations (polyhedron: monocapped tetra­gonal anti­prism), noncoordinated thio­urea mol­ecules and iodide anions. The components are evidently connected by hydrogen bonds but in the presence of heavy atoms water H atoms have not been located. The complex cation and one of the two independent iodide anions are located on a twofold axis.

Related literature

For related compounds, see: Romanenko et al. (1980[Romanenko, G. V., Podberezskaya, N. V., Bakakin, V. V. & Sakharova, Yu. G. (1980). J. Struct. Chem. 21, 348-351.], 1981a[Romanenko, G. V., Podberezskaya, N. V. & Bakakin, V. V. (1981a). J. Struct. Chem. 22, 299-301.],b[Romanenko, G. V., Podberezskaya, N. V., Bakakin, V. V. & Sakharova, Yu. G. (1981b). J. Struct. Chem. 22, 740-743.], 1985[Romanenko, G. V., Podberezskaya, N. V., Bakakin, V. V. & Sakharova, Yu. G. (1985). J. Struct. Chem. 26, 743-748.],1986[Romanenko, G. V., Podberezskaya, N. V. & Bakakin, V. V. (1986). J. Struct. Chem. 27, 321-324.]); Antonenko et al. (2011[Antonenko, T. A., Alikberova, L. Yu., Albov, D. V. & Rukk, N. S. (2011). Russ. J. Coord. Chem. 37, 785-790.]). For applications of similar complexes, see: Suponitsky et al. (1988[Suponitsky, Yu. L., Kuz'micheva, G. M. & Eliseev, A. A. (1988). Russ. Chem. Rev. 57(3), 209-220.]). For titration methods, see: Patrovsky (1959[Patrovsky, V. (1959). Coll. Czech. Chem. Commun. 24, 3305-3308.]); Kolthoff & Belcher (1957[Kolthoff, I. M. & Belcher, R. N. Y. (1957). Volumetric Analysis. Vol. 3, pp. 387-389. New York: Interscience.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr(H2O)9]I3·2CH4N2S

  • Mr = 836.00

  • Monoclinic, C 2/c

  • a = 24.934 (18) Å

  • b = 8.439 (3) Å

  • c = 14.143 (8) Å

  • β = 124.68 (5)°

  • V = 2447 (3) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 3.16 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.405, Tmax = 0.592

  • 2309 measured reflections

  • 2309 independent reflections

  • 1827 reflections with I > 2σ(I)

  • 1 standard reflection every 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 0.99

  • 2309 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.88 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure investigation of the interaction products of metal salts with thiourea CS(NH2)2 is very promising, because it allows to predict the possible ways of thermal decomposition of these compounds yielding oxide, sulfide and oxosulfide derivatives (Suponitsky et al., 1988). The lanthanide derivatives are very promising objects of research in this regard, since the corresponding sulfides and oxosulfides are used as the activators of materials with the luminescent properties. To the present time the structure of only some thiourea derivatives of lanthanide salts has been studied in details. Systematic investigation of the previously synthesized thiourea derivatives allowed us to conclude that there are two isostructural series of lanthanide acetates (La–Pr and Nd–Lu) (Romanenko et al., 1980; Romanenko et al., 1981a; Romanenko et al., 1986), and three isostructural series of lanthanide propionates (La–Pr, Nd–Tm, Yb–Lu) (Romanenko et al., 1981b; Romanenko et al., 1985). It was established the existence of complex cations in the structures, involving coordinated water molecules as well as bidentate and bridging acetate or propionate ions. It was noted that thiourea is not included into the internal sphere of complexes. The information about the synthesis and structure of thiourea derivatives of lanthanide halides is much smaller. We have obtained the compounds of thiourea with LnI3 (Ln = Eu, Ho, Er) at room temperature (Antonenko et al., 2011). X–ray data have been demonstrated that in the solid state these compounds are composed from [Ln(H2O)9]3+ cations (polyhedron: monocapped tetragonal antiprism), non–coordinated thiourea molecules and iodide–ions.

Herein we report the structure of thiourea adduct of nonaaquapraseodymium triiodide I (Fig. 1). In the solid state I is composed from [Pr(H2O)9]3+ cations (polyhedron: monocapped tetragonal antiprism), thiourea molecules and iodide anions. All mentioned species are evidently connected with H–bonds but in the presence of heavy atoms water H atoms have not been located and thus can not be discussed. The complex cation and one of the two independent iodide anions are located on a twofold axis. There is no coordination of thiourea by the lanthanide atom as through the atom S, and through the atom N as well as in the cases of compounds which have been obtained previously (Antonenko et al., 2011). A packing diagram is shown in Fig. 2.

Related literature top

For related compounds, see: Romanenko et al. (1980, 1981a,b, 1985,1986); Antonenko et al. (2011). For applications of similar complexes, see: Suponitsky et al. (1988). For titration methods, see: Patrovsky (1959); Kolthoff & Belcher (1957).

Experimental top

The synthesis of title compound was carried out at room temperature by mixing PrI3×9H2O and CS(NH2)2 at a molar ratio 1:1.7. Few drops of water were added to the reaction mixture to the formation of clear solution. After 30 days the light green crystals were identified from it. These crystals are hygroscopic; they are decomposed by water with the release of the initial thiourea. The crystals of title compound suitable for X–ray analysis were dried over the alkali in the desiccator. By complexometric titration with 0.1 M Edta and reverse iodometric titration with 0.1 M Na2S2O3 (Patrovsky, 1959; Kolthoff & Belcher, 1957) we established that the molar ratio of nonaaquapraseodymium triiodide and thiourea in this compound is 1:2.

Refinement top

In the presence of heavy atoms water H atoms could not be located. The hydrogen atoms bound to N atoms were placed in calculated positions with N—H = 0.86Å and refined as riding with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Crystal structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Only independent iodide anions are shown. Symmetry code: (i) 1-x, y, 1/2-z.
[Figure 2] Fig. 2. Crystal packing of I, a view along the a axis.
Nonaaquapraseodymium triiodide–thiourea (1/2) top
Crystal data top
[Pr(H2O)9]I3·2CH4N2SF(000) = 1552
Mr = 836.00Dx = 2.269 Mg m3
Monoclinic, C2/cAg Kα radiation, λ = 0.56085 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 24.934 (18) Åθ = 12–13°
b = 8.439 (3) ŵ = 3.16 mm1
c = 14.143 (8) ÅT = 295 K
β = 124.68 (5)°Prism, light green
V = 2447 (3) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1827 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 20.0°, θmin = 1.6°
non–profiled ω scansh = 3024
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.405, Tmax = 0.592l = 017
2309 measured reflections1 standard reflections every 120 min
2309 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0486P)2 + 1.3974P]
where P = (Fo2 + 2Fc2)/3
2309 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Pr(H2O)9]I3·2CH4N2SV = 2447 (3) Å3
Mr = 836.00Z = 4
Monoclinic, C2/cAg Kα radiation, λ = 0.56085 Å
a = 24.934 (18) ŵ = 3.16 mm1
b = 8.439 (3) ÅT = 295 K
c = 14.143 (8) Å0.20 × 0.20 × 0.20 mm
β = 124.68 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1827 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.405, Tmax = 0.5921 standard reflections every 120 min
2309 measured reflections intensity decay: 2%
2309 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.99Δρmax = 1.24 e Å3
2309 reflectionsΔρmin = 0.88 e Å3
98 parameters
Special details top

Experimental. North et al., 1968. Number of ψ–scan sets used was 5. Theta correction was applied. Averaged transmission function was used. Fourier smoothing - Window value 3.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.50000.80167 (6)0.25000.03210 (15)
O10.50001.1003 (7)0.25000.0419 (15)
O20.5919 (2)0.6295 (6)0.2854 (4)0.0547 (13)
O30.5369 (3)0.6201 (7)0.4163 (4)0.0619 (14)
O40.5386 (3)0.9090 (6)0.1328 (5)0.0604 (14)
O50.6059 (2)0.9151 (7)0.4141 (5)0.0705 (17)
I10.25000.75000.00000.0930 (4)
I20.36775 (2)0.71928 (6)0.45157 (4)0.04941 (17)
S10.57937 (10)0.7171 (2)0.66733 (17)0.0466 (4)
C10.6621 (4)0.7453 (8)0.7467 (7)0.0489 (18)
N110.6976 (4)0.6708 (17)0.7270 (10)0.160 (6)
H11A0.73870.69120.76570.192*
H11B0.68120.59880.67470.192*
N120.6906 (4)0.8508 (17)0.8263 (9)0.170 (6)
H12A0.73190.86610.86220.204*
H12B0.66830.90610.84370.204*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.0272 (2)0.0302 (2)0.0343 (3)0.0000.0148 (2)0.000
O10.051 (4)0.031 (3)0.052 (4)0.0000.034 (3)0.000
O20.050 (3)0.051 (3)0.058 (3)0.013 (2)0.028 (3)0.010 (3)
O30.075 (4)0.058 (3)0.040 (3)0.021 (3)0.026 (3)0.019 (3)
O40.081 (4)0.046 (3)0.079 (4)0.017 (3)0.060 (3)0.010 (3)
O50.039 (3)0.058 (3)0.075 (4)0.006 (3)0.009 (3)0.031 (3)
I10.0320 (4)0.1182 (9)0.0991 (8)0.0120 (4)0.0196 (5)0.0195 (6)
I20.0496 (3)0.0431 (3)0.0541 (3)0.0015 (2)0.0286 (3)0.0034 (2)
S10.0478 (10)0.0444 (10)0.0513 (10)0.0068 (8)0.0304 (9)0.0000 (8)
C10.060 (5)0.048 (4)0.052 (4)0.002 (4)0.040 (4)0.004 (3)
N110.053 (5)0.244 (15)0.160 (10)0.019 (8)0.047 (6)0.129 (11)
N120.075 (6)0.240 (15)0.156 (10)0.030 (8)0.042 (7)0.151 (11)
Geometric parameters (Å, º) top
Pr1—O3i2.503 (5)Pr1—O12.520 (6)
Pr1—O32.503 (5)S1—C11.713 (10)
Pr1—O52.511 (5)C1—N111.240 (12)
Pr1—O5i2.511 (5)C1—N121.287 (11)
Pr1—O2i2.512 (5)N11—H11A0.8600
Pr1—O22.512 (5)N11—H11B0.8600
Pr1—O42.512 (5)N12—H12A0.8600
Pr1—O4i2.512 (5)N12—H12B0.8600
O3i—Pr1—O3104.5 (3)O5—Pr1—O4i81.32 (19)
O3i—Pr1—O5137.14 (18)O5i—Pr1—O4i82.9 (2)
O3—Pr1—O574.6 (2)O2i—Pr1—O4i72.02 (19)
O3i—Pr1—O5i74.6 (2)O2—Pr1—O4i136.54 (17)
O3—Pr1—O5i137.14 (18)O4—Pr1—O4i137.7 (2)
O5—Pr1—O5i135.2 (3)O3i—Pr1—O1127.76 (13)
O3i—Pr1—O2i69.67 (18)O3—Pr1—O1127.76 (13)
O3—Pr1—O2i68.84 (18)O5—Pr1—O167.59 (13)
O5—Pr1—O2i139.9 (2)O5i—Pr1—O167.59 (13)
O5i—Pr1—O2i71.06 (17)O2i—Pr1—O1125.34 (13)
O3i—Pr1—O268.84 (18)O2—Pr1—O1125.34 (13)
O3—Pr1—O269.67 (18)O4—Pr1—O168.86 (12)
O5—Pr1—O271.06 (17)O4i—Pr1—O168.86 (12)
O5i—Pr1—O2139.9 (2)N11—C1—N12115.9 (9)
O2i—Pr1—O2109.3 (3)N11—C1—S1122.0 (7)
O3i—Pr1—O471.02 (17)N12—C1—S1122.0 (7)
O3—Pr1—O4140.07 (18)C1—N11—H11A120.0
O5—Pr1—O482.9 (2)C1—N11—H11B120.0
O5i—Pr1—O481.32 (19)H11A—N11—H11B120.0
O2i—Pr1—O4136.54 (17)C1—N12—H12A120.0
O2—Pr1—O472.02 (19)C1—N12—H12B120.0
O3i—Pr1—O4i140.07 (18)H12A—N12—H12B120.0
O3—Pr1—O4i71.02 (17)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Pr(H2O)9]I3·2CH4N2S
Mr836.00
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)24.934 (18), 8.439 (3), 14.143 (8)
β (°) 124.68 (5)
V3)2447 (3)
Z4
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)3.16
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.405, 0.592
No. of measured, independent and
observed [I > 2σ(I)] reflections
2309, 2309, 1827
Rint0.000
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 0.99
No. of reflections2309
No. of parameters98
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 0.88

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

 

References

First citationAntonenko, T. A., Alikberova, L. Yu., Albov, D. V. & Rukk, N. S. (2011). Russ. J. Coord. Chem. 37, 785–790.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKolthoff, I. M. & Belcher, R. N. Y. (1957). Volumetric Analysis. Vol. 3, pp. 387–389. New York: Interscience.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPatrovsky, V. (1959). Coll. Czech. Chem. Commun. 24, 3305–3308.  CAS Google Scholar
First citationRomanenko, G. V., Podberezskaya, N. V. & Bakakin, V. V. (1981a). J. Struct. Chem. 22, 299–301.  CrossRef Web of Science Google Scholar
First citationRomanenko, G. V., Podberezskaya, N. V. & Bakakin, V. V. (1986). J. Struct. Chem. 27, 321–324.  CrossRef Web of Science Google Scholar
First citationRomanenko, G. V., Podberezskaya, N. V., Bakakin, V. V. & Sakharova, Yu. G. (1980). J. Struct. Chem. 21, 348–351.  CrossRef Web of Science Google Scholar
First citationRomanenko, G. V., Podberezskaya, N. V., Bakakin, V. V. & Sakharova, Yu. G. (1981b). J. Struct. Chem. 22, 740–743.  CrossRef Google Scholar
First citationRomanenko, G. V., Podberezskaya, N. V., Bakakin, V. V. & Sakharova, Yu. G. (1985). J. Struct. Chem. 26, 743–748.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuponitsky, Yu. L., Kuz'micheva, G. M. & Eliseev, A. A. (1988). Russ. Chem. Rev. 57(3), 209–220.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds