metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m106-m107

Bis[μ-4-(2-oxido­benzyl­­idene)thio­semi­carbazidato-κ4S,N1,O:O]bis­­[(pyridine-κN)zinc]

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 91775–1436, Iran, bDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60–780 Poznań, Poland, and cDepartment of Chemistry, Payame Noor University (PNU), Mashhad, Iran
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 4 December 2011; accepted 22 December 2011; online 7 January 2012)

In the title compound, [Zn2(C8H7N3OS)2(C5H5N)2], the Zn2O2 ring has a flattened roof shape, with the roof angle equal to 10.10 (6)°. The thio­semicarbazones act as tridentate ligands to one ZnII atom, with the O atoms additionally in bridging positions to the second ZnII atom. Both ZnII atoms are five-coordinated; the coordination polyhedra are close to square pyramids, with the pyridine N atoms at apical positions. Two inter­molecular N—H⋯N and one relatively weak N—H⋯S hydrogen bond, together with C—H⋯S weak inter­actions, connect the mol­ecules into a three-dimensional network.

Related literature

For thio­semicarbazones and their biological activity, see: Alomar et al. (2009[Alomar, K., Khan, M. A., Allain, M. & Bouet, G. (2009). Polyhedron, 28, 1273-1280.]); Geweely (2009[Geweely, S. G. (2009). Arch. Microbiol. 191, 687-695.]); Hakimi et al. (2010[Hakimi, M., Takjoo, R., Erfaniyan, V., Schuh, E. & Mohr, F. (2010). Transition Met. Chem. 35, 959-965.]); Hellmich et al. (2004[Hellmich, H. L., Frederickson, C. J., DeWitt, D. S., Saban, R., Parsley, M. O., Stephenson, R., Velasco, M., Uchida, T., Shimamura, M. & Prough, D. S. (2004). Neurosci. Lett. 355, 221-225.]); Joseph et al. (2004[Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069-3080.]); Latheef et al. (2007[Latheef, L., Manoj, E. & Prathapachandra Kurup, M. R. (2007). Polyhedron, 26, 4107-4113.]); For background to the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For similar Zn complexes, see: Cui & Hu (1994[Cui, X.-G. & Hu, Q.-P. (1994). Jiegou Huaxue (Chin. J. Struct. Chem.), 13, 340-342.]); Ma et al. (1996[Ma, C.-Q., Wang, X.-N., Zhang, W.-X., Yu, Z.-G., Jiang, D.-H. & Dong, S.-L. (1996). Huaxue Xuebao (Acta Chim. Sin.), 54, 562-567.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C8H7N3OS)2(C5H5N)2]

  • Mr = 675.45

  • Monoclinic, P 21 /c

  • a = 10.2641 (3) Å

  • b = 17.3160 (6) Å

  • c = 16.6473 (5) Å

  • β = 104.706 (3)°

  • V = 2861.85 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.76 mm−1

  • T = 295 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Single source at offset Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.82, Tmax = 1.00

  • 10543 measured reflections

  • 5646 independent reflections

  • 4967 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.05

  • 5646 reflections

  • 377 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12A—H12B⋯N9Bi 0.80 (5) 2.40 (5) 3.195 (4) 174 (6)
N12B—H12C⋯S11Aii 0.77 (3) 2.74 (3) 3.510 (3) 177 (3)
N12B—H12D⋯N9Aiii 0.88 (3) 2.14 (3) 3.012 (3) 173 (3)
C17B—H17B⋯S11Aiv 0.93 2.91 3.772 (3) 156
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiosemicarbazones occupy important class of N,S–donor ligands due to their great versatility (e.g., Alomar et al., 2009). Their complexes with transition metals have been subject of considerable interest because of their chemical and biological properties. The most important biological activities are antiviral, antifungal, antibacterial, antitumor, anticancerogenic and insulinmimetic properties (Hakimi et al., 2010).

The biological activity is due to the ability to form tridentate chelates with metal ions bonding through oxygen, nitrogen and sulfur atoms (Joseph et al., 2004). Zinc is essential ion to play an important role in various biological systems and may be its presence in certain metalloenzymes (Hellmich et al., 2004). The Zn(II) ion has been found to be of catalytic importance in enzymatic reactions (Latheef et al., 2007). The enhancement of antitumor activity of some thiosemicarbazones in the presence of Zn(II) ions has been reported (Geweely, 2009).

Herein we report the synthesis and crystal structure of a new Zn(II) complex, bis((µ2–salicylidenealdiminato–N–thiosemicarbazono–O,O,S,N)–(pyridine–N)–Zn(II) (Scheme 1). Some crystal structures of similar dinuclear Zn(II) complexes have been reported earlier, e.g.2–hydroxo)–(µ2–2,6–diformyl–4–methylphenolato– bis(thiosemicarbazone))–dipyridyl–di–zinc pyridine solvate (Ma et al., 1996), or bis((µ2–6–methoxysalicylidenealdiminato–N–thiosemicarbazono– O,O,S,N)–(dimethylformamide–O)–Zn(II)) (Cui & Hu, 1994).

Each of the thiosemicarbazone fragments acts as a tetradentate ligand, with oxygen atoms in bridging positions. Both Zn atoms are 5–coordinated with the coordination scheme close to square pyramid, the pyridine nitrogen atoms occupy apical positions. The four base atoms are coplanar within 0.0192 (9)Å (around Zn1) and 0.0532 (10)Å (Zn2), while the Zn and pyridine N atoms are out of these planes by 0.5273 (8)Å and -2.612 (2)Å (Zn1) and by 0.5023 (8)Å and 2.586 (2)Å (Zn2). The two apical pyridine fragments make dihedral angle of only 19.91 (8)°. The Zn2O2 ring has a flattened roof shape, with the roof angle (defined as the dihedral angle between two ZnO2 planes) equal to 10.10 (6)°. This value is close to the mean value found for 752 fragments from the Cambridge Structural Database (Allen, 2002), of 12°. It might be noted however that in the majority of these complexes the ZnOZnO fragment is planar due to its symmetry.

Two thiosemicarbazone molecules have very similar geometries, with elongated C—O and C—S bonds, due to involvement of the heteroatoms in the coordination. The chain fragments are in extended conformation, the whole chains are approximately - within 0.131 (2)Å and 0.0495 (16)Å - planar, and their mean planes are not far from coplanarity with the ring, the dihedral angles between the mean planes are 14.62 (12)° and 16.45 (8)°.

In the crystal structure there are two classical intermolecular N—H···N and one N—H···S relatively weak hydrogen bonds, which together with non–classical C—H···S weak interaction, connect molecules into three–dimensional network.

Related literature top

For thiosemicarbazones and their biological activity, see: Alomar et al. (2009); Geweely (2009); Hakimi et al. (2010); Hellmich et al. (2004); Joseph et al. (2004); Latheef et al. (2007); For background to the Cambridge Structural Database, see: Allen (2002). For similar Zn complexes, see: Cui & Hu (1994); Ma et al. (1996).

Experimental top

To a solution of the Zn(OAc)2×2H2O (0.22 g, 1.0 mmol) in boiling 10 ml of ethanol was added a boiling solution of the 2–(2–hydroxybenzylidene)hydrazinecarbothioamide (0.20 g, 1.0 mmol) in the same solvent (10 ml) and pyridine (0.12 g, 1.5 mmol). The mixture was heated on a water bath for 1 h and left to stand for 3 days when the complexes generally crystallized from the reaction mixture. The products were filtered, washed with ethanol and dried in air.

Refinement top

The hydrogen atoms from NH2–groups were found in difference Fourier map and freely refined. All other hydrogen atoms were generated geometrically and refined as a riding model with their Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular complex with tha atom numbering scheme. Displacement ellipsoids are presented at 50% probability level. Hydrogen atoms are depicted as a small spheres with arbitrary radii.
[Figure 2] Fig. 2. The packing diagram of title compound. View along c–direction. Hydrogen bonds are shown as dashed lines.
Bis[µ-4-(2-oxidobenzylidene)thiosemicarbazidato- κ4S,N1,O:O]bis[(pyridine-κN)zinc] top
Crystal data top
[Zn2(C8H7N3OS)2(C5H5N)2]F(000) = 1376
Mr = 675.45Dx = 1.568 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3324 reflections
a = 10.2641 (3) Åθ = 3–27°
b = 17.3160 (6) ŵ = 3.76 mm1
c = 16.6473 (5) ÅT = 295 K
β = 104.706 (3)°Block, colourless
V = 2861.85 (16) Å30.3 × 0.15 × 0.1 mm
Z = 4
Data collection top
Agilent SuperNova Single source at offset Atlas
diffractometer
5646 independent reflections
Radiation source: SuperNova X–ray Source4967 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.5357 pixels mm-1θmax = 75.5°, θmin = 3.8°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2121
Tmin = 0.82, Tmax = 1.00l = 2015
10543 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.4387P]
where P = (Fo2 + 2Fc2)/3
5646 reflections(Δ/σ)max = 0.001
377 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zn2(C8H7N3OS)2(C5H5N)2]V = 2861.85 (16) Å3
Mr = 675.45Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.2641 (3) ŵ = 3.76 mm1
b = 17.3160 (6) ÅT = 295 K
c = 16.6473 (5) Å0.3 × 0.15 × 0.1 mm
β = 104.706 (3)°
Data collection top
Agilent SuperNova Single source at offset Atlas
diffractometer
5646 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4967 reflections with I > 2σ(I)
Tmin = 0.82, Tmax = 1.00Rint = 0.024
10543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
5646 reflectionsΔρmin = 0.41 e Å3
377 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.69348 (3)0.151423 (17)0.675727 (17)0.03492 (9)
Zn20.99909 (3)0.106406 (16)0.765896 (16)0.03350 (8)
O1A0.87115 (14)0.12696 (9)0.64931 (8)0.0375 (3)
C1A0.9113 (2)0.13850 (12)0.57968 (12)0.0342 (4)
C6A1.0204 (3)0.09720 (16)0.56694 (15)0.0502 (6)
H6A1.06120.06020.60570.060*
C5A1.0698 (3)0.10973 (19)0.49806 (17)0.0638 (8)
H5A1.14450.08230.49170.077*
C4A1.0085 (3)0.16296 (19)0.43875 (17)0.0637 (8)
H4A1.04220.17210.39280.076*
C3A0.8978 (3)0.20210 (17)0.44817 (15)0.0514 (6)
H3A0.85540.23670.40710.062*
C2A0.8456 (2)0.19183 (13)0.51808 (12)0.0357 (4)
C7A0.7266 (2)0.23507 (13)0.51998 (13)0.0385 (5)
H7A0.69740.27200.47880.046*
N8A0.65690 (17)0.22690 (11)0.57391 (11)0.0371 (4)
N9A0.5388 (2)0.26953 (14)0.55813 (13)0.0520 (5)
C10A0.4838 (2)0.27287 (17)0.62098 (16)0.0543 (6)
S11A0.55217 (6)0.23729 (4)0.72104 (4)0.04851 (15)
N12A0.3637 (3)0.3092 (3)0.6074 (2)0.0974 (13)
H12A0.323 (5)0.304 (3)0.645 (3)0.120 (16)*
H12B0.322 (5)0.313 (3)0.560 (3)0.15 (2)*
N13A0.58207 (19)0.05185 (12)0.63312 (11)0.0442 (4)
C14A0.4532 (3)0.04424 (18)0.63634 (17)0.0598 (7)
H14A0.40760.08720.64880.072*
C15A0.3874 (3)0.0251 (2)0.6217 (2)0.0808 (10)
H15A0.29800.02920.62390.097*
C16A0.4555 (4)0.0887 (2)0.6037 (2)0.0929 (13)
H16A0.41320.13660.59530.112*
C17A0.5849 (4)0.0810 (2)0.5984 (2)0.0856 (11)
H17A0.63210.12310.58560.103*
C18A0.6442 (3)0.00951 (17)0.61249 (17)0.0591 (7)
H18A0.73180.00380.60740.071*
O1B0.81432 (14)0.11522 (10)0.78830 (9)0.0421 (4)
C1B0.7831 (2)0.09209 (13)0.85795 (13)0.0371 (4)
C6B0.6525 (2)0.06964 (17)0.85587 (15)0.0527 (6)
H6B0.58680.07250.80590.063*
C5B0.6168 (3)0.0432 (2)0.92560 (17)0.0659 (8)
H5B0.52860.02790.92190.079*
C4B0.7121 (3)0.0395 (2)1.00065 (17)0.0671 (9)
H4B0.68940.02111.04780.081*
C3B0.8406 (3)0.06347 (18)1.00472 (15)0.0562 (7)
H3B0.90420.06191.05570.067*
C2B0.8803 (2)0.09033 (14)0.93500 (13)0.0387 (5)
C7B1.0179 (2)0.11677 (15)0.94866 (14)0.0441 (5)
H7B1.06760.12251.00340.053*
N8B1.07691 (17)0.13298 (11)0.89124 (11)0.0373 (4)
N9B1.20725 (18)0.16078 (12)0.91816 (12)0.0444 (4)
C10B1.2639 (2)0.17693 (13)0.85755 (14)0.0394 (5)
S11B1.19620 (5)0.16312 (4)0.75090 (3)0.04356 (14)
N12B1.3873 (2)0.20863 (17)0.87933 (16)0.0588 (6)
H12C1.425 (3)0.2133 (17)0.8447 (18)0.056 (9)*
H12D1.427 (3)0.2123 (18)0.9327 (19)0.065 (9)*
N13B1.02303 (19)0.01384 (11)0.76976 (11)0.0408 (4)
C14B0.9228 (3)0.06138 (15)0.77443 (16)0.0510 (6)
H14B0.83820.04060.77170.061*
C15B0.9403 (4)0.14009 (16)0.78314 (19)0.0645 (8)
H15B0.86810.17190.78500.077*
C16B1.0642 (4)0.17070 (17)0.78893 (19)0.0712 (9)
H16B1.07820.22360.79610.085*
C17B1.1681 (3)0.12304 (17)0.78416 (19)0.0678 (8)
H17B1.25340.14300.78740.081*
C18B1.1437 (3)0.04431 (15)0.77445 (15)0.0514 (6)
H18B1.21420.01170.77110.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02750 (14)0.04156 (17)0.03582 (15)0.00054 (11)0.00824 (11)0.00450 (11)
Zn20.02757 (14)0.03770 (16)0.03524 (15)0.00084 (10)0.00802 (10)0.00295 (11)
O1A0.0298 (7)0.0517 (9)0.0319 (7)0.0043 (6)0.0096 (5)0.0079 (6)
C1A0.0303 (10)0.0404 (11)0.0324 (10)0.0026 (8)0.0091 (8)0.0011 (8)
C6A0.0496 (13)0.0609 (16)0.0434 (12)0.0145 (12)0.0180 (10)0.0040 (11)
C5A0.0580 (16)0.090 (2)0.0519 (15)0.0210 (15)0.0290 (13)0.0017 (15)
C4A0.0638 (17)0.092 (2)0.0447 (14)0.0105 (15)0.0316 (13)0.0073 (14)
C3A0.0545 (14)0.0647 (16)0.0390 (12)0.0003 (12)0.0193 (10)0.0099 (11)
C2A0.0339 (10)0.0402 (11)0.0335 (10)0.0043 (8)0.0094 (8)0.0016 (9)
C7A0.0366 (11)0.0441 (12)0.0337 (10)0.0013 (9)0.0068 (8)0.0066 (9)
N8A0.0285 (8)0.0443 (10)0.0375 (9)0.0041 (7)0.0069 (7)0.0049 (8)
N9A0.0368 (10)0.0699 (14)0.0503 (11)0.0191 (10)0.0126 (8)0.0167 (10)
C10A0.0385 (12)0.0679 (17)0.0583 (15)0.0175 (12)0.0159 (11)0.0107 (13)
S11A0.0420 (3)0.0618 (4)0.0461 (3)0.0088 (3)0.0193 (2)0.0043 (3)
N12A0.0647 (18)0.162 (4)0.073 (2)0.063 (2)0.0314 (16)0.033 (2)
N13A0.0395 (10)0.0496 (11)0.0419 (10)0.0086 (8)0.0072 (8)0.0003 (9)
C14A0.0445 (14)0.0732 (19)0.0608 (16)0.0159 (13)0.0117 (12)0.0041 (14)
C15A0.0618 (19)0.099 (3)0.079 (2)0.0414 (19)0.0130 (16)0.011 (2)
C16A0.103 (3)0.075 (2)0.091 (3)0.051 (2)0.008 (2)0.015 (2)
C17A0.097 (3)0.0586 (19)0.094 (3)0.0134 (19)0.012 (2)0.0234 (18)
C18A0.0580 (16)0.0554 (16)0.0625 (16)0.0080 (13)0.0128 (13)0.0090 (13)
O1B0.0288 (7)0.0654 (11)0.0330 (7)0.0019 (7)0.0093 (6)0.0104 (7)
C1B0.0328 (10)0.0458 (12)0.0356 (10)0.0008 (9)0.0141 (8)0.0051 (9)
C6B0.0360 (12)0.0794 (19)0.0418 (12)0.0123 (12)0.0081 (9)0.0078 (12)
C5B0.0415 (13)0.103 (2)0.0559 (15)0.0213 (15)0.0174 (11)0.0111 (16)
C4B0.0536 (16)0.107 (3)0.0452 (14)0.0157 (16)0.0207 (12)0.0176 (15)
C3B0.0437 (13)0.088 (2)0.0365 (12)0.0091 (13)0.0093 (10)0.0126 (13)
C2B0.0351 (11)0.0476 (12)0.0352 (10)0.0025 (9)0.0122 (8)0.0014 (9)
C7B0.0365 (11)0.0619 (15)0.0331 (11)0.0067 (10)0.0073 (8)0.0006 (10)
N8B0.0294 (8)0.0444 (10)0.0383 (9)0.0036 (7)0.0092 (7)0.0019 (8)
N9B0.0314 (9)0.0592 (12)0.0426 (10)0.0099 (8)0.0091 (7)0.0058 (9)
C10B0.0297 (10)0.0423 (12)0.0460 (12)0.0033 (9)0.0090 (8)0.0017 (9)
S11B0.0340 (3)0.0560 (3)0.0419 (3)0.0073 (2)0.0119 (2)0.0032 (2)
N12B0.0378 (11)0.0901 (19)0.0503 (13)0.0206 (11)0.0144 (10)0.0047 (13)
N13B0.0441 (10)0.0380 (10)0.0388 (10)0.0048 (8)0.0078 (7)0.0041 (8)
C14B0.0553 (14)0.0428 (13)0.0532 (14)0.0043 (11)0.0108 (11)0.0002 (11)
C15B0.083 (2)0.0447 (15)0.0631 (17)0.0107 (14)0.0144 (15)0.0017 (13)
C16B0.104 (3)0.0379 (14)0.0656 (19)0.0098 (16)0.0111 (17)0.0048 (13)
C17B0.075 (2)0.0560 (17)0.0676 (18)0.0272 (16)0.0085 (15)0.0019 (14)
C18B0.0511 (14)0.0506 (14)0.0514 (14)0.0103 (11)0.0110 (11)0.0043 (11)
Geometric parameters (Å, º) top
Zn1—O1A2.0263 (14)C16A—C17A1.360 (6)
Zn1—O1B2.0647 (14)C16A—H16A0.9300
Zn1—N13A2.0909 (19)C17A—C18A1.373 (4)
Zn1—N8A2.0974 (18)C17A—H17A0.9300
Zn1—S11A2.3322 (6)C18A—H18A0.9300
Zn2—O1B2.0294 (15)O1B—C1B1.340 (2)
Zn2—O1A2.0795 (14)C1B—C6B1.388 (3)
Zn2—N8B2.0875 (18)C1B—C2B1.411 (3)
Zn2—N13B2.0957 (19)C6B—C5B1.381 (3)
Zn2—S11B2.3186 (6)C6B—H6B0.9300
O1A—C1A1.340 (2)C5B—C4B1.379 (4)
C1A—C6A1.390 (3)C5B—H5B0.9300
C1A—C2A1.417 (3)C4B—C3B1.368 (4)
C6A—C5A1.384 (3)C4B—H4B0.9300
C6A—H6A0.9300C3B—C2B1.403 (3)
C5A—C4A1.380 (4)C3B—H3B0.9300
C5A—H5A0.9300C2B—C7B1.446 (3)
C4A—C3A1.366 (4)C7B—N8B1.286 (3)
C4A—H4A0.9300C7B—H7B0.9300
C3A—C2A1.410 (3)N8B—N9B1.385 (2)
C3A—H3A0.9300N9B—C10B1.316 (3)
C2A—C7A1.440 (3)C10B—N12B1.343 (3)
C7A—N8A1.290 (3)C10B—S11B1.751 (2)
C7A—H7A0.9300N12B—H12C0.77 (3)
N8A—N9A1.386 (2)N12B—H12D0.88 (3)
N9A—C10A1.310 (3)N13B—C18B1.330 (3)
C10A—N12A1.351 (3)N13B—C14B1.335 (3)
C10A—S11A1.747 (3)C14B—C15B1.378 (4)
N12A—H12A0.84 (4)C14B—H14B0.9300
N12A—H12B0.80 (5)C15B—C16B1.359 (5)
N13A—C18A1.328 (3)C15B—H15B0.9300
N13A—C14A1.344 (3)C16B—C17B1.366 (5)
C14A—C15A1.369 (4)C16B—H16B0.9300
C14A—H14A0.9300C17B—C18B1.388 (4)
C15A—C16A1.377 (6)C17B—H17B0.9300
C15A—H15A0.9300C18B—H18B0.9300
O1A—Zn1—O1B76.54 (6)C16A—C15A—H15A120.5
O1A—Zn1—N13A101.47 (7)C17A—C16A—C15A119.6 (3)
O1B—Zn1—N13A102.02 (7)C17A—C16A—H16A120.2
O1A—Zn1—N8A86.63 (6)C15A—C16A—H16A120.2
O1B—Zn1—N8A149.97 (7)C16A—C17A—C18A118.4 (4)
N13A—Zn1—N8A105.63 (7)C16A—C17A—H17A120.8
O1A—Zn1—S11A150.62 (5)C18A—C17A—H17A120.8
O1B—Zn1—S11A100.35 (5)N13A—C18A—C17A123.0 (3)
N13A—Zn1—S11A107.69 (6)N13A—C18A—H18A118.5
N8A—Zn1—S11A82.28 (5)C17A—C18A—H18A118.5
O1B—Zn2—O1A76.14 (6)C1B—O1B—Zn2125.18 (13)
O1B—Zn2—N8B86.44 (6)C1B—O1B—Zn1130.98 (13)
O1A—Zn2—N8B152.37 (7)Zn2—O1B—Zn1103.30 (6)
O1B—Zn2—N13B100.18 (7)O1B—C1B—C6B120.23 (19)
O1A—Zn2—N13B103.89 (7)O1B—C1B—C2B121.60 (19)
N8B—Zn2—N13B100.15 (7)C6B—C1B—C2B118.17 (19)
O1B—Zn2—S11B150.41 (5)C5B—C6B—C1B122.2 (2)
O1A—Zn2—S11B100.87 (4)C5B—C6B—H6B118.9
N8B—Zn2—S11B83.77 (5)C1B—C6B—H6B118.9
N13B—Zn2—S11B108.99 (6)C4B—C5B—C6B119.9 (2)
C1A—O1A—Zn1130.37 (13)C4B—C5B—H5B120.1
C1A—O1A—Zn2124.97 (12)C6B—C5B—H5B120.1
Zn1—O1A—Zn2102.89 (6)C3B—C4B—C5B119.0 (2)
O1A—C1A—C6A119.5 (2)C3B—C4B—H4B120.5
O1A—C1A—C2A121.95 (19)C5B—C4B—H4B120.5
C6A—C1A—C2A118.6 (2)C4B—C3B—C2B122.6 (2)
C5A—C6A—C1A121.7 (2)C4B—C3B—H3B118.7
C5A—C6A—H6A119.2C2B—C3B—H3B118.7
C1A—C6A—H6A119.2C3B—C2B—C1B118.2 (2)
C4A—C5A—C6A120.0 (2)C3B—C2B—C7B116.8 (2)
C4A—C5A—H5A120.0C1B—C2B—C7B124.94 (19)
C6A—C5A—H5A120.0N8B—C7B—C2B125.3 (2)
C3A—C4A—C5A119.4 (2)N8B—C7B—H7B117.4
C3A—C4A—H4A120.3C2B—C7B—H7B117.4
C5A—C4A—H4A120.3C7B—N8B—N9B115.74 (18)
C4A—C3A—C2A122.2 (2)C7B—N8B—Zn2124.19 (15)
C4A—C3A—H3A118.9N9B—N8B—Zn2119.54 (13)
C2A—C3A—H3A118.9C10B—N9B—N8B113.85 (18)
C3A—C2A—C1A118.0 (2)N9B—C10B—N12B116.7 (2)
C3A—C2A—C7A117.0 (2)N9B—C10B—S11B127.55 (17)
C1A—C2A—C7A124.97 (19)N12B—C10B—S11B115.73 (18)
N8A—C7A—C2A125.6 (2)C10B—S11B—Zn294.66 (7)
N8A—C7A—H7A117.2C10B—N12B—H12C117 (2)
C2A—C7A—H7A117.2C10B—N12B—H12D118 (2)
C7A—N8A—N9A114.98 (18)H12C—N12B—H12D124 (3)
C7A—N8A—Zn1127.86 (15)C18B—N13B—C14B118.1 (2)
N9A—N8A—Zn1116.97 (14)C18B—N13B—Zn2119.74 (17)
C10A—N9A—N8A113.92 (19)C14B—N13B—Zn2121.90 (17)
N9A—C10A—N12A116.6 (3)N13B—C14B—C15B122.3 (3)
N9A—C10A—S11A126.55 (18)N13B—C14B—H14B118.8
N12A—C10A—S11A116.9 (2)C15B—C14B—H14B118.8
C10A—S11A—Zn192.79 (9)C16B—C15B—C14B119.2 (3)
C10A—N12A—H12A116 (3)C16B—C15B—H15B120.4
C10A—N12A—H12B116 (4)C14B—C15B—H15B120.4
H12A—N12A—H12B120 (5)C15B—C16B—C17B119.4 (3)
C18A—N13A—C14A118.3 (2)C15B—C16B—H16B120.3
C18A—N13A—Zn1119.36 (17)C17B—C16B—H16B120.3
C14A—N13A—Zn1121.76 (19)C16B—C17B—C18B118.7 (3)
N13A—C14A—C15A121.7 (3)C16B—C17B—H17B120.7
N13A—C14A—H14A119.2C18B—C17B—H17B120.7
C15A—C14A—H14A119.2N13B—C18B—C17B122.3 (3)
C14A—C15A—C16A119.0 (3)N13B—C18B—H18B118.9
C14A—C15A—H15A120.5C17B—C18B—H18B118.9
O1B—Zn1—O1A—C1A173.10 (19)O1A—Zn2—O1B—C1B164.28 (19)
N13A—Zn1—O1A—C1A87.11 (19)N8B—Zn2—O1B—C1B37.35 (18)
N8A—Zn1—O1A—C1A18.16 (18)N13B—Zn2—O1B—C1B62.33 (19)
S11A—Zn1—O1A—C1A85.9 (2)S11B—Zn2—O1B—C1B108.09 (18)
O1B—Zn1—O1A—Zn28.04 (7)O1A—Zn2—O1B—Zn18.06 (7)
N13A—Zn1—O1A—Zn2107.83 (8)N8B—Zn2—O1B—Zn1150.32 (9)
N8A—Zn1—O1A—Zn2146.89 (8)N13B—Zn2—O1B—Zn1110.00 (8)
S11A—Zn1—O1A—Zn279.16 (10)S11B—Zn2—O1B—Zn179.58 (11)
O1B—Zn2—O1A—C1A174.33 (18)O1A—Zn1—O1B—C1B163.4 (2)
N8B—Zn2—O1A—C1A121.86 (18)N13A—Zn1—O1B—C1B64.3 (2)
N13B—Zn2—O1A—C1A88.40 (17)N8A—Zn1—O1B—C1B138.90 (19)
S11B—Zn2—O1A—C1A24.48 (17)S11A—Zn1—O1B—C1B46.4 (2)
O1B—Zn2—O1A—Zn18.20 (7)O1A—Zn1—O1B—Zn28.26 (7)
N8B—Zn2—O1A—Zn144.27 (17)N13A—Zn1—O1B—Zn2107.35 (8)
N13B—Zn2—O1A—Zn1105.47 (8)N8A—Zn1—O1B—Zn249.41 (17)
S11B—Zn2—O1A—Zn1141.65 (5)S11A—Zn1—O1B—Zn2141.87 (6)
Zn1—O1A—C1A—C6A160.87 (18)Zn2—O1B—C1B—C6B152.5 (2)
Zn2—O1A—C1A—C6A37.0 (3)Zn1—O1B—C1B—C6B17.6 (3)
Zn1—O1A—C1A—C2A19.1 (3)Zn2—O1B—C1B—C2B28.1 (3)
Zn2—O1A—C1A—C2A143.01 (16)Zn1—O1B—C1B—C2B161.84 (17)
O1A—C1A—C6A—C5A176.8 (3)O1B—C1B—C6B—C5B178.0 (3)
C2A—C1A—C6A—C5A3.2 (4)C2B—C1B—C6B—C5B2.5 (4)
C1A—C6A—C5A—C4A1.7 (5)C1B—C6B—C5B—C4B0.9 (5)
C6A—C5A—C4A—C3A0.9 (5)C6B—C5B—C4B—C3B1.0 (6)
C5A—C4A—C3A—C2A2.0 (5)C5B—C4B—C3B—C2B1.3 (5)
C4A—C3A—C2A—C1A0.4 (4)C4B—C3B—C2B—C1B0.3 (4)
C4A—C3A—C2A—C7A178.6 (3)C4B—C3B—C2B—C7B177.6 (3)
O1A—C1A—C2A—C3A177.8 (2)O1B—C1B—C2B—C3B178.4 (2)
C6A—C1A—C2A—C3A2.2 (3)C6B—C1B—C2B—C3B2.2 (4)
O1A—C1A—C2A—C7A4.1 (3)O1B—C1B—C2B—C7B3.9 (4)
C6A—C1A—C2A—C7A175.9 (2)C6B—C1B—C2B—C7B175.6 (3)
C3A—C2A—C7A—N8A172.1 (2)C3B—C2B—C7B—N8B169.7 (3)
C1A—C2A—C7A—N8A6.0 (4)C1B—C2B—C7B—N8B12.5 (4)
C2A—C7A—N8A—N9A173.8 (2)C2B—C7B—N8B—N9B177.1 (2)
C2A—C7A—N8A—Zn11.1 (3)C2B—C7B—N8B—Zn211.3 (4)
O1A—Zn1—N8A—C7A7.88 (19)O1B—Zn2—N8B—C7B28.7 (2)
O1B—Zn1—N8A—C7A63.3 (3)O1A—Zn2—N8B—C7B79.2 (3)
N13A—Zn1—N8A—C7A93.1 (2)N13B—Zn2—N8B—C7B71.0 (2)
S11A—Zn1—N8A—C7A160.6 (2)S11B—Zn2—N8B—C7B179.3 (2)
O1A—Zn1—N8A—N9A177.33 (17)O1B—Zn2—N8B—N9B160.02 (17)
O1B—Zn1—N8A—N9A121.94 (17)O1A—Zn2—N8B—N9B109.53 (19)
N13A—Zn1—N8A—N9A81.69 (17)N13B—Zn2—N8B—N9B100.26 (17)
S11A—Zn1—N8A—N9A24.60 (16)S11B—Zn2—N8B—N9B7.98 (16)
C7A—N8A—N9A—C10A167.0 (2)C7B—N8B—N9B—C10B179.8 (2)
Zn1—N8A—N9A—C10A17.6 (3)Zn2—N8B—N9B—C10B8.2 (3)
N8A—N9A—C10A—N12A175.6 (3)N8B—N9B—C10B—N12B176.0 (2)
N8A—N9A—C10A—S11A6.1 (4)N8B—N9B—C10B—S11B3.0 (3)
N9A—C10A—S11A—Zn121.8 (3)N9B—C10B—S11B—Zn22.6 (2)
N12A—C10A—S11A—Zn1159.9 (3)N12B—C10B—S11B—Zn2178.4 (2)
O1A—Zn1—S11A—C10A88.84 (13)O1B—Zn2—S11B—C10B76.08 (12)
O1B—Zn1—S11A—C10A169.75 (11)O1A—Zn2—S11B—C10B157.12 (9)
N13A—Zn1—S11A—C10A83.96 (11)N8B—Zn2—S11B—C10B4.67 (9)
N8A—Zn1—S11A—C10A20.05 (11)N13B—Zn2—S11B—C10B93.94 (10)
O1A—Zn1—N13A—C18A11.1 (2)O1B—Zn2—N13B—C18B166.50 (17)
O1B—Zn1—N13A—C18A67.4 (2)O1A—Zn2—N13B—C18B115.40 (17)
N8A—Zn1—N13A—C18A100.8 (2)N8B—Zn2—N13B—C18B78.33 (18)
S11A—Zn1—N13A—C18A172.51 (18)S11B—Zn2—N13B—C18B8.51 (18)
O1A—Zn1—N13A—C14A177.97 (19)O1B—Zn2—N13B—C14B7.98 (19)
O1B—Zn1—N13A—C14A103.55 (19)O1A—Zn2—N13B—C14B70.11 (19)
N8A—Zn1—N13A—C14A88.3 (2)N8B—Zn2—N13B—C14B96.16 (18)
S11A—Zn1—N13A—C14A1.6 (2)S11B—Zn2—N13B—C14B177.00 (17)
C18A—N13A—C14A—C15A2.2 (4)C18B—N13B—C14B—C15B0.5 (4)
Zn1—N13A—C14A—C15A168.9 (2)Zn2—N13B—C14B—C15B175.1 (2)
N13A—C14A—C15A—C16A0.4 (5)N13B—C14B—C15B—C16B1.4 (4)
C14A—C15A—C16A—C17A1.9 (6)C14B—C15B—C16B—C17B1.4 (5)
C15A—C16A—C17A—C18A0.9 (6)C15B—C16B—C17B—C18B0.7 (5)
C14A—N13A—C18A—C17A3.3 (4)C14B—N13B—C18B—C17B0.2 (4)
Zn1—N13A—C18A—C17A167.9 (3)Zn2—N13B—C18B—C17B174.5 (2)
C16A—C17A—C18A—N13A1.8 (5)C16B—C17B—C18B—N13B0.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12A—H12B···N9Bi0.80 (5)2.40 (5)3.195 (4)174 (6)
N12B—H12C···S11Aii0.77 (3)2.74 (3)3.510 (3)177 (3)
N12B—H12D···N9Aiii0.88 (3)2.14 (3)3.012 (3)173 (3)
C17B—H17B···S11Aiv0.932.913.772 (3)156
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn2(C8H7N3OS)2(C5H5N)2]
Mr675.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.2641 (3), 17.3160 (6), 16.6473 (5)
β (°) 104.706 (3)
V3)2861.85 (16)
Z4
Radiation typeCu Kα
µ (mm1)3.76
Crystal size (mm)0.3 × 0.15 × 0.1
Data collection
DiffractometerAgilent SuperNova Single source at offset Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.82, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
10543, 5646, 4967
Rint0.024
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.05
No. of reflections5646
No. of parameters377
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.41

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12A—H12B···N9Bi0.80 (5)2.40 (5)3.195 (4)174 (6)
N12B—H12C···S11Aii0.77 (3)2.74 (3)3.510 (3)177 (3)
N12B—H12D···N9Aiii0.88 (3)2.14 (3)3.012 (3)173 (3)
C17B—H17B···S11Aiv0.932.913.772 (3)155.5
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Ferdowsi University of Mashhad for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlomar, K., Khan, M. A., Allain, M. & Bouet, G. (2009). Polyhedron, 28, 1273–1280.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCui, X.–G. & Hu, Q.–P. (1994). Jiegou Huaxue (Chin. J. Struct. Chem.), 13, 340–342.  CAS Google Scholar
First citationGeweely, S. G. (2009). Arch. Microbiol. 191, 687–695.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHakimi, M., Takjoo, R., Erfaniyan, V., Schuh, E. & Mohr, F. (2010). Transition Met. Chem. 35, 959–965.  Web of Science CSD CrossRef CAS Google Scholar
First citationHellmich, H. L., Frederickson, C. J., DeWitt, D. S., Saban, R., Parsley, M. O., Stephenson, R., Velasco, M., Uchida, T., Shimamura, M. & Prough, D. S. (2004). Neurosci. Lett. 355, 221–225.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJoseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.  Web of Science CSD CrossRef CAS Google Scholar
First citationLatheef, L., Manoj, E. & Prathapachandra Kurup, M. R. (2007). Polyhedron, 26, 4107–4113.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, C.-Q., Wang, X.-N., Zhang, W.-X., Yu, Z.-G., Jiang, D.-H. & Dong, S.–L. (1996). Huaxue Xuebao (Acta Chim. Sin.), 54, 562–567.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m106-m107
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds