inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lithium europium(III) molybdate(VI), Li3.5Eu1.5(MoO4)4

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China, and bDepartment of Material Science and Engineering, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 23 October 2011; accepted 4 January 2012; online 11 January 2012)

The title compound, Li3.5Eu1.5(MoO4)4, was prepared by solid-state reactions. The fundamental building units of the structure are LiO4 polyhedra (site symmetry [\overline1]), distorted LiO6 polyhedra and MoO4 tetra­hedra, which are further inter­connected via corner-sharing O atoms. One site is occupied by both Li and Eu atoms in a substituent disordered manner (0.25:0.75), and the Li/Eu atoms are coordinated by eight O atoms in a distorted square-antiprismatic manner.

Related literature

For related rare-earth molybdate compounds, see: Zhao et al. (2010[Zhao, D., Li, F., Cheng, W. & Zhang, H. (2010). Acta Cryst. E66, i36.]); Ipatova et al. (1982[Ipatova, E. N., Klevtsova, R. F., Solov'eva, L. P. & Klevtsov, P. V. (1982). Zh. Strukt. Khim. 23, 115-119.]). For similar Li/Eu disorder in LiEu(WO4)2, see: Chiu et al. (2007[Chiu, C., Wang, M. F., Lee, C. & Che, T. C. (2007). J. Solid State Chem. 180, 619-627.]).

Experimental

Crystal data
  • Li3.5Eu1.5(MoO4)4

  • Mr = 891.99

  • Triclinic, [P \overline 1]

  • a = 5.2182 (11) Å

  • b = 6.7008 (12) Å

  • c = 10.3167 (5) Å

  • α = 100.09 (2)°

  • β = 100.341 (15)°

  • γ = 111.891 (15)°

  • V = 317.49 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 11.22 mm−1

  • T = 296 K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.213, Tmax = 0.604

  • 2478 measured reflections

  • 1437 independent reflections

  • 1224 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.10

  • 1437 reflections

  • 105 parameters

  • Δρmax = 0.95 e Å−3

  • Δρmin = −1.62 e Å−3

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

In recent years, alkali rare-earth molybdates have been studied mainly due to their rich structural chemistry and interesting physical and chemical properties (Zhao et al., 2010). Of them, a mixed valence alkali rare-earth double molybdate Li7Ho3(MoO4)8 (Ipatova et al., 1982) with the substituent disordered structure was reported. In order to enrich this family type of compounds, we report the single-crystal growth and structure investigation of title compound Li3.5Eu1.5(MoO4)4.

In this structure, one site is occupancied by both Li and Eu atoms in a substituent disordered manner, denoted as M atom, such case can alse be found in compound LiEu(WO4)2 (Chiu et al., 2007). There are two Li atom sites, two Mo atom sites and one M atom site in the asymmetric unit of title compound. Only one Li(3) atom lies on the inversion center in 1 d position, and the other atoms lie on the general positions. One the other hand, the coordination of the two crystallographic distinct Li atoms are different. Li(2) atoms are surround by six O atoms with the bond distances ranging from 1.970 (16) to 2.62 (2) Å, forming distorted LiO6 octahedra. Li(3) atoms are surround by four O atoms with the bond distances ranging from 1.968 (4) to 2.046 (4) Å, forming nearly planar LiO4 groups. On an over view (Fig. 2), the three-dimensional structure contains LiO4 groups, LiO6 groups and MoO4 tetrahedra, which are further interconnected via corner sharing O atoms. The M atoms are located on this framework and exhibit a coordination number of eight.

Related literature top

For related rare-earth molybdate compounds, see: Zhao et al. (2010); Ipatova et al. (1982). For similar Li/Eu disorder in LiEu(WO4)2, see: Chiu et al. (2007).

Experimental top

The finely ground reagents Li2CO3, Eu2O3 and MoO3 were mixed in the molar ratio Li: Eu: Mo = 5: 1: 5, and then placed in a Pt crucible to heat at 573 K for 4 h. The mixture was then re-ground and heated at 1073 K for 20 h, then cooled to 673 K at a rate of 3 K h-1, and finally quenched to room temperature. A few colorless crystals of the title compound with prismatic shape were obtained.

Refinement top

The structure contains substitutional disorder in which Li1 and Eu1 occupy the same position. The atomic positional and anisotropic displacement parameters of Li1 and Eu1 atoms were constrained to be identical by using EADP and EXYZ constraint instructions (SHELXL97; Sheldrick, 2008). The ratio of Li1 and Eu1 was fixed to 1: 3 to achieve charge balance.

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The expanded asymmetric unit of Li3.5Eu1.5(MoO4)2 showing the coordination environments of the Li, Mo and Li/Eu atoms. The displacement ellipsoids are drawn at the 50% probability level.[Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 2, -y + 2, -z + 1; (iv) x - 1, y, z; (vi) -x + 2, -y + 1, -z + 1; (viii) x, y, z - 1; (ix) x, y, z + 1; (x) -x + 3, -y + 2, -z; (xi) -x + 3, -y + 2, -z + 1].
[Figure 2] Fig. 2. View of the crystal structure of Li3.5Eu1.5(MoO4)2 along [010]. LiO4, LiO6 and MoO4 units are given in the polyhedral representation.
Lithium europium(III) molybdate(VI) top
Crystal data top
Li3.5Eu1.5(MoO4)4Z = 1
Mr = 891.99F(000) = 401
Triclinic, P1Dx = 4.665 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2182 (11) ÅCell parameters from 791 reflections
b = 6.7008 (12) Åθ = 2.1–27.5°
c = 10.3167 (5) ŵ = 11.22 mm1
α = 100.09 (2)°T = 296 K
β = 100.341 (15)°Prism, colourless
γ = 111.891 (15)°0.20 × 0.05 × 0.05 mm
V = 317.49 (9) Å3
Data collection top
Rigaku Mercury70 CCD
diffractometer
1437 independent reflections
Radiation source: fine-focus sealed tube1224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 66
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.213, Tmax = 0.604l = 1213
2478 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.029Secondary atom site location: difference Fourier map
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.038P)2 + 1.5273P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1437 reflectionsΔρmax = 0.95 e Å3
105 parametersΔρmin = 1.62 e Å3
Crystal data top
Li3.5Eu1.5(MoO4)4γ = 111.891 (15)°
Mr = 891.99V = 317.49 (9) Å3
Triclinic, P1Z = 1
a = 5.2182 (11) ÅMo Kα radiation
b = 6.7008 (12) ŵ = 11.22 mm1
c = 10.3167 (5) ÅT = 296 K
α = 100.09 (2)°0.20 × 0.05 × 0.05 mm
β = 100.341 (15)°
Data collection top
Rigaku Mercury70 CCD
diffractometer
1437 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1224 reflections with I > 2σ(I)
Tmin = 0.213, Tmax = 0.604Rint = 0.014
2478 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029105 parameters
wR(F2) = 0.0790 restraints
S = 1.10Δρmax = 0.95 e Å3
1437 reflectionsΔρmin = 1.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li10.62034 (7)0.77190 (5)0.43965 (3)0.00542 (13)0.25
Eu10.62034 (7)0.77190 (5)0.43965 (3)0.00542 (13)0.75
Mo10.16529 (10)0.70023 (7)0.68099 (5)0.00873 (15)
Mo21.08254 (11)0.84541 (8)0.19822 (5)0.01044 (15)
O10.3065 (9)0.5032 (7)0.7078 (4)0.0141 (9)
O20.8045 (9)0.5637 (7)0.5724 (4)0.0145 (9)
O30.7317 (9)0.3263 (7)0.7745 (4)0.0175 (9)
O40.7691 (10)0.6882 (7)0.0693 (5)0.0213 (10)
O50.3812 (8)0.8834 (6)0.5948 (4)0.0099 (8)
O61.0161 (9)0.9568 (7)0.3572 (4)0.0141 (9)
O71.1437 (9)0.8249 (7)0.8386 (4)0.0175 (9)
O81.3010 (9)1.0575 (7)0.1374 (4)0.0167 (9)
Li20.669 (4)0.593 (3)0.869 (2)0.060 (5)*
Li31.50001.00000.00000.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0066 (2)0.0053 (2)0.0037 (2)0.00203 (15)0.00143 (14)0.00061 (14)
Eu10.0066 (2)0.0053 (2)0.0037 (2)0.00203 (15)0.00143 (14)0.00061 (14)
Mo10.0097 (3)0.0099 (3)0.0068 (3)0.0038 (2)0.0029 (2)0.00267 (19)
Mo20.0122 (3)0.0133 (3)0.0057 (2)0.0056 (2)0.00259 (19)0.00134 (19)
O10.018 (2)0.016 (2)0.010 (2)0.0090 (18)0.0062 (17)0.0028 (16)
O20.014 (2)0.012 (2)0.013 (2)0.0028 (17)0.0019 (17)0.0010 (16)
O30.020 (2)0.019 (2)0.015 (2)0.0112 (19)0.0051 (18)0.0031 (18)
O40.021 (2)0.021 (2)0.013 (2)0.0023 (19)0.0017 (18)0.0031 (18)
O50.0110 (19)0.0098 (19)0.0089 (19)0.0039 (16)0.0032 (15)0.0032 (15)
O60.0109 (19)0.015 (2)0.014 (2)0.0028 (17)0.0057 (17)0.0009 (17)
O70.016 (2)0.022 (2)0.014 (2)0.0081 (19)0.0044 (17)0.0013 (18)
O80.019 (2)0.022 (2)0.014 (2)0.0114 (19)0.0082 (18)0.0083 (18)
Geometric parameters (Å, º) top
Li1—O1i2.368 (4)O2—Li1i2.464 (4)
Li1—O62.370 (4)O2—Eu1i2.464 (4)
Li1—O52.381 (4)O3—Mo2vi1.786 (4)
Li1—O5ii2.400 (4)O3—Li22.05 (2)
Li1—O3i2.413 (4)O3—Li1i2.413 (4)
Li1—O22.437 (4)O3—Eu1i2.413 (4)
Li1—O6iii2.442 (4)O4—Li2viii1.96 (2)
Li1—O2i2.465 (4)O4—Li2i2.63 (2)
Li1—Li2i3.35 (2)O5—Eu1ii2.400 (4)
Li1—Eu1iii3.8024 (13)O5—Li1ii2.400 (4)
Li1—Eu1ii3.8162 (9)O6—Eu1iii2.442 (4)
Li1—Eu1i3.8915 (10)O6—Li1iii2.442 (4)
Mo1—O7iv1.737 (4)O7—Mo1vii1.737 (4)
Mo1—O11.772 (4)O7—Li3ix2.045 (4)
Mo1—O2iv1.799 (4)O7—Li22.50 (2)
Mo1—O51.811 (4)O8—Li31.968 (4)
Mo1—Li3v3.3047 (10)O8—Li2iii2.30 (2)
Mo1—Li23.36 (2)Li2—O4ix1.96 (2)
Mo1—Eu1iv3.6622 (9)Li2—O8iii2.30 (2)
Mo1—Eu1ii3.7953 (9)Li2—O4i2.63 (2)
Mo1—Eu1i3.8168 (8)Li2—Li3v3.314 (19)
Mo2—O41.731 (5)Li2—Li1i3.35 (2)
Mo2—O81.753 (4)Li2—Eu1i3.35 (2)
Mo2—O3vi1.786 (4)Li3—O8x1.968 (4)
Mo2—O61.827 (4)Li3—O7xi2.045 (4)
Mo2—Li33.2648 (7)Li3—O7viii2.045 (4)
Mo2—Eu1vii3.6433 (9)Li3—Mo2x3.2648 (7)
Mo2—Eu1iii3.8126 (12)Li3—Mo1iii3.3046 (10)
O1—Li22.10 (2)Li3—Mo1xii3.3046 (10)
O1—Eu1i2.368 (4)Li3—Li2iii3.314 (19)
O1—Li1i2.368 (4)Li3—Li2xii3.314 (19)
O2—Mo1vii1.799 (4)
O1i—Li1—O672.17 (14)Mo1—O1—Li1i133.9 (2)
O1i—Li1—O5152.17 (14)Li2—O1—Li1i97.0 (5)
O6—Li1—O5135.59 (14)Eu1i—O1—Li1i0.000 (12)
O1i—Li1—O5ii128.42 (13)Mo1vii—O2—Li1118.9 (2)
O6—Li1—O5ii70.23 (13)Mo1vii—O2—Li1i134.1 (2)
O5—Li1—O5ii74.09 (15)Li1—O2—Li1i105.10 (16)
O1i—Li1—O3i75.14 (14)Mo1vii—O2—Eu1i134.1 (2)
O6—Li1—O3i94.56 (15)Li1—O2—Eu1i105.10 (16)
O5—Li1—O3i100.26 (14)Li1i—O2—Eu1i0.00 (2)
O5ii—Li1—O3i74.05 (14)Mo2vi—O3—Li2143.2 (6)
O1i—Li1—O270.22 (14)Mo2vi—O3—Li1i119.6 (2)
O6—Li1—O2101.42 (14)Li2—O3—Li1i96.9 (6)
O5—Li1—O297.18 (13)Mo2vi—O3—Eu1i119.6 (2)
O5ii—Li1—O2151.16 (14)Li2—O3—Eu1i96.9 (6)
O3i—Li1—O2134.77 (14)Li1i—O3—Eu1i0.00 (3)
O1i—Li1—O6iii124.00 (14)Mo2—O4—Li2viii135.4 (6)
O6—Li1—O6iii75.58 (15)Mo2—O4—Li2i118.2 (5)
O5—Li1—O6iii71.94 (13)Li2viii—O4—Li2i103.7 (6)
O5ii—Li1—O6iii78.18 (14)Mo1—O5—Li1123.90 (18)
O3i—Li1—O6iii152.23 (14)Mo1—O5—Eu1ii128.12 (19)
O2—Li1—O6iii72.99 (14)Li1—O5—Eu1ii105.91 (15)
O1i—Li1—O2i79.65 (14)Mo1—O5—Li1ii128.12 (19)
O6—Li1—O2i150.92 (14)Li1—O5—Li1ii105.91 (15)
O5—Li1—O2i73.02 (13)Eu1ii—O5—Li1ii0.00 (2)
O5ii—Li1—O2i125.81 (14)Mo2—O6—Li1125.4 (2)
O3i—Li1—O2i70.98 (15)Mo2—O6—Eu1iii126.0 (2)
O2—Li1—O2i74.91 (16)Li1—O6—Eu1iii104.42 (15)
O6iii—Li1—O2i128.19 (14)Mo2—O6—Li1iii126.0 (2)
O1i—Li1—Li2i38.4 (4)Li1—O6—Li1iii104.42 (15)
O6—Li1—Li2i87.0 (3)Eu1iii—O6—Li1iii0.000 (17)
O5—Li1—Li2i128.2 (4)Mo1vii—O7—Li3ix121.6 (2)
O5ii—Li1—Li2i105.7 (4)Mo1vii—O7—Li2107.8 (5)
O3i—Li1—Li2i37.4 (4)Li3ix—O7—Li2122.2 (5)
O2—Li1—Li2i101.2 (4)Mo2—O8—Li3122.5 (2)
O6iii—Li1—Li2i159.8 (3)Mo2—O8—Li2iii133.5 (5)
O2i—Li1—Li2i66.1 (3)Li3—O8—Li2iii101.5 (5)
O1i—Li1—Eu1iii99.68 (11)O4ix—Li2—O3119.8 (10)
O6—Li1—Eu1iii38.45 (10)O4ix—Li2—O1136.5 (10)
O5—Li1—Eu1iii104.25 (10)O3—Li2—O189.5 (8)
O5ii—Li1—Eu1iii69.98 (10)O4ix—Li2—O8iii89.3 (8)
O3i—Li1—Eu1iii128.14 (11)O3—Li2—O8iii144.5 (10)
O2—Li1—Eu1iii86.31 (10)O1—Li2—O8iii80.4 (7)
O6iii—Li1—Eu1iii37.13 (9)O4ix—Li2—O797.9 (8)
O2i—Li1—Eu1iii160.33 (10)O3—Li2—O785.3 (7)
Li2i—Li1—Eu1iii124.7 (3)O1—Li2—O7117.2 (9)
O1i—Li1—Eu1ii160.49 (10)O8iii—Li2—O769.8 (5)
O6—Li1—Eu1ii103.47 (10)O4ix—Li2—O4i76.3 (6)
O5—Li1—Eu1ii37.21 (9)O3—Li2—O4i88.5 (7)
O5ii—Li1—Eu1ii36.87 (9)O1—Li2—O4i73.0 (6)
O3i—Li1—Eu1ii86.47 (10)O8iii—Li2—O4i120.0 (8)
O2—Li1—Eu1ii128.97 (10)O7—Li2—O4i168.0 (9)
O6iii—Li1—Eu1ii71.20 (10)O4ix—Li2—Li3v64.3 (5)
O2i—Li1—Eu1ii100.71 (10)O3—Li2—Li3v174.0 (9)
Li2i—Li1—Eu1ii123.8 (3)O1—Li2—Li3v84.6 (6)
Eu1iii—Li1—Eu1ii86.46 (2)O8iii—Li2—Li3v35.6 (3)
O1i—Li1—Eu1i70.99 (10)O7—Li2—Li3v98.6 (6)
O6—Li1—Eu1i132.65 (10)O4i—Li2—Li3v88.4 (5)
O5—Li1—Eu1i83.87 (9)O4ix—Li2—Li1i156.0 (9)
O5ii—Li1—Eu1i156.82 (9)O3—Li2—Li1i45.7 (4)
O3i—Li1—Eu1i103.58 (11)O1—Li2—Li1i44.6 (4)
O2—Li1—Eu1i37.69 (10)O8iii—Li2—Li1i112.4 (7)
O6iii—Li1—Eu1i102.02 (10)O7—Li2—Li1i99.2 (6)
O2i—Li1—Eu1i37.21 (10)O4i—Li2—Li1i83.6 (5)
Li2i—Li1—Eu1i82.2 (3)Li3v—Li2—Li1i128.7 (6)
Eu1iii—Li1—Eu1i123.78 (2)O4ix—Li2—Eu1i156.0 (9)
Eu1ii—Li1—Eu1i120.77 (2)O3—Li2—Eu1i45.7 (4)
O7iv—Mo1—O1106.9 (2)O1—Li2—Eu1i44.6 (4)
O7iv—Mo1—O2iv106.3 (2)O8iii—Li2—Eu1i112.4 (7)
O1—Mo1—O2iv110.91 (19)O7—Li2—Eu1i99.2 (6)
O7iv—Mo1—O5116.72 (19)O4i—Li2—Eu1i83.6 (5)
O1—Mo1—O5108.58 (18)Li3v—Li2—Eu1i128.7 (6)
O2iv—Mo1—O5107.45 (19)Li1i—Li2—Eu1i0.00 (2)
O7iv—Mo1—Li3v31.81 (14)O4ix—Li2—Mo1120.3 (8)
O1—Mo1—Li3v90.06 (14)O3—Li2—Mo1115.1 (8)
O2iv—Mo1—Li3v138.06 (13)O1—Li2—Mo127.1 (3)
O5—Mo1—Li3v98.83 (13)O8iii—Li2—Mo154.5 (4)
O7iv—Mo1—Li284.1 (4)O7—Li2—Mo1108.3 (6)
O1—Mo1—Li232.6 (4)O4i—Li2—Mo183.6 (5)
O2iv—Mo1—Li2141.4 (4)Li3v—Li2—Mo159.4 (3)
O5—Mo1—Li2100.0 (4)Li1i—Li2—Mo169.4 (4)
Li3v—Mo1—Li259.6 (3)Eu1i—Li2—Mo169.4 (4)
O7iv—Mo1—Eu1iv102.85 (14)O8x—Li3—O8180.000 (1)
O1—Mo1—Eu1iv141.46 (14)O8x—Li3—O7xi97.16 (17)
O2iv—Mo1—Eu1iv35.65 (13)O8—Li3—O7xi82.84 (17)
O5—Mo1—Eu1iv78.16 (13)O8x—Li3—O7viii82.84 (17)
Li3v—Mo1—Eu1iv127.214 (19)O8—Li3—O7viii97.16 (17)
Li2—Mo1—Eu1iv173.0 (3)O7xi—Li3—O7viii180.000 (1)
O7iv—Mo1—Eu1ii94.98 (15)O8x—Li3—Mo2x26.92 (13)
O1—Mo1—Eu1ii137.51 (14)O8—Li3—Mo2x153.08 (13)
O2iv—Mo1—Eu1ii96.59 (14)O7xi—Li3—Mo2x87.08 (12)
O5—Mo1—Eu1ii29.83 (12)O7viii—Li3—Mo2x92.92 (12)
Li3v—Mo1—Eu1ii90.23 (2)O8x—Li3—Mo2153.08 (13)
Li2—Mo1—Eu1ii119.9 (3)O8—Li3—Mo226.92 (13)
Eu1iv—Mo1—Eu1ii61.28 (2)O7xi—Li3—Mo292.92 (12)
O7iv—Mo1—Eu1i133.27 (15)O7viii—Li3—Mo287.08 (12)
O1—Mo1—Eu1i26.58 (13)Mo2x—Li3—Mo2180.000 (1)
O2iv—Mo1—Eu1i95.63 (13)O8x—Li3—Mo1iii123.62 (13)
O5—Mo1—Eu1i94.11 (12)O8—Li3—Mo1iii56.38 (13)
Li3v—Mo1—Eu1i114.76 (2)O7xi—Li3—Mo1iii26.59 (12)
Li2—Mo1—Eu1i55.2 (3)O7viii—Li3—Mo1iii153.41 (12)
Eu1iv—Mo1—Eu1i118.02 (2)Mo2x—Li3—Mo1iii109.910 (19)
Eu1ii—Mo1—Eu1i123.353 (18)Mo2—Li3—Mo1iii70.09 (2)
O4—Mo2—O8107.4 (2)O8x—Li3—Mo1xii56.38 (13)
O4—Mo2—O3vi108.3 (2)O8—Li3—Mo1xii123.62 (13)
O8—Mo2—O3vi106.3 (2)O7xi—Li3—Mo1xii153.41 (12)
O4—Mo2—O6112.4 (2)O7viii—Li3—Mo1xii26.59 (12)
O8—Mo2—O6111.97 (19)Mo2x—Li3—Mo1xii70.090 (19)
O3vi—Mo2—O6110.20 (19)Mo2—Li3—Mo1xii109.910 (19)
O4—Mo2—Li396.73 (15)Mo1iii—Li3—Mo1xii180.0
O8—Mo2—Li330.53 (14)O8x—Li3—Li2iii137.1 (4)
O3vi—Mo2—Li383.23 (14)O8—Li3—Li2iii42.9 (4)
O6—Mo2—Li3140.59 (13)O7xi—Li3—Li2iii81.2 (4)
O4—Mo2—Eu1vii140.06 (16)O7viii—Li3—Li2iii98.8 (4)
O8—Mo2—Eu1vii100.92 (14)Mo2x—Li3—Li2iii110.9 (3)
O3vi—Mo2—Eu1vii35.15 (14)Mo2—Li3—Li2iii69.1 (3)
O6—Mo2—Eu1vii80.96 (13)Mo1iii—Li3—Li2iii61.0 (4)
Li3—Mo2—Eu1vii93.60 (2)Mo1xii—Li3—Li2iii119.0 (4)
O4—Mo2—Eu1iii143.13 (16)O8x—Li3—Li2xii42.9 (4)
O8—Mo2—Eu1iii90.70 (14)O8—Li3—Li2xii137.1 (4)
O3vi—Mo2—Eu1iii96.42 (14)O7xi—Li3—Li2xii98.8 (4)
O6—Mo2—Eu1iii31.22 (13)O7viii—Li3—Li2xii81.2 (4)
Li3—Mo2—Eu1iii113.38 (2)Mo2x—Li3—Li2xii69.1 (3)
Eu1vii—Mo2—Eu1iii61.522 (18)Mo2—Li3—Li2xii110.9 (3)
Mo1—O1—Li2120.3 (6)Mo1iii—Li3—Li2xii119.0 (4)
Mo1—O1—Eu1i133.9 (2)Mo1xii—Li3—Li2xii61.0 (4)
Li2—O1—Eu1i97.0 (5)Li2iii—Li3—Li2xii180.000 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+2, y+2, z+1; (iv) x1, y, z; (v) x1, y, z+1; (vi) x+2, y+1, z+1; (vii) x+1, y, z; (viii) x, y, z1; (ix) x, y, z+1; (x) x+3, y+2, z; (xi) x+3, y+2, z+1; (xii) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaLi3.5Eu1.5(MoO4)4
Mr891.99
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.2182 (11), 6.7008 (12), 10.3167 (5)
α, β, γ (°)100.09 (2), 100.341 (15), 111.891 (15)
V3)317.49 (9)
Z1
Radiation typeMo Kα
µ (mm1)11.22
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.213, 0.604
No. of measured, independent and
observed [I > 2σ(I)] reflections
2478, 1437, 1224
Rint0.014
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.10
No. of reflections1437
No. of parameters105
Δρmax, Δρmin (e Å3)0.95, 1.62

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (No. 20901066).

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChiu, C., Wang, M. F., Lee, C. & Che, T. C. (2007). J. Solid State Chem. 180, 619–627.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIpatova, E. N., Klevtsova, R. F., Solov'eva, L. P. & Klevtsov, P. V. (1982). Zh. Strukt. Khim. 23, 115–119.  CAS Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, D., Li, F., Cheng, W. & Zhang, H. (2010). Acta Cryst. E66, i36.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds