inorganic compounds
Lithium europium(III) molybdate(VI), Li3.5Eu1.5(MoO4)4
aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China, and bDepartment of Material Science and Engineering, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn
The title compound, Li3.5Eu1.5(MoO4)4, was prepared by solid-state reactions. The fundamental building units of the structure are LiO4 polyhedra (site symmetry ), distorted LiO6 polyhedra and MoO4 tetrahedra, which are further interconnected via corner-sharing O atoms. One site is occupied by both Li and Eu atoms in a substituent disordered manner (0.25:0.75), and the Li/Eu atoms are coordinated by eight O atoms in a distorted square-antiprismatic manner.
Related literature
For related rare-earth molybdate compounds, see: Zhao et al. (2010); Ipatova et al. (1982). For similar Li/Eu disorder in LiEu(WO4)2, see: Chiu et al. (2007).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2004); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812000268/ru2018sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812000268/ru2018Isup2.hkl
The finely ground reagents Li2CO3, Eu2O3 and MoO3 were mixed in the molar ratio Li: Eu: Mo = 5: 1: 5, and then placed in a Pt crucible to heat at 573 K for 4 h. The mixture was then re-ground and heated at 1073 K for 20 h, then cooled to 673 K at a rate of 3 K h-1, and finally quenched to room temperature. A few colorless crystals of the title compound with prismatic shape were obtained.
The structure contains substitutional disorder in which Li1 and Eu1 occupy the same position. The atomic positional and anisotropic displacement parameters of Li1 and Eu1 atoms were constrained to be identical by using EADP and EXYZ constraint instructions (SHELXL97; Sheldrick, 2008). The ratio of Li1 and Eu1 was fixed to 1: 3 to achieve charge balance.
Data collection: CrystalClear (Rigaku, 2004); cell
CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Li3.5Eu1.5(MoO4)4 | Z = 1 |
Mr = 891.99 | F(000) = 401 |
Triclinic, P1 | Dx = 4.665 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.2182 (11) Å | Cell parameters from 791 reflections |
b = 6.7008 (12) Å | θ = 2.1–27.5° |
c = 10.3167 (5) Å | µ = 11.22 mm−1 |
α = 100.09 (2)° | T = 296 K |
β = 100.341 (15)° | Prism, colourless |
γ = 111.891 (15)° | 0.20 × 0.05 × 0.05 mm |
V = 317.49 (9) Å3 |
Rigaku Mercury70 CCD diffractometer | 1437 independent reflections |
Radiation source: fine-focus sealed tube | 1224 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −8→8 |
Tmin = 0.213, Tmax = 0.604 | l = −12→13 |
2478 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.029 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.038P)2 + 1.5273P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1437 reflections | Δρmax = 0.95 e Å−3 |
105 parameters | Δρmin = −1.62 e Å−3 |
Li3.5Eu1.5(MoO4)4 | γ = 111.891 (15)° |
Mr = 891.99 | V = 317.49 (9) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.2182 (11) Å | Mo Kα radiation |
b = 6.7008 (12) Å | µ = 11.22 mm−1 |
c = 10.3167 (5) Å | T = 296 K |
α = 100.09 (2)° | 0.20 × 0.05 × 0.05 mm |
β = 100.341 (15)° |
Rigaku Mercury70 CCD diffractometer | 1437 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1224 reflections with I > 2σ(I) |
Tmin = 0.213, Tmax = 0.604 | Rint = 0.014 |
2478 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 105 parameters |
wR(F2) = 0.079 | 0 restraints |
S = 1.10 | Δρmax = 0.95 e Å−3 |
1437 reflections | Δρmin = −1.62 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Li1 | 0.62034 (7) | 0.77190 (5) | 0.43965 (3) | 0.00542 (13) | 0.25 |
Eu1 | 0.62034 (7) | 0.77190 (5) | 0.43965 (3) | 0.00542 (13) | 0.75 |
Mo1 | 0.16529 (10) | 0.70023 (7) | 0.68099 (5) | 0.00873 (15) | |
Mo2 | 1.08254 (11) | 0.84541 (8) | 0.19822 (5) | 0.01044 (15) | |
O1 | 0.3065 (9) | 0.5032 (7) | 0.7078 (4) | 0.0141 (9) | |
O2 | 0.8045 (9) | 0.5637 (7) | 0.5724 (4) | 0.0145 (9) | |
O3 | 0.7317 (9) | 0.3263 (7) | 0.7745 (4) | 0.0175 (9) | |
O4 | 0.7691 (10) | 0.6882 (7) | 0.0693 (5) | 0.0213 (10) | |
O5 | 0.3812 (8) | 0.8834 (6) | 0.5948 (4) | 0.0099 (8) | |
O6 | 1.0161 (9) | 0.9568 (7) | 0.3572 (4) | 0.0141 (9) | |
O7 | 1.1437 (9) | 0.8249 (7) | 0.8386 (4) | 0.0175 (9) | |
O8 | 1.3010 (9) | 1.0575 (7) | 0.1374 (4) | 0.0167 (9) | |
Li2 | 0.669 (4) | 0.593 (3) | 0.869 (2) | 0.060 (5)* | |
Li3 | 1.5000 | 1.0000 | 0.0000 | 0.049 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0066 (2) | 0.0053 (2) | 0.0037 (2) | 0.00203 (15) | 0.00143 (14) | 0.00061 (14) |
Eu1 | 0.0066 (2) | 0.0053 (2) | 0.0037 (2) | 0.00203 (15) | 0.00143 (14) | 0.00061 (14) |
Mo1 | 0.0097 (3) | 0.0099 (3) | 0.0068 (3) | 0.0038 (2) | 0.0029 (2) | 0.00267 (19) |
Mo2 | 0.0122 (3) | 0.0133 (3) | 0.0057 (2) | 0.0056 (2) | 0.00259 (19) | 0.00134 (19) |
O1 | 0.018 (2) | 0.016 (2) | 0.010 (2) | 0.0090 (18) | 0.0062 (17) | 0.0028 (16) |
O2 | 0.014 (2) | 0.012 (2) | 0.013 (2) | 0.0028 (17) | 0.0019 (17) | 0.0010 (16) |
O3 | 0.020 (2) | 0.019 (2) | 0.015 (2) | 0.0112 (19) | 0.0051 (18) | 0.0031 (18) |
O4 | 0.021 (2) | 0.021 (2) | 0.013 (2) | 0.0023 (19) | 0.0017 (18) | 0.0031 (18) |
O5 | 0.0110 (19) | 0.0098 (19) | 0.0089 (19) | 0.0039 (16) | 0.0032 (15) | 0.0032 (15) |
O6 | 0.0109 (19) | 0.015 (2) | 0.014 (2) | 0.0028 (17) | 0.0057 (17) | 0.0009 (17) |
O7 | 0.016 (2) | 0.022 (2) | 0.014 (2) | 0.0081 (19) | 0.0044 (17) | 0.0013 (18) |
O8 | 0.019 (2) | 0.022 (2) | 0.014 (2) | 0.0114 (19) | 0.0082 (18) | 0.0083 (18) |
Li1—O1i | 2.368 (4) | O2—Li1i | 2.464 (4) |
Li1—O6 | 2.370 (4) | O2—Eu1i | 2.464 (4) |
Li1—O5 | 2.381 (4) | O3—Mo2vi | 1.786 (4) |
Li1—O5ii | 2.400 (4) | O3—Li2 | 2.05 (2) |
Li1—O3i | 2.413 (4) | O3—Li1i | 2.413 (4) |
Li1—O2 | 2.437 (4) | O3—Eu1i | 2.413 (4) |
Li1—O6iii | 2.442 (4) | O4—Li2viii | 1.96 (2) |
Li1—O2i | 2.465 (4) | O4—Li2i | 2.63 (2) |
Li1—Li2i | 3.35 (2) | O5—Eu1ii | 2.400 (4) |
Li1—Eu1iii | 3.8024 (13) | O5—Li1ii | 2.400 (4) |
Li1—Eu1ii | 3.8162 (9) | O6—Eu1iii | 2.442 (4) |
Li1—Eu1i | 3.8915 (10) | O6—Li1iii | 2.442 (4) |
Mo1—O7iv | 1.737 (4) | O7—Mo1vii | 1.737 (4) |
Mo1—O1 | 1.772 (4) | O7—Li3ix | 2.045 (4) |
Mo1—O2iv | 1.799 (4) | O7—Li2 | 2.50 (2) |
Mo1—O5 | 1.811 (4) | O8—Li3 | 1.968 (4) |
Mo1—Li3v | 3.3047 (10) | O8—Li2iii | 2.30 (2) |
Mo1—Li2 | 3.36 (2) | Li2—O4ix | 1.96 (2) |
Mo1—Eu1iv | 3.6622 (9) | Li2—O8iii | 2.30 (2) |
Mo1—Eu1ii | 3.7953 (9) | Li2—O4i | 2.63 (2) |
Mo1—Eu1i | 3.8168 (8) | Li2—Li3v | 3.314 (19) |
Mo2—O4 | 1.731 (5) | Li2—Li1i | 3.35 (2) |
Mo2—O8 | 1.753 (4) | Li2—Eu1i | 3.35 (2) |
Mo2—O3vi | 1.786 (4) | Li3—O8x | 1.968 (4) |
Mo2—O6 | 1.827 (4) | Li3—O7xi | 2.045 (4) |
Mo2—Li3 | 3.2648 (7) | Li3—O7viii | 2.045 (4) |
Mo2—Eu1vii | 3.6433 (9) | Li3—Mo2x | 3.2648 (7) |
Mo2—Eu1iii | 3.8126 (12) | Li3—Mo1iii | 3.3046 (10) |
O1—Li2 | 2.10 (2) | Li3—Mo1xii | 3.3046 (10) |
O1—Eu1i | 2.368 (4) | Li3—Li2iii | 3.314 (19) |
O1—Li1i | 2.368 (4) | Li3—Li2xii | 3.314 (19) |
O2—Mo1vii | 1.799 (4) | ||
O1i—Li1—O6 | 72.17 (14) | Mo1—O1—Li1i | 133.9 (2) |
O1i—Li1—O5 | 152.17 (14) | Li2—O1—Li1i | 97.0 (5) |
O6—Li1—O5 | 135.59 (14) | Eu1i—O1—Li1i | 0.000 (12) |
O1i—Li1—O5ii | 128.42 (13) | Mo1vii—O2—Li1 | 118.9 (2) |
O6—Li1—O5ii | 70.23 (13) | Mo1vii—O2—Li1i | 134.1 (2) |
O5—Li1—O5ii | 74.09 (15) | Li1—O2—Li1i | 105.10 (16) |
O1i—Li1—O3i | 75.14 (14) | Mo1vii—O2—Eu1i | 134.1 (2) |
O6—Li1—O3i | 94.56 (15) | Li1—O2—Eu1i | 105.10 (16) |
O5—Li1—O3i | 100.26 (14) | Li1i—O2—Eu1i | 0.00 (2) |
O5ii—Li1—O3i | 74.05 (14) | Mo2vi—O3—Li2 | 143.2 (6) |
O1i—Li1—O2 | 70.22 (14) | Mo2vi—O3—Li1i | 119.6 (2) |
O6—Li1—O2 | 101.42 (14) | Li2—O3—Li1i | 96.9 (6) |
O5—Li1—O2 | 97.18 (13) | Mo2vi—O3—Eu1i | 119.6 (2) |
O5ii—Li1—O2 | 151.16 (14) | Li2—O3—Eu1i | 96.9 (6) |
O3i—Li1—O2 | 134.77 (14) | Li1i—O3—Eu1i | 0.00 (3) |
O1i—Li1—O6iii | 124.00 (14) | Mo2—O4—Li2viii | 135.4 (6) |
O6—Li1—O6iii | 75.58 (15) | Mo2—O4—Li2i | 118.2 (5) |
O5—Li1—O6iii | 71.94 (13) | Li2viii—O4—Li2i | 103.7 (6) |
O5ii—Li1—O6iii | 78.18 (14) | Mo1—O5—Li1 | 123.90 (18) |
O3i—Li1—O6iii | 152.23 (14) | Mo1—O5—Eu1ii | 128.12 (19) |
O2—Li1—O6iii | 72.99 (14) | Li1—O5—Eu1ii | 105.91 (15) |
O1i—Li1—O2i | 79.65 (14) | Mo1—O5—Li1ii | 128.12 (19) |
O6—Li1—O2i | 150.92 (14) | Li1—O5—Li1ii | 105.91 (15) |
O5—Li1—O2i | 73.02 (13) | Eu1ii—O5—Li1ii | 0.00 (2) |
O5ii—Li1—O2i | 125.81 (14) | Mo2—O6—Li1 | 125.4 (2) |
O3i—Li1—O2i | 70.98 (15) | Mo2—O6—Eu1iii | 126.0 (2) |
O2—Li1—O2i | 74.91 (16) | Li1—O6—Eu1iii | 104.42 (15) |
O6iii—Li1—O2i | 128.19 (14) | Mo2—O6—Li1iii | 126.0 (2) |
O1i—Li1—Li2i | 38.4 (4) | Li1—O6—Li1iii | 104.42 (15) |
O6—Li1—Li2i | 87.0 (3) | Eu1iii—O6—Li1iii | 0.000 (17) |
O5—Li1—Li2i | 128.2 (4) | Mo1vii—O7—Li3ix | 121.6 (2) |
O5ii—Li1—Li2i | 105.7 (4) | Mo1vii—O7—Li2 | 107.8 (5) |
O3i—Li1—Li2i | 37.4 (4) | Li3ix—O7—Li2 | 122.2 (5) |
O2—Li1—Li2i | 101.2 (4) | Mo2—O8—Li3 | 122.5 (2) |
O6iii—Li1—Li2i | 159.8 (3) | Mo2—O8—Li2iii | 133.5 (5) |
O2i—Li1—Li2i | 66.1 (3) | Li3—O8—Li2iii | 101.5 (5) |
O1i—Li1—Eu1iii | 99.68 (11) | O4ix—Li2—O3 | 119.8 (10) |
O6—Li1—Eu1iii | 38.45 (10) | O4ix—Li2—O1 | 136.5 (10) |
O5—Li1—Eu1iii | 104.25 (10) | O3—Li2—O1 | 89.5 (8) |
O5ii—Li1—Eu1iii | 69.98 (10) | O4ix—Li2—O8iii | 89.3 (8) |
O3i—Li1—Eu1iii | 128.14 (11) | O3—Li2—O8iii | 144.5 (10) |
O2—Li1—Eu1iii | 86.31 (10) | O1—Li2—O8iii | 80.4 (7) |
O6iii—Li1—Eu1iii | 37.13 (9) | O4ix—Li2—O7 | 97.9 (8) |
O2i—Li1—Eu1iii | 160.33 (10) | O3—Li2—O7 | 85.3 (7) |
Li2i—Li1—Eu1iii | 124.7 (3) | O1—Li2—O7 | 117.2 (9) |
O1i—Li1—Eu1ii | 160.49 (10) | O8iii—Li2—O7 | 69.8 (5) |
O6—Li1—Eu1ii | 103.47 (10) | O4ix—Li2—O4i | 76.3 (6) |
O5—Li1—Eu1ii | 37.21 (9) | O3—Li2—O4i | 88.5 (7) |
O5ii—Li1—Eu1ii | 36.87 (9) | O1—Li2—O4i | 73.0 (6) |
O3i—Li1—Eu1ii | 86.47 (10) | O8iii—Li2—O4i | 120.0 (8) |
O2—Li1—Eu1ii | 128.97 (10) | O7—Li2—O4i | 168.0 (9) |
O6iii—Li1—Eu1ii | 71.20 (10) | O4ix—Li2—Li3v | 64.3 (5) |
O2i—Li1—Eu1ii | 100.71 (10) | O3—Li2—Li3v | 174.0 (9) |
Li2i—Li1—Eu1ii | 123.8 (3) | O1—Li2—Li3v | 84.6 (6) |
Eu1iii—Li1—Eu1ii | 86.46 (2) | O8iii—Li2—Li3v | 35.6 (3) |
O1i—Li1—Eu1i | 70.99 (10) | O7—Li2—Li3v | 98.6 (6) |
O6—Li1—Eu1i | 132.65 (10) | O4i—Li2—Li3v | 88.4 (5) |
O5—Li1—Eu1i | 83.87 (9) | O4ix—Li2—Li1i | 156.0 (9) |
O5ii—Li1—Eu1i | 156.82 (9) | O3—Li2—Li1i | 45.7 (4) |
O3i—Li1—Eu1i | 103.58 (11) | O1—Li2—Li1i | 44.6 (4) |
O2—Li1—Eu1i | 37.69 (10) | O8iii—Li2—Li1i | 112.4 (7) |
O6iii—Li1—Eu1i | 102.02 (10) | O7—Li2—Li1i | 99.2 (6) |
O2i—Li1—Eu1i | 37.21 (10) | O4i—Li2—Li1i | 83.6 (5) |
Li2i—Li1—Eu1i | 82.2 (3) | Li3v—Li2—Li1i | 128.7 (6) |
Eu1iii—Li1—Eu1i | 123.78 (2) | O4ix—Li2—Eu1i | 156.0 (9) |
Eu1ii—Li1—Eu1i | 120.77 (2) | O3—Li2—Eu1i | 45.7 (4) |
O7iv—Mo1—O1 | 106.9 (2) | O1—Li2—Eu1i | 44.6 (4) |
O7iv—Mo1—O2iv | 106.3 (2) | O8iii—Li2—Eu1i | 112.4 (7) |
O1—Mo1—O2iv | 110.91 (19) | O7—Li2—Eu1i | 99.2 (6) |
O7iv—Mo1—O5 | 116.72 (19) | O4i—Li2—Eu1i | 83.6 (5) |
O1—Mo1—O5 | 108.58 (18) | Li3v—Li2—Eu1i | 128.7 (6) |
O2iv—Mo1—O5 | 107.45 (19) | Li1i—Li2—Eu1i | 0.00 (2) |
O7iv—Mo1—Li3v | 31.81 (14) | O4ix—Li2—Mo1 | 120.3 (8) |
O1—Mo1—Li3v | 90.06 (14) | O3—Li2—Mo1 | 115.1 (8) |
O2iv—Mo1—Li3v | 138.06 (13) | O1—Li2—Mo1 | 27.1 (3) |
O5—Mo1—Li3v | 98.83 (13) | O8iii—Li2—Mo1 | 54.5 (4) |
O7iv—Mo1—Li2 | 84.1 (4) | O7—Li2—Mo1 | 108.3 (6) |
O1—Mo1—Li2 | 32.6 (4) | O4i—Li2—Mo1 | 83.6 (5) |
O2iv—Mo1—Li2 | 141.4 (4) | Li3v—Li2—Mo1 | 59.4 (3) |
O5—Mo1—Li2 | 100.0 (4) | Li1i—Li2—Mo1 | 69.4 (4) |
Li3v—Mo1—Li2 | 59.6 (3) | Eu1i—Li2—Mo1 | 69.4 (4) |
O7iv—Mo1—Eu1iv | 102.85 (14) | O8x—Li3—O8 | 180.000 (1) |
O1—Mo1—Eu1iv | 141.46 (14) | O8x—Li3—O7xi | 97.16 (17) |
O2iv—Mo1—Eu1iv | 35.65 (13) | O8—Li3—O7xi | 82.84 (17) |
O5—Mo1—Eu1iv | 78.16 (13) | O8x—Li3—O7viii | 82.84 (17) |
Li3v—Mo1—Eu1iv | 127.214 (19) | O8—Li3—O7viii | 97.16 (17) |
Li2—Mo1—Eu1iv | 173.0 (3) | O7xi—Li3—O7viii | 180.000 (1) |
O7iv—Mo1—Eu1ii | 94.98 (15) | O8x—Li3—Mo2x | 26.92 (13) |
O1—Mo1—Eu1ii | 137.51 (14) | O8—Li3—Mo2x | 153.08 (13) |
O2iv—Mo1—Eu1ii | 96.59 (14) | O7xi—Li3—Mo2x | 87.08 (12) |
O5—Mo1—Eu1ii | 29.83 (12) | O7viii—Li3—Mo2x | 92.92 (12) |
Li3v—Mo1—Eu1ii | 90.23 (2) | O8x—Li3—Mo2 | 153.08 (13) |
Li2—Mo1—Eu1ii | 119.9 (3) | O8—Li3—Mo2 | 26.92 (13) |
Eu1iv—Mo1—Eu1ii | 61.28 (2) | O7xi—Li3—Mo2 | 92.92 (12) |
O7iv—Mo1—Eu1i | 133.27 (15) | O7viii—Li3—Mo2 | 87.08 (12) |
O1—Mo1—Eu1i | 26.58 (13) | Mo2x—Li3—Mo2 | 180.000 (1) |
O2iv—Mo1—Eu1i | 95.63 (13) | O8x—Li3—Mo1iii | 123.62 (13) |
O5—Mo1—Eu1i | 94.11 (12) | O8—Li3—Mo1iii | 56.38 (13) |
Li3v—Mo1—Eu1i | 114.76 (2) | O7xi—Li3—Mo1iii | 26.59 (12) |
Li2—Mo1—Eu1i | 55.2 (3) | O7viii—Li3—Mo1iii | 153.41 (12) |
Eu1iv—Mo1—Eu1i | 118.02 (2) | Mo2x—Li3—Mo1iii | 109.910 (19) |
Eu1ii—Mo1—Eu1i | 123.353 (18) | Mo2—Li3—Mo1iii | 70.09 (2) |
O4—Mo2—O8 | 107.4 (2) | O8x—Li3—Mo1xii | 56.38 (13) |
O4—Mo2—O3vi | 108.3 (2) | O8—Li3—Mo1xii | 123.62 (13) |
O8—Mo2—O3vi | 106.3 (2) | O7xi—Li3—Mo1xii | 153.41 (12) |
O4—Mo2—O6 | 112.4 (2) | O7viii—Li3—Mo1xii | 26.59 (12) |
O8—Mo2—O6 | 111.97 (19) | Mo2x—Li3—Mo1xii | 70.090 (19) |
O3vi—Mo2—O6 | 110.20 (19) | Mo2—Li3—Mo1xii | 109.910 (19) |
O4—Mo2—Li3 | 96.73 (15) | Mo1iii—Li3—Mo1xii | 180.0 |
O8—Mo2—Li3 | 30.53 (14) | O8x—Li3—Li2iii | 137.1 (4) |
O3vi—Mo2—Li3 | 83.23 (14) | O8—Li3—Li2iii | 42.9 (4) |
O6—Mo2—Li3 | 140.59 (13) | O7xi—Li3—Li2iii | 81.2 (4) |
O4—Mo2—Eu1vii | 140.06 (16) | O7viii—Li3—Li2iii | 98.8 (4) |
O8—Mo2—Eu1vii | 100.92 (14) | Mo2x—Li3—Li2iii | 110.9 (3) |
O3vi—Mo2—Eu1vii | 35.15 (14) | Mo2—Li3—Li2iii | 69.1 (3) |
O6—Mo2—Eu1vii | 80.96 (13) | Mo1iii—Li3—Li2iii | 61.0 (4) |
Li3—Mo2—Eu1vii | 93.60 (2) | Mo1xii—Li3—Li2iii | 119.0 (4) |
O4—Mo2—Eu1iii | 143.13 (16) | O8x—Li3—Li2xii | 42.9 (4) |
O8—Mo2—Eu1iii | 90.70 (14) | O8—Li3—Li2xii | 137.1 (4) |
O3vi—Mo2—Eu1iii | 96.42 (14) | O7xi—Li3—Li2xii | 98.8 (4) |
O6—Mo2—Eu1iii | 31.22 (13) | O7viii—Li3—Li2xii | 81.2 (4) |
Li3—Mo2—Eu1iii | 113.38 (2) | Mo2x—Li3—Li2xii | 69.1 (3) |
Eu1vii—Mo2—Eu1iii | 61.522 (18) | Mo2—Li3—Li2xii | 110.9 (3) |
Mo1—O1—Li2 | 120.3 (6) | Mo1iii—Li3—Li2xii | 119.0 (4) |
Mo1—O1—Eu1i | 133.9 (2) | Mo1xii—Li3—Li2xii | 61.0 (4) |
Li2—O1—Eu1i | 97.0 (5) | Li2iii—Li3—Li2xii | 180.000 (1) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+2, −y+2, −z+1; (iv) x−1, y, z; (v) x−1, y, z+1; (vi) −x+2, −y+1, −z+1; (vii) x+1, y, z; (viii) x, y, z−1; (ix) x, y, z+1; (x) −x+3, −y+2, −z; (xi) −x+3, −y+2, −z+1; (xii) x+1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | Li3.5Eu1.5(MoO4)4 |
Mr | 891.99 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 5.2182 (11), 6.7008 (12), 10.3167 (5) |
α, β, γ (°) | 100.09 (2), 100.341 (15), 111.891 (15) |
V (Å3) | 317.49 (9) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 11.22 |
Crystal size (mm) | 0.20 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Rigaku Mercury70 CCD diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.213, 0.604 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2478, 1437, 1224 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.079, 1.10 |
No. of reflections | 1437 |
No. of parameters | 105 |
Δρmax, Δρmin (e Å−3) | 0.95, −1.62 |
Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
The authors acknowledge the National Natural Science Foundation of China (No. 20901066).
References
Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chiu, C., Wang, M. F., Lee, C. & Che, T. C. (2007). J. Solid State Chem. 180, 619–627. Web of Science CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ipatova, E. N., Klevtsova, R. F., Solov'eva, L. P. & Klevtsov, P. V. (1982). Zh. Strukt. Khim. 23, 115–119. CAS Google Scholar
Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, D., Li, F., Cheng, W. & Zhang, H. (2010). Acta Cryst. E66, i36. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, alkali rare-earth molybdates have been studied mainly due to their rich structural chemistry and interesting physical and chemical properties (Zhao et al., 2010). Of them, a mixed valence alkali rare-earth double molybdate Li7Ho3(MoO4)8 (Ipatova et al., 1982) with the substituent disordered structure was reported. In order to enrich this family type of compounds, we report the single-crystal growth and structure investigation of title compound Li3.5Eu1.5(MoO4)4.
In this structure, one site is occupancied by both Li and Eu atoms in a substituent disordered manner, denoted as M atom, such case can alse be found in compound LiEu(WO4)2 (Chiu et al., 2007). There are two Li atom sites, two Mo atom sites and one M atom site in the asymmetric unit of title compound. Only one Li(3) atom lies on the inversion center in 1 d position, and the other atoms lie on the general positions. One the other hand, the coordination of the two crystallographic distinct Li atoms are different. Li(2) atoms are surround by six O atoms with the bond distances ranging from 1.970 (16) to 2.62 (2) Å, forming distorted LiO6 octahedra. Li(3) atoms are surround by four O atoms with the bond distances ranging from 1.968 (4) to 2.046 (4) Å, forming nearly planar LiO4 groups. On an over view (Fig. 2), the three-dimensional structure contains LiO4 groups, LiO6 groups and MoO4 tetrahedra, which are further interconnected via corner sharing O atoms. The M atoms are located on this framework and exhibit a coordination number of eight.