organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4,5-Di­phenyl-2-p-tolyl-1H-imidazol-1-yl)-3-phenyl­propan-1-ol

aSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: henangongda@yahoo.com

(Received 8 December 2011; accepted 20 December 2011; online 7 January 2012)

In the title compound, C31H28N2O, the dihedral angles formed by the imidazole ring with the three aryl substituents are 18.52 (8) and 85.56 (7) and 85.57 (7)°, respectively. In the crystal, mol­ecules are linked by O—H⋯N and C—H⋯O hydrogen bonds into chains parallel to the a axis.

Related literature

For the synthesis and properties of chiral ionic liquids, see: Olivier-Bourbigou et al. (2010[Olivier-Bourbigou, H., Magna, L. & Morvan, D. (2010). Appl. Catal. A, 373, 1-56.]); Chen et al. (2008[Chen, X., Li, X., Hu, A. & Wang, F. (2008). Tetrahedron Asymmetry, 19, 1-14.]); Mao et al. (2010[Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418-2425.]).

[Scheme 1]

Experimental

Crystal data
  • C31H28N2O

  • Mr = 444.55

  • Orthorhombic, P 21 21 21

  • a = 9.3413 (7) Å

  • b = 13.7402 (11) Å

  • c = 19.6296 (14) Å

  • V = 2519.5 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 291 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.866, Tmax = 1.000

  • 9302 measured reflections

  • 4441 independent reflections

  • 4007 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.03

  • 4441 reflections

  • 313 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 1887 Friedel pairs

  • Flack parameter: −0.1 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 (3) 2.01 (3) 2.825 (2) 174 (3)
C16—H16⋯O1ii 0.93 2.56 3.272 (3) 133
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Ionic liquids (ILs) have received considerable interest in the fields of synthesis, analysis and catalysis due to their unique properties (Olivier-Bourbigou et al., 2010). Chiral ionic liquids (CILs) derived from naturally abundant precursors have also attracted much interest (Chen et al., 2008). Our group is interested in the preparation and application of imidazole derived CILs (Mao et al., 2010), and we observed that the condensation reaction between L-phenylalaninol (easily available from L-phenylalanine), dibenzoyl, 4-methylbenzaldehyde and ammonium acetate afforded the title compound, a multi-aryl substituted imidazole derivative containing an appended chiral functionality. The chiral C22 carbon atom maintains the S configuration observed in L-phenylalaninol.

The molecular structure of the title compound is shown in Figure 1. As expected, the imidazole core (N1/C7/C8/N2/C24) is essentially planar. The dihedral angles formed by the imidazole ring with the three aryl substituents are 18.52 (8) (C1–C6), 85.56 (7) (C9–C14) and 85.57 (7)° (C25–C30), respectively. In the crystal structure, molecules are linked by O—H···N and C—H···O hydrogen bonds (Table 1) into chains parallel to the a axis.

Related literature top

For the synthesis and properties of chiral ionic liquids, see: Olivier-Bourbigou et al. (2010); Chen et al. (2008); Mao et al. (2010).

Experimental top

To a solution of L-phenylalaninol (15.1 g, 0.1 mol) in MeOH (50 ml) in an ice-bath, a molar equivalent of dibenzoyl, 4-methylbenzaldehyde and ammonium acetate were added. The mixture was kept stirring in the ice-bath until all the solids were dissolved before being heated to 60°C for 5 h. The mixture was then cooled to room temperature and the solvent was removed by evaporation. The residue was washed with H2O to obtain the crude product. Crystallization of the crude product in EtOH afforded colourless crystals of the title compound.

Refinement top

The hydroxyl H atom was located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
2-(4,5-Diphenyl-2-p-tolyl-1H-imidazol-1-yl)-3-phenylpropan-1-ol top
Crystal data top
C31H28N2OF(000) = 944
Mr = 444.55Dx = 1.172 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ac 2abCell parameters from 3569 reflections
a = 9.3413 (7) Åθ = 3.2–67.0°
b = 13.7402 (11) ŵ = 0.55 mm1
c = 19.6296 (14) ÅT = 291 K
V = 2519.5 (3) Å3Prismatic, colourless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
4441 independent reflections
Radiation source: Enhance (Cu) X-ray Source4007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.2312 pixels mm-1θmax = 66.9°, θmin = 3.9°
ω scansh = 911
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1613
Tmin = 0.866, Tmax = 1.000l = 2123
9302 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1385P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.12 e Å3
4441 reflectionsΔρmin = 0.13 e Å3
313 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0029 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983); 1887 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.1 (3)
Crystal data top
C31H28N2OV = 2519.5 (3) Å3
Mr = 444.55Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.3413 (7) ŵ = 0.55 mm1
b = 13.7402 (11) ÅT = 291 K
c = 19.6296 (14) Å0.25 × 0.20 × 0.20 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
4441 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4007 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 1.000Rint = 0.027
9302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.12 e Å3
S = 1.03Δρmin = 0.13 e Å3
4441 reflectionsAbsolute structure: Flack (1983); 1887 Friedel pairs
313 parametersAbsolute structure parameter: 0.1 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03250 (17)0.28449 (11)0.37156 (10)0.0793 (5)
N10.38409 (17)0.31434 (10)0.52389 (7)0.0523 (3)
N20.32181 (16)0.32519 (10)0.41559 (7)0.0479 (3)
C10.3733 (2)0.45666 (14)0.63052 (9)0.0622 (5)
H1A0.36160.39120.64130.075*
C20.3881 (3)0.52437 (18)0.68230 (11)0.0786 (6)
H20.38550.50400.72750.094*
C30.4063 (4)0.62017 (19)0.66770 (12)0.0932 (8)
H30.41810.66520.70260.112*
C40.4069 (4)0.64981 (17)0.60113 (13)0.1027 (10)
H40.41740.71550.59090.123*
C50.3922 (3)0.58302 (15)0.54886 (11)0.0797 (7)
H50.39330.60430.50390.096*
C60.3757 (2)0.48512 (13)0.56267 (9)0.0547 (4)
C70.3616 (2)0.41103 (12)0.50849 (8)0.0497 (4)
C80.32230 (19)0.41909 (11)0.44146 (8)0.0474 (4)
C90.2811 (2)0.50422 (12)0.39900 (8)0.0518 (4)
C100.1384 (3)0.52990 (14)0.39201 (10)0.0646 (5)
H100.06780.49310.41330.077*
C110.1006 (3)0.61040 (17)0.35333 (12)0.0844 (7)
H110.00460.62730.34890.101*
C120.2033 (4)0.66518 (16)0.32168 (13)0.0948 (9)
H120.17760.71970.29640.114*
C130.3428 (4)0.63930 (17)0.32753 (13)0.0941 (9)
H130.41240.67590.30540.113*
C140.3837 (3)0.55919 (14)0.36594 (11)0.0719 (6)
H140.47990.54250.36940.086*
C150.6439 (3)0.33594 (17)0.33126 (13)0.0782 (6)
H150.65460.29100.36630.094*
C160.7497 (3)0.4045 (2)0.32048 (17)0.0972 (8)
H160.82980.40580.34860.117*
C170.7373 (3)0.4703 (2)0.26865 (16)0.0901 (7)
H170.80900.51600.26110.108*
C180.6186 (3)0.46844 (18)0.22809 (12)0.0836 (7)
H180.60880.51350.19310.100*
C190.5128 (3)0.39962 (16)0.23896 (10)0.0694 (5)
H190.43330.39840.21050.083*
C200.5231 (2)0.33255 (13)0.29131 (9)0.0551 (4)
C210.4054 (2)0.25978 (13)0.30306 (9)0.0559 (4)
H21A0.44490.20370.32650.067*
H21B0.36970.23780.25930.067*
C220.2799 (2)0.29999 (12)0.34487 (8)0.0482 (4)
H220.25160.36110.32300.058*
C230.1490 (2)0.23495 (13)0.34372 (9)0.0562 (4)
H23A0.12760.21610.29720.067*
H23B0.16750.17630.36980.067*
C240.35972 (19)0.26487 (12)0.46788 (8)0.0478 (4)
C250.3693 (2)0.15676 (12)0.46470 (8)0.0505 (4)
C260.2543 (3)0.10109 (16)0.48526 (13)0.0757 (6)
H260.17120.13130.50040.091*
C270.2621 (3)0.00056 (17)0.48343 (15)0.0865 (7)
H270.18330.03580.49730.104*
C280.3829 (3)0.04669 (14)0.46169 (11)0.0725 (6)
C290.4981 (3)0.00908 (15)0.44320 (11)0.0697 (5)
H290.58180.02140.42900.084*
C300.4930 (2)0.10967 (13)0.44520 (11)0.0611 (5)
H300.57350.14570.43330.073*
C310.3906 (5)0.15668 (17)0.45750 (18)0.1156 (12)
H31A0.32580.18470.49000.173*
H31B0.48640.17770.46740.173*
H31C0.36450.17740.41250.173*
H10.008 (3)0.2522 (19)0.4008 (15)0.090 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0651 (9)0.0671 (9)0.1056 (12)0.0056 (7)0.0218 (8)0.0281 (9)
N10.0603 (8)0.0461 (7)0.0505 (7)0.0012 (6)0.0088 (6)0.0028 (6)
N20.0599 (8)0.0403 (6)0.0434 (7)0.0029 (6)0.0022 (6)0.0007 (5)
C10.0732 (12)0.0594 (10)0.0540 (9)0.0054 (10)0.0049 (9)0.0026 (7)
C20.1002 (17)0.0851 (15)0.0506 (10)0.0051 (13)0.0054 (11)0.0118 (10)
C30.135 (2)0.0790 (15)0.0656 (13)0.0143 (16)0.0045 (14)0.0287 (11)
C40.173 (3)0.0568 (12)0.0780 (15)0.0268 (16)0.0106 (17)0.0160 (11)
C50.129 (2)0.0531 (10)0.0574 (10)0.0127 (12)0.0033 (12)0.0049 (8)
C60.0599 (10)0.0525 (9)0.0517 (9)0.0002 (8)0.0003 (8)0.0063 (7)
C70.0563 (9)0.0440 (8)0.0489 (8)0.0007 (7)0.0002 (7)0.0013 (6)
C80.0543 (9)0.0406 (7)0.0472 (8)0.0015 (7)0.0059 (7)0.0005 (6)
C90.0729 (11)0.0409 (8)0.0417 (8)0.0063 (8)0.0082 (7)0.0005 (6)
C100.0804 (13)0.0544 (10)0.0588 (10)0.0156 (10)0.0056 (9)0.0002 (8)
C110.116 (2)0.0647 (12)0.0726 (13)0.0359 (14)0.0086 (13)0.0029 (11)
C120.162 (3)0.0499 (11)0.0730 (14)0.0280 (16)0.0052 (16)0.0124 (10)
C130.147 (3)0.0552 (12)0.0799 (15)0.0041 (15)0.0280 (17)0.0176 (10)
C140.0925 (16)0.0530 (10)0.0701 (12)0.0028 (10)0.0186 (12)0.0086 (9)
C150.0719 (13)0.0700 (12)0.0927 (15)0.0040 (11)0.0099 (12)0.0185 (11)
C160.0627 (14)0.0957 (18)0.133 (2)0.0085 (14)0.0198 (15)0.0150 (17)
C170.0751 (15)0.0857 (16)0.109 (2)0.0166 (13)0.0163 (14)0.0086 (15)
C180.0989 (18)0.0788 (14)0.0731 (13)0.0138 (13)0.0097 (13)0.0166 (11)
C190.0784 (13)0.0721 (12)0.0577 (10)0.0050 (11)0.0024 (10)0.0057 (9)
C200.0588 (10)0.0537 (9)0.0528 (10)0.0077 (8)0.0093 (8)0.0044 (7)
C210.0692 (11)0.0478 (9)0.0507 (9)0.0043 (8)0.0052 (8)0.0058 (7)
C220.0614 (10)0.0412 (7)0.0422 (8)0.0013 (7)0.0021 (7)0.0012 (6)
C230.0647 (11)0.0535 (9)0.0505 (9)0.0047 (8)0.0015 (8)0.0071 (7)
C240.0526 (9)0.0429 (8)0.0479 (8)0.0019 (7)0.0032 (7)0.0025 (6)
C250.0601 (10)0.0430 (8)0.0484 (8)0.0011 (8)0.0097 (8)0.0038 (6)
C260.0677 (13)0.0595 (11)0.0997 (17)0.0002 (10)0.0061 (12)0.0179 (11)
C270.0852 (16)0.0605 (12)0.1136 (19)0.0212 (12)0.0098 (14)0.0231 (12)
C280.1010 (17)0.0450 (9)0.0716 (12)0.0019 (11)0.0277 (12)0.0060 (8)
C290.0806 (14)0.0497 (10)0.0788 (13)0.0136 (10)0.0095 (11)0.0008 (9)
C300.0617 (11)0.0486 (9)0.0731 (11)0.0009 (9)0.0096 (9)0.0038 (8)
C310.167 (3)0.0480 (12)0.131 (3)0.0091 (17)0.024 (2)0.0048 (13)
Geometric parameters (Å, º) top
O1—C231.395 (3)C15—C161.382 (4)
O1—H10.82 (3)C15—C201.375 (3)
N1—C71.379 (2)C16—H160.9300
N1—C241.312 (2)C16—C171.366 (4)
N2—C81.387 (2)C17—H170.9300
N2—C221.483 (2)C17—C181.365 (4)
N2—C241.366 (2)C18—H180.9300
C1—H1A0.9300C18—C191.384 (3)
C1—C21.385 (3)C19—H190.9300
C1—C61.388 (3)C19—C201.383 (3)
C2—H20.9300C20—C211.503 (3)
C2—C31.358 (4)C21—H21A0.9700
C3—H30.9300C21—H21B0.9700
C3—C41.369 (4)C21—C221.534 (2)
C4—H40.9300C22—H220.9800
C4—C51.383 (3)C22—C231.515 (3)
C5—H50.9300C23—H23A0.9700
C5—C61.381 (3)C23—H23B0.9700
C6—C71.478 (2)C24—C251.489 (2)
C7—C81.371 (2)C25—C261.379 (3)
C8—C91.487 (2)C25—C301.379 (3)
C9—C101.386 (3)C26—H260.9300
C9—C141.382 (3)C26—C271.384 (3)
C10—H100.9300C27—H270.9300
C10—C111.387 (3)C27—C281.370 (4)
C11—H110.9300C28—C291.370 (4)
C11—C121.368 (4)C28—C311.515 (3)
C12—H120.9300C29—H290.9300
C12—C131.355 (5)C29—C301.384 (3)
C13—H130.9300C30—H300.9300
C13—C141.388 (3)C31—H31A0.9600
C14—H140.9300C31—H31B0.9600
C15—H150.9300C31—H31C0.9600
C23—O1—H1111.8 (19)C18—C17—H17120.3
C24—N1—C7106.80 (13)C17—C18—H18119.9
C8—N2—C22124.11 (13)C17—C18—C19120.2 (2)
C24—N2—C8106.77 (13)C19—C18—H18119.9
C24—N2—C22129.06 (13)C18—C19—H19119.3
C2—C1—H1A119.6C20—C19—C18121.3 (2)
C2—C1—C6120.89 (19)C20—C19—H19119.3
C6—C1—H1A119.6C15—C20—C19117.2 (2)
C1—C2—H2119.7C15—C20—C21122.33 (18)
C3—C2—C1120.6 (2)C19—C20—C21120.43 (18)
C3—C2—H2119.7C20—C21—H21A108.8
C2—C3—H3120.3C20—C21—H21B108.8
C2—C3—C4119.4 (2)C20—C21—C22113.64 (14)
C4—C3—H3120.3H21A—C21—H21B107.7
C3—C4—H4119.7C22—C21—H21A108.8
C3—C4—C5120.7 (2)C22—C21—H21B108.8
C5—C4—H4119.7N2—C22—C21112.53 (15)
C4—C5—H5119.6N2—C22—H22106.3
C6—C5—C4120.8 (2)N2—C22—C23111.38 (13)
C6—C5—H5119.6C21—C22—H22106.3
C1—C6—C7119.66 (16)C23—C22—C21113.37 (14)
C5—C6—C1117.68 (17)C23—C22—H22106.3
C5—C6—C7122.65 (17)O1—C23—C22109.65 (15)
N1—C7—C6119.49 (14)O1—C23—H23A109.7
C8—C7—N1109.22 (14)O1—C23—H23B109.7
C8—C7—C6131.23 (15)C22—C23—H23A109.7
N2—C8—C9121.73 (14)C22—C23—H23B109.7
C7—C8—N2106.10 (14)H23A—C23—H23B108.2
C7—C8—C9132.14 (15)N1—C24—N2111.12 (14)
C10—C9—C8120.32 (17)N1—C24—C25122.76 (14)
C14—C9—C8120.90 (18)N2—C24—C25126.10 (14)
C14—C9—C10118.77 (18)C26—C25—C24119.62 (18)
C9—C10—H10119.9C30—C25—C24122.01 (17)
C9—C10—C11120.1 (2)C30—C25—C26118.28 (17)
C11—C10—H10119.9C25—C26—H26119.8
C10—C11—H11119.7C25—C26—C27120.4 (2)
C12—C11—C10120.6 (3)C27—C26—H26119.8
C12—C11—H11119.7C26—C27—H27119.2
C11—C12—H12120.3C28—C27—C26121.6 (2)
C13—C12—C11119.4 (2)C28—C27—H27119.2
C13—C12—H12120.3C27—C28—C29117.69 (18)
C12—C13—H13119.4C27—C28—C31121.9 (3)
C12—C13—C14121.3 (3)C29—C28—C31120.4 (3)
C14—C13—H13119.4C28—C29—H29119.2
C9—C14—C13119.8 (3)C28—C29—C30121.6 (2)
C9—C14—H14120.1C30—C29—H29119.2
C13—C14—H14120.1C25—C30—C29120.4 (2)
C16—C15—H15119.2C25—C30—H30119.8
C20—C15—H15119.2C29—C30—H30119.8
C20—C15—C16121.5 (2)C28—C31—H31A109.5
C15—C16—H16119.9C28—C31—H31B109.5
C17—C16—C15120.3 (2)C28—C31—H31C109.5
C17—C16—H16119.9H31A—C31—H31B109.5
C16—C17—H17120.3H31A—C31—H31C109.5
C18—C17—C16119.4 (2)H31B—C31—H31C109.5
N1—C7—C8—N20.31 (19)C11—C12—C13—C141.1 (4)
N1—C7—C8—C9177.69 (18)C12—C13—C14—C90.1 (4)
N1—C24—C25—C2682.9 (2)C14—C9—C10—C111.1 (3)
N1—C24—C25—C3093.5 (2)C15—C16—C17—C180.7 (5)
N2—C8—C9—C1084.7 (2)C15—C20—C21—C2297.1 (2)
N2—C8—C9—C1495.4 (2)C16—C15—C20—C191.1 (4)
N2—C22—C23—O163.07 (19)C16—C15—C20—C21178.8 (2)
N2—C24—C25—C2695.2 (2)C16—C17—C18—C190.8 (4)
N2—C24—C25—C3088.4 (2)C17—C18—C19—C201.1 (4)
C1—C2—C3—C41.4 (5)C18—C19—C20—C151.2 (3)
C1—C6—C7—N117.1 (3)C18—C19—C20—C21178.7 (2)
C1—C6—C7—C8159.8 (2)C19—C20—C21—C2282.8 (2)
C2—C1—C6—C50.5 (3)C20—C15—C16—C170.9 (5)
C2—C1—C6—C7179.2 (2)C20—C21—C22—N264.97 (19)
C2—C3—C4—C51.3 (6)C20—C21—C22—C23167.51 (15)
C3—C4—C5—C60.3 (5)C21—C22—C23—O1168.81 (14)
C4—C5—C6—C10.5 (4)C22—N2—C8—C7177.67 (16)
C4—C5—C6—C7179.1 (3)C22—N2—C8—C90.6 (3)
C5—C6—C7—N1162.6 (2)C22—N2—C24—N1177.41 (16)
C5—C6—C7—C820.5 (3)C22—N2—C24—C250.9 (3)
C6—C1—C2—C30.5 (4)C24—N1—C7—C6177.73 (16)
C6—C7—C8—N2177.50 (18)C24—N1—C7—C80.2 (2)
C6—C7—C8—C90.5 (3)C24—N2—C8—C70.34 (19)
C7—N1—C24—N20.1 (2)C24—N2—C8—C9177.92 (16)
C7—N1—C24—C25178.29 (17)C24—N2—C22—C2169.1 (2)
C7—C8—C9—C1093.1 (3)C24—N2—C22—C2359.5 (2)
C7—C8—C9—C1486.8 (2)C24—C25—C26—C27179.2 (2)
C8—N2—C22—C21114.21 (17)C24—C25—C30—C29179.66 (18)
C8—N2—C22—C23117.21 (17)C25—C26—C27—C280.3 (4)
C8—N2—C24—N10.3 (2)C26—C25—C30—C293.2 (3)
C8—N2—C24—C25178.03 (17)C26—C27—C28—C291.6 (4)
C8—C9—C10—C11178.86 (17)C26—C27—C28—C31178.1 (3)
C8—C9—C14—C13178.9 (2)C27—C28—C29—C301.0 (3)
C9—C10—C11—C120.1 (3)C28—C29—C30—C251.4 (3)
C10—C9—C14—C131.0 (3)C30—C25—C26—C272.7 (3)
C10—C11—C12—C131.0 (4)C31—C28—C29—C30178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.82 (3)2.01 (3)2.825 (2)174 (3)
C16—H16···O1ii0.932.563.272 (3)133
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC31H28N2O
Mr444.55
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)9.3413 (7), 13.7402 (11), 19.6296 (14)
V3)2519.5 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.55
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.866, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9302, 4441, 4007
Rint0.027
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.03
No. of reflections4441
No. of parameters313
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.13
Absolute structureFlack (1983); 1887 Friedel pairs
Absolute structure parameter0.1 (3)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.82 (3)2.01 (3)2.825 (2)174 (3)
C16—H16···O1ii0.932.563.272 (3)133
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Natural Science Foundation of P. R. China (Nos. 20902017 and 21172055).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationChen, X., Li, X., Hu, A. & Wang, F. (2008). Tetrahedron Asymmetry, 19, 1–14.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2425.  Web of Science CrossRef CAS Google Scholar
First citationOlivier-Bourbigou, H., Magna, L. & Morvan, D. (2010). Appl. Catal. A, 373, 1–56.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds