metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-cyano-1-methyl­pyridinium) bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato-κ2S,S′)cuprate(II)

aFirst Hospital Affiliated to Jilin University, Changchun 130021, People's Republic of China, and bXiangya Hospital, Central South University, Changsha 410008, People's Republic of China
*Correspondence e-mail: fuyaowen12@126.com

(Received 11 December 2011; accepted 12 January 2012; online 18 January 2012)

The title ion-pair compound, (C7H7N2)2[Cu(C4N2S2)2], was obtained by the direct reaction of CuCl2·2H2O, disodium maleonitrile­dithiol­ate (Na2mnt) and 4-cyano-1-methyl­pyridinium iodide. The anion and one pyridinium cation lie entirely on a mirror plane, whereas for the other cation, a crystallographic mirror plane runs through the N and para-C atoms of the pyridine ring, the methyl C atom, and the cyano group. In the crystal, ions are linked into a three-dimensional network by C—H⋯N hydrogen bonds.

Related literature

For details of other square-planar M(dithiol­ene)2 complexes, see: Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]); Nishijo et al. (2003[Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2003). Synth. Met. 133-134, 539-542.]); Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Coomber et al. (1996[Coomber, A. T., Beljonne, D., Friend, R. H. J., Bredas, L., Charlton, A., Robertson, N., Underhill, A. E., Kurmoo, M. & Day, P. (1996). Nature (London), 380, 144-146.]); Duan et al. (2010[Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509-1522.]). For a study on CN⋯π inter­actions, see: Tian et al. (2007[Tian, Z. F., Ren, X. M., Li, Y. Z., Song, Y. & Meng, Q. J. (2007). Inorg. Chem. 46, 8102-8104.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H7N2)2[Cu(C4N2S2)2]

  • Mr = 582.19

  • Monoclinic, P 21 /m

  • a = 12.063 (2) Å

  • b = 6.9282 (14) Å

  • c = 15.118 (3) Å

  • β = 91.530 (3)°

  • V = 1263.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.784, Tmax = 0.863

  • 6296 measured reflections

  • 2418 independent reflections

  • 1717 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.00

  • 2418 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N8i 0.93 2.60 3.533 (6) 179
C2—H2A⋯N7i 0.93 2.44 3.309 (6) 156
C5—H5A⋯N4ii 0.93 2.36 3.247 (6) 159
C8—H8A⋯N2iii 0.93 2.48 3.196 (5) 134
C9—H9A⋯N5iv 0.93 2.51 3.297 (4) 143
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) x-1, y-1, z; (iv) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past few years, 1,2-dithiolene metal complexes have been important molecular materials with interesting physical properties, such as electrical conductivity, superconductivity, magnetic and non-linear optic properties (Robertson & Cronin, 2002; Coomber et al., 1996; Robin & Fromm, 2006; Nishijo et al., 2003; Duan et al., 2010). Maleonitriledithiolate (mnt2-) transition metal complexes are a series of bis-1,2-dithiolene complexes showing such properties. Herein, we report the synthesis and crystal structure of a new Cu(mnt)22- salt containing the 4-cyano-1-methylpyridinium (MeCyPy)+ cation.

The asymmetric unit of the title compound (Fig. 1) contains (MeCyPy)+ cations and Cu(mnt)22- anions in the molar ratio 2:1. The anion and one cation (N1/N2(C1–C7) lie entirely on a mirror plane, whereas the other cation (N3/N4/C8–C12) has crystallographically imposed mirror symmetry, the mirror plane running through the N and para-C atoms of the pyridine ring, the methyl C atom, and the cyano group. In the crystal structure, relatively short CN···π contacts along the a axis [N7···Cg1 = 3.399 (3) Å; Cg1 is the centroid of the pyridine ring containing atoms N3, C8–C10] (Tian et al., 2007) and longer S···π contacts along b axis [S1···Cg2i = 3.789 (7) Å; Cg2 is the centroid of the N1/C1–C5 ring; symmetry code: (i) x, -1+y, z] are observed. The crystal packing is stabilized by C—H···N hydrogen bonds (Table 1) linking cations and anions into a three-dimensional network.

Related literature top

For details of other square-planar M(dithiolene)2 complexes, see: Robin & Fromm (2006); Nishijo et al. (2003); Robertson & Cronin (2002); Coomber et al. (1996); Duan et al. (2010). For a study on CN···π interactions, see: Tian et al. (2007).

Experimental top

The title compound was prepared by the direct reaction of CuCl2.2H2O (1 mmol), disodium maleonitriledithiolate (2 mmol) and 4-cyano-1-methylpyridinium iodide (2 mmol) in an ethanol/H2O (1:1 v/v) solution. After filtration, the crude product was dissolved in CH3CN. Red-brown block-like single crystals were obtained after about two weeks on slow evaporation of the solvents at room temperature.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The H atoms bound to the C12 methyl carbon atom are disordered over two sites about a mirror plane with site occupancies of 0.5.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids [symmetry code: (A) x, 0.5-y, z].
Bis(4-cyano-1-methylpyridinium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S,S')cuprate(II) top
Crystal data top
(C7H7N2)2[Cu(C4N2S2)2]F(000) = 590
Mr = 582.19Dx = 1.531 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 2205 reflections
a = 12.063 (2) Åθ = 2.7–26.5°
b = 6.9282 (14) ŵ = 1.22 mm1
c = 15.118 (3) ÅT = 291 K
β = 91.530 (3)°Block, brown-red
V = 1263.0 (4) Å30.20 × 0.18 × 0.12 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2418 independent reflections
Radiation source: sealed tube1717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1413
Tmin = 0.784, Tmax = 0.863k = 87
6296 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0386P)2]
where P = (Fo2 + 2Fc2)/3
2418 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
(C7H7N2)2[Cu(C4N2S2)2]V = 1263.0 (4) Å3
Mr = 582.19Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.063 (2) ŵ = 1.22 mm1
b = 6.9282 (14) ÅT = 291 K
c = 15.118 (3) Å0.20 × 0.18 × 0.12 mm
β = 91.530 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2418 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1717 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.863Rint = 0.090
6296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
2418 reflectionsΔρmin = 0.50 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6179 (4)0.75000.2599 (3)0.0729 (13)
H1A0.55190.75000.29030.087*
C20.7158 (4)0.75000.3051 (3)0.0713 (12)
H2A0.71730.75000.36670.086*
C30.8129 (3)0.75000.2605 (2)0.0607 (11)
C40.8091 (3)0.75000.1692 (2)0.0617 (11)
H4A0.87410.75000.13740.074*
C50.7088 (4)0.75000.1267 (2)0.0664 (12)
H5A0.70510.75000.06520.080*
C60.9162 (4)0.75000.3084 (3)0.0741 (13)
C70.5079 (4)0.75000.1235 (3)0.1021 (17)
H7A0.44950.75000.16530.153*
H7B0.50190.86310.08700.153*
C80.1754 (3)0.0879 (5)0.3350 (2)0.0932 (11)
H8A0.15630.02730.36230.112*
C90.2320 (3)0.0829 (5)0.2571 (2)0.0982 (12)
H9A0.25100.03440.23170.118*
C100.2595 (3)0.25000.2183 (2)0.0680 (12)
C110.3235 (4)0.25000.1392 (3)0.1017 (19)
C120.0896 (4)0.25000.4554 (3)0.0953 (17)
H12A0.07520.38060.47300.143*0.50
H12B0.13490.18770.50010.143*0.50
H12C0.02080.18170.44820.143*0.50
C130.8020 (3)0.25000.0685 (2)0.0554 (10)
C140.7986 (3)0.25000.0259 (3)0.0646 (11)
C150.8992 (3)0.25000.1138 (2)0.0552 (10)
C161.0025 (4)0.25000.0683 (2)0.0690 (12)
C170.5487 (3)0.25000.4089 (2)0.0583 (10)
C180.4441 (3)0.25000.4523 (2)0.0638 (11)
C190.6436 (3)0.25000.4574 (2)0.0612 (11)
C200.6390 (3)0.25000.5519 (3)0.0728 (13)
Cu10.72603 (3)0.25000.26339 (3)0.0546 (2)
N10.6152 (3)0.75000.1718 (2)0.0664 (9)
N20.9963 (4)0.75000.3493 (3)0.0960 (13)
N30.1483 (2)0.25000.3706 (2)0.0610 (9)
N40.3757 (4)0.25000.0790 (3)0.139 (2)
N50.7914 (4)0.25000.1020 (2)0.0927 (13)
N61.0837 (3)0.25000.0328 (2)0.0997 (14)
N70.3600 (3)0.25000.4858 (2)0.0807 (12)
N80.6352 (3)0.25000.6273 (2)0.0951 (13)
S10.67434 (8)0.25000.11804 (6)0.0613 (3)
S20.90748 (8)0.25000.22849 (6)0.0623 (3)
S30.54354 (8)0.25000.29465 (6)0.0699 (4)
S40.77358 (8)0.25000.41093 (6)0.0713 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (3)0.102 (4)0.057 (3)0.0000.017 (2)0.000
C20.067 (3)0.105 (4)0.042 (2)0.0000.011 (2)0.000
C30.054 (2)0.083 (3)0.046 (2)0.0000.0019 (18)0.000
C40.053 (2)0.085 (3)0.048 (2)0.0000.0102 (18)0.000
C50.065 (3)0.092 (3)0.042 (2)0.0000.004 (2)0.000
C60.067 (3)0.105 (4)0.051 (3)0.0000.006 (2)0.000
C70.059 (3)0.144 (5)0.102 (4)0.0000.019 (3)0.000
C80.098 (3)0.080 (3)0.102 (3)0.019 (2)0.028 (2)0.003 (2)
C90.118 (3)0.089 (3)0.089 (3)0.011 (2)0.028 (2)0.029 (2)
C100.044 (2)0.116 (4)0.044 (2)0.0000.0071 (18)0.000
C110.058 (3)0.191 (6)0.056 (3)0.0000.015 (2)0.000
C120.057 (3)0.163 (5)0.066 (3)0.0000.015 (2)0.000
C130.051 (2)0.076 (3)0.039 (2)0.0000.0050 (17)0.000
C140.059 (3)0.088 (3)0.046 (2)0.0000.001 (2)0.000
C150.045 (2)0.081 (3)0.040 (2)0.0000.0070 (17)0.000
C160.048 (2)0.116 (4)0.043 (2)0.0000.0027 (19)0.000
C170.041 (2)0.091 (3)0.043 (2)0.0000.0052 (17)0.000
C180.049 (2)0.104 (3)0.038 (2)0.0000.0008 (18)0.000
C190.047 (2)0.098 (3)0.039 (2)0.0000.0052 (17)0.000
C200.044 (2)0.122 (4)0.052 (3)0.0000.0014 (19)0.000
Cu10.0387 (3)0.0830 (4)0.0423 (3)0.0000.0045 (2)0.000
N10.055 (2)0.085 (3)0.059 (2)0.0000.0019 (17)0.000
N20.075 (3)0.139 (4)0.074 (3)0.0000.010 (2)0.000
N30.0400 (18)0.087 (3)0.056 (2)0.0000.0011 (15)0.000
N40.064 (3)0.299 (7)0.053 (2)0.0000.006 (2)0.000
N50.112 (3)0.119 (3)0.047 (2)0.0000.004 (2)0.000
N60.061 (3)0.177 (4)0.062 (2)0.0000.022 (2)0.000
N70.052 (2)0.139 (4)0.052 (2)0.0000.0095 (17)0.000
N80.076 (3)0.165 (4)0.044 (2)0.0000.0012 (19)0.000
S10.0427 (6)0.0950 (8)0.0461 (5)0.0000.0003 (4)0.000
S20.0401 (5)0.1060 (8)0.0409 (5)0.0000.0018 (4)0.000
S30.0391 (5)0.1299 (10)0.0408 (5)0.0000.0024 (4)0.000
S40.0391 (6)0.1282 (10)0.0465 (6)0.0000.0005 (4)0.000
Geometric parameters (Å, º) top
C1—N11.331 (5)C12—N31.481 (5)
C1—C21.350 (6)C12—H12A0.9600
C1—H1A0.9300C12—H12B0.9600
C2—C31.367 (6)C12—H12C0.9600
C2—H2A0.9300C13—C151.342 (5)
C3—C41.380 (5)C13—C141.428 (5)
C3—C61.424 (6)C13—S11.729 (4)
C4—C51.354 (6)C14—N51.151 (5)
C4—H4A0.9300C15—C161.440 (5)
C5—N11.334 (5)C15—S21.734 (3)
C5—H5A0.9300C16—N61.129 (5)
C6—N21.134 (6)C17—C191.343 (5)
C7—N11.470 (5)C17—C181.437 (5)
C7—H7A0.9589C17—S31.727 (4)
C7—H7B0.9600C18—N71.146 (5)
C8—N31.292 (4)C19—C201.431 (5)
C8—C91.378 (4)C19—S41.735 (4)
C8—H8A0.9300C20—N81.142 (4)
C9—C101.343 (4)Cu1—S32.2638 (11)
C9—H9A0.9300Cu1—S22.2652 (11)
C10—C9i1.343 (4)Cu1—S12.2679 (11)
C10—C111.441 (6)Cu1—S42.2883 (11)
C11—N41.120 (6)N3—C8i1.292 (4)
N1—C1—C2120.3 (4)H12B—C12—H12C109.5
N1—C1—H1A119.9C15—C13—C14120.7 (3)
C2—C1—H1A119.9C15—C13—S1123.7 (3)
C1—C2—C3120.0 (4)C14—C13—S1115.5 (3)
C1—C2—H2A120.0N5—C14—C13177.3 (5)
C3—C2—H2A120.0C13—C15—C16120.8 (3)
C2—C3—C4119.2 (4)C13—C15—S2122.4 (3)
C2—C3—C6119.9 (4)C16—C15—S2116.8 (3)
C4—C3—C6120.9 (3)N6—C16—C15179.8 (5)
C5—C4—C3118.6 (3)C19—C17—C18119.8 (3)
C5—C4—H4A120.7C19—C17—S3123.6 (3)
C3—C4—H4A120.7C18—C17—S3116.6 (3)
N1—C5—C4121.0 (3)N7—C18—C17179.1 (4)
N1—C5—H5A119.5C17—C19—C20119.3 (3)
C4—C5—H5A119.5C17—C19—S4123.1 (3)
N2—C6—C3177.4 (5)C20—C19—S4117.6 (3)
N1—C7—H7A109.0N8—C20—C19179.9 (4)
N1—C7—H7B109.7S3—Cu1—S2178.59 (4)
H7A—C7—H7B109.5S3—Cu1—S187.63 (4)
N3—C8—C9121.0 (3)S2—Cu1—S190.96 (4)
N3—C8—H8A119.5S3—Cu1—S490.93 (4)
C9—C8—H8A119.5S2—Cu1—S490.48 (4)
C10—C9—C8119.0 (3)S1—Cu1—S4178.56 (4)
C10—C9—H9A120.5C1—N1—C5120.9 (4)
C8—C9—H9A120.5C1—N1—C7119.6 (4)
C9—C10—C9i119.1 (4)C5—N1—C7119.5 (4)
C9—C10—C11120.4 (2)C8i—N3—C8120.9 (4)
C9i—C10—C11120.4 (2)C8i—N3—C12119.5 (2)
N4—C11—C10178.2 (5)C8—N3—C12119.5 (2)
N3—C12—H12A109.5C13—S1—Cu1101.21 (13)
N3—C12—H12B109.5C15—S2—Cu1101.68 (13)
H12A—C12—H12B109.5C17—S3—Cu1101.52 (13)
N3—C12—H12C109.5C19—S4—Cu1100.90 (13)
H12A—C12—H12C109.5
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N8ii0.932.603.533 (6)179
C2—H2A···N7ii0.932.443.309 (6)156
C5—H5A···N4iii0.932.363.247 (6)159
C8—H8A···N2iv0.932.483.196 (5)134
C9—H9A···N5v0.932.513.297 (4)143
Symmetry codes: (ii) x+1, y+1/2, z+1; (iii) x+1, y+1/2, z; (iv) x1, y1, z; (v) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formula(C7H7N2)2[Cu(C4N2S2)2]
Mr582.19
Crystal system, space groupMonoclinic, P21/m
Temperature (K)291
a, b, c (Å)12.063 (2), 6.9282 (14), 15.118 (3)
β (°) 91.530 (3)
V3)1263.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.784, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
6296, 2418, 1717
Rint0.090
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.00
No. of reflections2418
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.50

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N8i0.932.603.533 (6)179
C2—H2A···N7i0.932.443.309 (6)156
C5—H5A···N4ii0.932.363.247 (6)159
C8—H8A···N2iii0.932.483.196 (5)134
C9—H9A···N5iv0.932.513.297 (4)143
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+1/2, z; (iii) x1, y1, z; (iv) x+1, y1/2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China for Young Scholars (grant No. 81102045/H1625).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoomber, A. T., Beljonne, D., Friend, R. H. J., Bredas, L., Charlton, A., Robertson, N., Underhill, A. E., Kurmoo, M. & Day, P. (1996). Nature (London), 380, 144–146.  CrossRef CAS Web of Science Google Scholar
First citationDuan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522.  Web of Science CrossRef CAS Google Scholar
First citationNishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2003). Synth. Met. 133–134, 539–542.  Web of Science CrossRef CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z. F., Ren, X. M., Li, Y. Z., Song, Y. & Meng, Q. J. (2007). Inorg. Chem. 46, 8102–8104.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds