metal-organic compounds
Bis(4-cyano-1-methylpyridinium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S,S′)cuprate(II)
aFirst Hospital Affiliated to Jilin University, Changchun 130021, People's Republic of China, and bXiangya Hospital, Central South University, Changsha 410008, People's Republic of China
*Correspondence e-mail: fuyaowen12@126.com
The title ion-pair compound, (C7H7N2)2[Cu(C4N2S2)2], was obtained by the direct reaction of CuCl2·2H2O, disodium maleonitriledithiolate (Na2mnt) and 4-cyano-1-methylpyridinium iodide. The anion and one pyridinium cation lie entirely on a mirror plane, whereas for the other cation, a crystallographic mirror plane runs through the N and para-C atoms of the pyridine ring, the methyl C atom, and the cyano group. In the crystal, ions are linked into a three-dimensional network by C—H⋯N hydrogen bonds.
Related literature
For details of other square-planar M(dithiolene)2 complexes, see: Robin & Fromm (2006); Nishijo et al. (2003); Robertson & Cronin (2002); Coomber et al. (1996); Duan et al. (2010). For a study on CN⋯π interactions, see: Tian et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812001377/rz2689sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812001377/rz2689Isup2.hkl
The title compound was prepared by the direct reaction of CuCl2.2H2O (1 mmol), disodium maleonitriledithiolate (2 mmol) and 4-cyano-1-methylpyridinium iodide (2 mmol) in an ethanol/H2O (1:1 v/v) solution. After filtration, the crude product was dissolved in CH3CN. Red-brown block-like single crystals were obtained after about two weeks on slow evaporation of the solvents at room temperature.
All H atoms were fixed geometrically and treated as riding with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The H atoms bound to the C12 methyl carbon atom are disordered over two sites about a mirror plane with site occupancies of 0.5.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids [symmetry code: (A) x, 0.5-y, z]. |
(C7H7N2)2[Cu(C4N2S2)2] | F(000) = 590 |
Mr = 582.19 | Dx = 1.531 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 2205 reflections |
a = 12.063 (2) Å | θ = 2.7–26.5° |
b = 6.9282 (14) Å | µ = 1.22 mm−1 |
c = 15.118 (3) Å | T = 291 K |
β = 91.530 (3)° | Block, brown-red |
V = 1263.0 (4) Å3 | 0.20 × 0.18 × 0.12 mm |
Z = 2 |
Bruker SMART APEX CCD area-detector diffractometer | 2418 independent reflections |
Radiation source: sealed tube | 1717 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.090 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −14→13 |
Tmin = 0.784, Tmax = 0.863 | k = −8→7 |
6296 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0386P)2] where P = (Fo2 + 2Fc2)/3 |
2418 reflections | (Δ/σ)max < 0.001 |
205 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
(C7H7N2)2[Cu(C4N2S2)2] | V = 1263.0 (4) Å3 |
Mr = 582.19 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 12.063 (2) Å | µ = 1.22 mm−1 |
b = 6.9282 (14) Å | T = 291 K |
c = 15.118 (3) Å | 0.20 × 0.18 × 0.12 mm |
β = 91.530 (3)° |
Bruker SMART APEX CCD area-detector diffractometer | 2418 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1717 reflections with I > 2σ(I) |
Tmin = 0.784, Tmax = 0.863 | Rint = 0.090 |
6296 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.32 e Å−3 |
2418 reflections | Δρmin = −0.50 e Å−3 |
205 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.6179 (4) | 0.7500 | 0.2599 (3) | 0.0729 (13) | |
H1A | 0.5519 | 0.7500 | 0.2903 | 0.087* | |
C2 | 0.7158 (4) | 0.7500 | 0.3051 (3) | 0.0713 (12) | |
H2A | 0.7173 | 0.7500 | 0.3667 | 0.086* | |
C3 | 0.8129 (3) | 0.7500 | 0.2605 (2) | 0.0607 (11) | |
C4 | 0.8091 (3) | 0.7500 | 0.1692 (2) | 0.0617 (11) | |
H4A | 0.8741 | 0.7500 | 0.1374 | 0.074* | |
C5 | 0.7088 (4) | 0.7500 | 0.1267 (2) | 0.0664 (12) | |
H5A | 0.7051 | 0.7500 | 0.0652 | 0.080* | |
C6 | 0.9162 (4) | 0.7500 | 0.3084 (3) | 0.0741 (13) | |
C7 | 0.5079 (4) | 0.7500 | 0.1235 (3) | 0.1021 (17) | |
H7A | 0.4495 | 0.7500 | 0.1653 | 0.153* | |
H7B | 0.5019 | 0.8631 | 0.0870 | 0.153* | |
C8 | 0.1754 (3) | 0.0879 (5) | 0.3350 (2) | 0.0932 (11) | |
H8A | 0.1563 | −0.0273 | 0.3623 | 0.112* | |
C9 | 0.2320 (3) | 0.0829 (5) | 0.2571 (2) | 0.0982 (12) | |
H9A | 0.2510 | −0.0344 | 0.2317 | 0.118* | |
C10 | 0.2595 (3) | 0.2500 | 0.2183 (2) | 0.0680 (12) | |
C11 | 0.3235 (4) | 0.2500 | 0.1392 (3) | 0.1017 (19) | |
C12 | 0.0896 (4) | 0.2500 | 0.4554 (3) | 0.0953 (17) | |
H12A | 0.0752 | 0.3806 | 0.4730 | 0.143* | 0.50 |
H12B | 0.1349 | 0.1877 | 0.5001 | 0.143* | 0.50 |
H12C | 0.0208 | 0.1817 | 0.4482 | 0.143* | 0.50 |
C13 | 0.8020 (3) | 0.2500 | 0.0685 (2) | 0.0554 (10) | |
C14 | 0.7986 (3) | 0.2500 | −0.0259 (3) | 0.0646 (11) | |
C15 | 0.8992 (3) | 0.2500 | 0.1138 (2) | 0.0552 (10) | |
C16 | 1.0025 (4) | 0.2500 | 0.0683 (2) | 0.0690 (12) | |
C17 | 0.5487 (3) | 0.2500 | 0.4089 (2) | 0.0583 (10) | |
C18 | 0.4441 (3) | 0.2500 | 0.4523 (2) | 0.0638 (11) | |
C19 | 0.6436 (3) | 0.2500 | 0.4574 (2) | 0.0612 (11) | |
C20 | 0.6390 (3) | 0.2500 | 0.5519 (3) | 0.0728 (13) | |
Cu1 | 0.72603 (3) | 0.2500 | 0.26339 (3) | 0.0546 (2) | |
N1 | 0.6152 (3) | 0.7500 | 0.1718 (2) | 0.0664 (9) | |
N2 | 0.9963 (4) | 0.7500 | 0.3493 (3) | 0.0960 (13) | |
N3 | 0.1483 (2) | 0.2500 | 0.3706 (2) | 0.0610 (9) | |
N4 | 0.3757 (4) | 0.2500 | 0.0790 (3) | 0.139 (2) | |
N5 | 0.7914 (4) | 0.2500 | −0.1020 (2) | 0.0927 (13) | |
N6 | 1.0837 (3) | 0.2500 | 0.0328 (2) | 0.0997 (14) | |
N7 | 0.3600 (3) | 0.2500 | 0.4858 (2) | 0.0807 (12) | |
N8 | 0.6352 (3) | 0.2500 | 0.6273 (2) | 0.0951 (13) | |
S1 | 0.67434 (8) | 0.2500 | 0.11804 (6) | 0.0613 (3) | |
S2 | 0.90748 (8) | 0.2500 | 0.22849 (6) | 0.0623 (3) | |
S3 | 0.54354 (8) | 0.2500 | 0.29465 (6) | 0.0699 (4) | |
S4 | 0.77358 (8) | 0.2500 | 0.41093 (6) | 0.0713 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.060 (3) | 0.102 (4) | 0.057 (3) | 0.000 | 0.017 (2) | 0.000 |
C2 | 0.067 (3) | 0.105 (4) | 0.042 (2) | 0.000 | 0.011 (2) | 0.000 |
C3 | 0.054 (2) | 0.083 (3) | 0.046 (2) | 0.000 | 0.0019 (18) | 0.000 |
C4 | 0.053 (2) | 0.085 (3) | 0.048 (2) | 0.000 | 0.0102 (18) | 0.000 |
C5 | 0.065 (3) | 0.092 (3) | 0.042 (2) | 0.000 | 0.004 (2) | 0.000 |
C6 | 0.067 (3) | 0.105 (4) | 0.051 (3) | 0.000 | 0.006 (2) | 0.000 |
C7 | 0.059 (3) | 0.144 (5) | 0.102 (4) | 0.000 | −0.019 (3) | 0.000 |
C8 | 0.098 (3) | 0.080 (3) | 0.102 (3) | −0.019 (2) | 0.028 (2) | 0.003 (2) |
C9 | 0.118 (3) | 0.089 (3) | 0.089 (3) | −0.011 (2) | 0.028 (2) | −0.029 (2) |
C10 | 0.044 (2) | 0.116 (4) | 0.044 (2) | 0.000 | −0.0071 (18) | 0.000 |
C11 | 0.058 (3) | 0.191 (6) | 0.056 (3) | 0.000 | −0.015 (2) | 0.000 |
C12 | 0.057 (3) | 0.163 (5) | 0.066 (3) | 0.000 | 0.015 (2) | 0.000 |
C13 | 0.051 (2) | 0.076 (3) | 0.039 (2) | 0.000 | 0.0050 (17) | 0.000 |
C14 | 0.059 (3) | 0.088 (3) | 0.046 (2) | 0.000 | 0.001 (2) | 0.000 |
C15 | 0.045 (2) | 0.081 (3) | 0.040 (2) | 0.000 | 0.0070 (17) | 0.000 |
C16 | 0.048 (2) | 0.116 (4) | 0.043 (2) | 0.000 | 0.0027 (19) | 0.000 |
C17 | 0.041 (2) | 0.091 (3) | 0.043 (2) | 0.000 | 0.0052 (17) | 0.000 |
C18 | 0.049 (2) | 0.104 (3) | 0.038 (2) | 0.000 | 0.0008 (18) | 0.000 |
C19 | 0.047 (2) | 0.098 (3) | 0.039 (2) | 0.000 | 0.0052 (17) | 0.000 |
C20 | 0.044 (2) | 0.122 (4) | 0.052 (3) | 0.000 | −0.0014 (19) | 0.000 |
Cu1 | 0.0387 (3) | 0.0830 (4) | 0.0423 (3) | 0.000 | 0.0045 (2) | 0.000 |
N1 | 0.055 (2) | 0.085 (3) | 0.059 (2) | 0.000 | 0.0019 (17) | 0.000 |
N2 | 0.075 (3) | 0.139 (4) | 0.074 (3) | 0.000 | −0.010 (2) | 0.000 |
N3 | 0.0400 (18) | 0.087 (3) | 0.056 (2) | 0.000 | −0.0011 (15) | 0.000 |
N4 | 0.064 (3) | 0.299 (7) | 0.053 (2) | 0.000 | −0.006 (2) | 0.000 |
N5 | 0.112 (3) | 0.119 (3) | 0.047 (2) | 0.000 | 0.004 (2) | 0.000 |
N6 | 0.061 (3) | 0.177 (4) | 0.062 (2) | 0.000 | 0.022 (2) | 0.000 |
N7 | 0.052 (2) | 0.139 (4) | 0.052 (2) | 0.000 | 0.0095 (17) | 0.000 |
N8 | 0.076 (3) | 0.165 (4) | 0.044 (2) | 0.000 | 0.0012 (19) | 0.000 |
S1 | 0.0427 (6) | 0.0950 (8) | 0.0461 (5) | 0.000 | 0.0003 (4) | 0.000 |
S2 | 0.0401 (5) | 0.1060 (8) | 0.0409 (5) | 0.000 | 0.0018 (4) | 0.000 |
S3 | 0.0391 (5) | 0.1299 (10) | 0.0408 (5) | 0.000 | 0.0024 (4) | 0.000 |
S4 | 0.0391 (6) | 0.1282 (10) | 0.0465 (6) | 0.000 | 0.0005 (4) | 0.000 |
C1—N1 | 1.331 (5) | C12—N3 | 1.481 (5) |
C1—C2 | 1.350 (6) | C12—H12A | 0.9600 |
C1—H1A | 0.9300 | C12—H12B | 0.9600 |
C2—C3 | 1.367 (6) | C12—H12C | 0.9600 |
C2—H2A | 0.9300 | C13—C15 | 1.342 (5) |
C3—C4 | 1.380 (5) | C13—C14 | 1.428 (5) |
C3—C6 | 1.424 (6) | C13—S1 | 1.729 (4) |
C4—C5 | 1.354 (6) | C14—N5 | 1.151 (5) |
C4—H4A | 0.9300 | C15—C16 | 1.440 (5) |
C5—N1 | 1.334 (5) | C15—S2 | 1.734 (3) |
C5—H5A | 0.9300 | C16—N6 | 1.129 (5) |
C6—N2 | 1.134 (6) | C17—C19 | 1.343 (5) |
C7—N1 | 1.470 (5) | C17—C18 | 1.437 (5) |
C7—H7A | 0.9589 | C17—S3 | 1.727 (4) |
C7—H7B | 0.9600 | C18—N7 | 1.146 (5) |
C8—N3 | 1.292 (4) | C19—C20 | 1.431 (5) |
C8—C9 | 1.378 (4) | C19—S4 | 1.735 (4) |
C8—H8A | 0.9300 | C20—N8 | 1.142 (4) |
C9—C10 | 1.343 (4) | Cu1—S3 | 2.2638 (11) |
C9—H9A | 0.9300 | Cu1—S2 | 2.2652 (11) |
C10—C9i | 1.343 (4) | Cu1—S1 | 2.2679 (11) |
C10—C11 | 1.441 (6) | Cu1—S4 | 2.2883 (11) |
C11—N4 | 1.120 (6) | N3—C8i | 1.292 (4) |
N1—C1—C2 | 120.3 (4) | H12B—C12—H12C | 109.5 |
N1—C1—H1A | 119.9 | C15—C13—C14 | 120.7 (3) |
C2—C1—H1A | 119.9 | C15—C13—S1 | 123.7 (3) |
C1—C2—C3 | 120.0 (4) | C14—C13—S1 | 115.5 (3) |
C1—C2—H2A | 120.0 | N5—C14—C13 | 177.3 (5) |
C3—C2—H2A | 120.0 | C13—C15—C16 | 120.8 (3) |
C2—C3—C4 | 119.2 (4) | C13—C15—S2 | 122.4 (3) |
C2—C3—C6 | 119.9 (4) | C16—C15—S2 | 116.8 (3) |
C4—C3—C6 | 120.9 (3) | N6—C16—C15 | 179.8 (5) |
C5—C4—C3 | 118.6 (3) | C19—C17—C18 | 119.8 (3) |
C5—C4—H4A | 120.7 | C19—C17—S3 | 123.6 (3) |
C3—C4—H4A | 120.7 | C18—C17—S3 | 116.6 (3) |
N1—C5—C4 | 121.0 (3) | N7—C18—C17 | 179.1 (4) |
N1—C5—H5A | 119.5 | C17—C19—C20 | 119.3 (3) |
C4—C5—H5A | 119.5 | C17—C19—S4 | 123.1 (3) |
N2—C6—C3 | 177.4 (5) | C20—C19—S4 | 117.6 (3) |
N1—C7—H7A | 109.0 | N8—C20—C19 | 179.9 (4) |
N1—C7—H7B | 109.7 | S3—Cu1—S2 | 178.59 (4) |
H7A—C7—H7B | 109.5 | S3—Cu1—S1 | 87.63 (4) |
N3—C8—C9 | 121.0 (3) | S2—Cu1—S1 | 90.96 (4) |
N3—C8—H8A | 119.5 | S3—Cu1—S4 | 90.93 (4) |
C9—C8—H8A | 119.5 | S2—Cu1—S4 | 90.48 (4) |
C10—C9—C8 | 119.0 (3) | S1—Cu1—S4 | 178.56 (4) |
C10—C9—H9A | 120.5 | C1—N1—C5 | 120.9 (4) |
C8—C9—H9A | 120.5 | C1—N1—C7 | 119.6 (4) |
C9—C10—C9i | 119.1 (4) | C5—N1—C7 | 119.5 (4) |
C9—C10—C11 | 120.4 (2) | C8i—N3—C8 | 120.9 (4) |
C9i—C10—C11 | 120.4 (2) | C8i—N3—C12 | 119.5 (2) |
N4—C11—C10 | 178.2 (5) | C8—N3—C12 | 119.5 (2) |
N3—C12—H12A | 109.5 | C13—S1—Cu1 | 101.21 (13) |
N3—C12—H12B | 109.5 | C15—S2—Cu1 | 101.68 (13) |
H12A—C12—H12B | 109.5 | C17—S3—Cu1 | 101.52 (13) |
N3—C12—H12C | 109.5 | C19—S4—Cu1 | 100.90 (13) |
H12A—C12—H12C | 109.5 |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···N8ii | 0.93 | 2.60 | 3.533 (6) | 179 |
C2—H2A···N7ii | 0.93 | 2.44 | 3.309 (6) | 156 |
C5—H5A···N4iii | 0.93 | 2.36 | 3.247 (6) | 159 |
C8—H8A···N2iv | 0.93 | 2.48 | 3.196 (5) | 134 |
C9—H9A···N5v | 0.93 | 2.51 | 3.297 (4) | 143 |
Symmetry codes: (ii) −x+1, y+1/2, −z+1; (iii) −x+1, y+1/2, −z; (iv) x−1, y−1, z; (v) −x+1, y−1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | (C7H7N2)2[Cu(C4N2S2)2] |
Mr | 582.19 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 291 |
a, b, c (Å) | 12.063 (2), 6.9282 (14), 15.118 (3) |
β (°) | 91.530 (3) |
V (Å3) | 1263.0 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.22 |
Crystal size (mm) | 0.20 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.784, 0.863 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6296, 2418, 1717 |
Rint | 0.090 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.101, 1.00 |
No. of reflections | 2418 |
No. of parameters | 205 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.50 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···N8i | 0.93 | 2.60 | 3.533 (6) | 179 |
C2—H2A···N7i | 0.93 | 2.44 | 3.309 (6) | 156 |
C5—H5A···N4ii | 0.93 | 2.36 | 3.247 (6) | 159 |
C8—H8A···N2iii | 0.93 | 2.48 | 3.196 (5) | 134 |
C9—H9A···N5iv | 0.93 | 2.51 | 3.297 (4) | 143 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y+1/2, −z; (iii) x−1, y−1, z; (iv) −x+1, y−1/2, −z. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China for Young Scholars (grant No. 81102045/H1625).
References
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coomber, A. T., Beljonne, D., Friend, R. H. J., Bredas, L., Charlton, A., Robertson, N., Underhill, A. E., Kurmoo, M. & Day, P. (1996). Nature (London), 380, 144–146. CrossRef CAS Web of Science Google Scholar
Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522. Web of Science CrossRef CAS Google Scholar
Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2003). Synth. Met. 133–134, 539–542. Web of Science CrossRef CAS Google Scholar
Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127. Web of Science CrossRef CAS Google Scholar
Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, Z. F., Ren, X. M., Li, Y. Z., Song, Y. & Meng, Q. J. (2007). Inorg. Chem. 46, 8102–8104. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the past few years, 1,2-dithiolene metal complexes have been important molecular materials with interesting physical properties, such as electrical conductivity, superconductivity, magnetic and non-linear optic properties (Robertson & Cronin, 2002; Coomber et al., 1996; Robin & Fromm, 2006; Nishijo et al., 2003; Duan et al., 2010). Maleonitriledithiolate (mnt2-) transition metal complexes are a series of bis-1,2-dithiolene complexes showing such properties. Herein, we report the synthesis and crystal structure of a new Cu(mnt)22- salt containing the 4-cyano-1-methylpyridinium (MeCyPy)+ cation.
The asymmetric unit of the title compound (Fig. 1) contains (MeCyPy)+ cations and Cu(mnt)22- anions in the molar ratio 2:1. The anion and one cation (N1/N2(C1–C7) lie entirely on a mirror plane, whereas the other cation (N3/N4/C8–C12) has crystallographically imposed mirror symmetry, the mirror plane running through the N and para-C atoms of the pyridine ring, the methyl C atom, and the cyano group. In the crystal structure, relatively short CN···π contacts along the a axis [N7···Cg1 = 3.399 (3) Å; Cg1 is the centroid of the pyridine ring containing atoms N3, C8–C10] (Tian et al., 2007) and longer S···π contacts along b axis [S1···Cg2i = 3.789 (7) Å; Cg2 is the centroid of the N1/C1–C5 ring; symmetry code: (i) x, -1+y, z] are observed. The crystal packing is stabilized by C—H···N hydrogen bonds (Table 1) linking cations and anions into a three-dimensional network.