organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o400-o401

Di­ethyl 2,6-dihy­dr­oxy-4-(3-nitro­phen­yl)-2,6-bis­­(tri­fluoro­meth­yl)piperidine-3,5-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 16 December 2011; accepted 23 December 2011; online 14 January 2012)

In the title compound, C19H20F6N2O8, the eth­oxy and ethyl groups are disordered over two sets of sites, with occupancy ratios of 0.212 (18):0.788 (18) and 0.746 (6):0.254 (6), respectively. The piperidine ring adopts a chair conformation. In the mol­ecule, intra­molecular O—H⋯O hydrogen bonds form two S(6) ring motifs. In the crystal, mol­ecules are linked via O—H⋯O and C—H⋯O hydrogen bonds, forming dimers.

Related literature

For studies on 1,4-dihydro­pyridine and piperidones reported by our group, see: Palakshi Reddy et al. (2011a[Palakshi Reddy, B., Rajesh, K. & Vijayakumar, V. (2011a). J. Chin. Chem. Soc. 58, 384-388.],b[Palakshi Reddy, B., Rajesh, K. & Vijayakumar, V. (2011b). Arab. J. Chem. doi:10.1016/j.arabjc.2011.01.027.],c[Palakshi Reddy, B., Rajesh, K. & Vijayakumar, V. (2011c). Indian J. Heterocycl. Chem. 20, 281-282.]); Rathore et al. (2009[Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375-381.]); Rajesh et al. (2011[Rajesh, K., Palakshi Reddy, B. & Vijayakumar, V. (2011). Ultrason. Sonochem. doi:10.1016/j.ultsonch.2011.10.018.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20F6N2O8

  • Mr = 518.37

  • Monoclinic, C 2/c

  • a = 17.7353 (16) Å

  • b = 15.2025 (14) Å

  • c = 17.3003 (16) Å

  • β = 91.049 (2)°

  • V = 4663.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.21 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.980

  • 19801 measured reflections

  • 5339 independent reflections

  • 3229 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.02

  • 5339 reflections

  • 376 parameters

  • 104 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1O7⋯O6 0.95 (3) 2.06 (3) 2.848 (2) 139 (3)
O8—H1O8⋯O4 0.94 (3) 2.09 (3) 2.839 (2) 136 (2)
O7—H1O7⋯O4i 0.95 (3) 2.28 (3) 2.882 (2) 121 (2)
O8—H1O8⋯O6i 0.94 (3) 2.26 (3) 2.877 (2) 123 (2)
C11—H11A⋯O7i 0.93 2.50 3.272 (2) 141
C11—H11A⋯O8i 0.93 2.44 3.222 (2) 142
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our earlier interest in 1,4-DHP's and piperidones (Palakshi Reddy et al., 2011a, b, c; Rathore et al., 2009; Rajesh et al., 2011), herein we report synthesis and crystal structure of diethyl 4-(3-nitrophenyl)-2,6-bis(trifluoromethyl)-1,4-dihydropyridine-3,5-dicarboxylate.

In the molecular structure (Fig. 1), the ethoxy and ethyl groups are disordered over two sets of sites, with 0.212 (18):0.788 (18) and 0.746 (6):0.254 (6) occupancy ratios, respectively. The piperidine ring (N1/C1–C5) adopts a chair conformation with puckering parameters Q = 0.5933 (18) Å, θ = 166.58 (17)° and ϕ = 2.5 (8)° (Cremer & Pople, 1975). In addition, the mean plane through the piperidine ring and the benzene ring (C6–C10) are approximately perpedicular to each other with a dihedral angle of 89.59 (11)°. Intramolecular O7—H1O7···O6 and O8—H1O8···O4 hydrogen bonds (Table 1) stabilize the molecular structure and form two S(6) ring motifs (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within normal range.

The crystal packing is shown in Fig. 2. The molecules are linked via intermolecular O7—H1O7···O4, O8—H1O8···O6, C11—H11A···O7 and C11—H11A···O8 hydrogen bonds (Table 1) to form dimers.

Related literature top

For studies on 1,4-dihydropyridine and piperidones reported by our group, see: Palakshi Reddy et al. (2011a,b,c); Rathore et al. (2009); Rajesh et al. (2011). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of 3-nitrobenzaldehyde (1 mmol), ethyl 4,4,4-trifluoro-3-oxobutanoate (2 mmol) and ammonium acetate (1 mmol) were mixed along with 10 ml of ethanol and refluxed for about 2 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was cooled to room temperature and allowed to stand for 2 days. The solid product obtained was washed with ether and recrystallized from ethanol to give colourless crystals. M. p.: 395–397 K. Yield: 80%.

Refinement top

The ethoxy and ethyl groups are disordered over two sets of sites, with 0.212 (18):0.788 (18) and 0.746 (6):0.254 (6) occupancy ratios, respectively. Atom H1N1 was located from the difference Fourier map and was fixed at its found location using a riding model with Uiso(H) = 1.5 Ueq(N) [N–H = 0.83 Å]. O-bound H atoms were located in a difference Fourier map and refined freely [O–H = 0.94 (3)–0.95 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. Similarity and rigid bond restraints were used in the final refinement of the disordered groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. All disordered components are shown. Intramolecular hydrogen bonds are shown as dashed lines
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. Dashed lines represent intermolecular hydrogen bonds. Only the major disordered components are shown.
Diethyl 2,6-dihydroxy-4-(3-nitrophenyl)- 2,6-bis(trifluoromethyl)piperidine-3,5-dicarboxylate top
Crystal data top
C19H20F6N2O8F(000) = 2128
Mr = 518.37Dx = 1.477 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4307 reflections
a = 17.7353 (16) Åθ = 2.9–27.1°
b = 15.2025 (14) ŵ = 0.14 mm1
c = 17.3003 (16) ÅT = 296 K
β = 91.049 (2)°Block, colourless
V = 4663.7 (7) Å30.21 × 0.21 × 0.14 mm
Z = 8
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5339 independent reflections
Radiation source: fine-focus sealed tube3229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2322
Tmin = 0.970, Tmax = 0.980k = 1919
19801 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0493P)2 + 2.0652P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5339 reflectionsΔρmax = 0.21 e Å3
376 parametersΔρmin = 0.19 e Å3
104 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00084 (15)
Crystal data top
C19H20F6N2O8V = 4663.7 (7) Å3
Mr = 518.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.7353 (16) ŵ = 0.14 mm1
b = 15.2025 (14) ÅT = 296 K
c = 17.3003 (16) Å0.21 × 0.21 × 0.14 mm
β = 91.049 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5339 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3229 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.028
19801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044104 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
5339 reflectionsΔρmin = 0.19 e Å3
376 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.36213 (8)0.39434 (9)0.23934 (8)0.0892 (5)
F20.44369 (7)0.30673 (10)0.19217 (8)0.0896 (5)
F30.37694 (9)0.26642 (10)0.28772 (7)0.0906 (5)
F40.10958 (8)0.36187 (10)0.23426 (8)0.0903 (5)
F50.04642 (7)0.25576 (11)0.18300 (8)0.0940 (5)
F60.11954 (8)0.23302 (10)0.28156 (7)0.0887 (5)
O10.26864 (19)0.15284 (15)0.12905 (13)0.1564 (11)
O20.27330 (16)0.01793 (15)0.15351 (11)0.1287 (9)
O30.4418 (19)0.106 (3)0.163 (2)0.060 (4)0.212 (18)
C130.4982 (16)0.046 (2)0.1072 (17)0.103 (5)0.212 (18)
H13A0.46820.01370.06960.123*0.212 (18)
H13B0.53170.08510.07950.123*0.212 (18)
C140.5328 (18)0.001 (2)0.145 (2)0.146 (8)0.212 (18)
H14A0.57850.01620.11880.219*0.212 (18)
H14B0.50400.05390.15320.219*0.212 (18)
H14C0.54490.02580.19340.219*0.212 (18)
O3A0.4362 (6)0.0929 (8)0.1583 (7)0.085 (2)0.788 (18)
C13A0.5125 (4)0.0683 (6)0.1339 (4)0.0949 (19)0.788 (18)
H13C0.54830.06870.17700.114*0.788 (18)
H13D0.53050.10670.09340.114*0.788 (18)
C14A0.4973 (5)0.0272 (5)0.1033 (5)0.127 (3)0.788 (18)
H14D0.54340.05180.08460.191*0.788 (18)
H14E0.46040.02530.06210.191*0.788 (18)
H14F0.47890.06300.14460.191*0.788 (18)
O40.41966 (8)0.17953 (11)0.05490 (9)0.0736 (5)
O60.09483 (8)0.14011 (10)0.04494 (8)0.0658 (4)
N10.24395 (8)0.29412 (10)0.19612 (8)0.0462 (4)
H1N10.23800.34810.19470.069*
N20.27191 (15)0.07751 (16)0.10851 (13)0.0909 (7)
O70.16066 (8)0.30333 (9)0.09062 (8)0.0552 (4)
O80.32528 (8)0.32280 (9)0.09458 (8)0.0551 (4)
C10.32495 (9)0.17525 (12)0.15245 (10)0.0447 (4)
H1A0.32280.14660.20310.054*
C20.25852 (9)0.14162 (11)0.10170 (9)0.0413 (4)
H2A0.25590.17800.05490.050*
C30.18628 (10)0.15865 (12)0.14797 (10)0.0455 (4)
H3A0.19240.13090.19880.055*
C40.17731 (10)0.25802 (12)0.16000 (10)0.0471 (4)
C50.31612 (10)0.27463 (12)0.16372 (10)0.0458 (4)
C60.26648 (11)0.04661 (12)0.07686 (10)0.0480 (4)
C70.27170 (15)0.02213 (14)0.12943 (13)0.0756 (7)
H7A0.27120.01010.18210.091*
C80.27757 (19)0.10787 (16)0.10466 (16)0.0975 (10)
H8A0.28090.15320.14060.117*
C90.27849 (17)0.12666 (15)0.02689 (16)0.0892 (8)
H9A0.28260.18440.00970.107*
C100.27314 (13)0.05851 (14)0.02482 (12)0.0649 (6)
C110.26732 (11)0.02741 (13)0.00142 (11)0.0525 (5)
H11A0.26400.07240.03780.063*
C120.39930 (11)0.15197 (14)0.11582 (12)0.0543 (5)
C150.11874 (11)0.11741 (14)0.10727 (11)0.0530 (5)
O50.09056 (9)0.05249 (11)0.14855 (9)0.0774 (5)
C160.0290 (7)0.0034 (8)0.1123 (8)0.088 (2)0.746 (6)
H16A0.02840.05580.13310.105*0.746 (6)
H16B0.03750.00070.05720.105*0.746 (6)
C170.0461 (2)0.0461 (3)0.1254 (3)0.1125 (18)0.746 (6)
H17A0.08560.00840.10620.169*0.746 (6)
H17B0.04830.10140.09870.169*0.746 (6)
H17C0.05240.05580.17980.169*0.746 (6)
C16A0.020 (2)0.006 (3)0.121 (3)0.110 (7)0.254 (6)
H16C0.00450.03350.16400.132*0.254 (6)
H16D0.01600.02830.09080.132*0.254 (6)
C17A0.0617 (8)0.0715 (10)0.0718 (8)0.129 (6)0.254 (6)
H17D0.02610.11190.04900.194*0.254 (6)
H17E0.09730.10330.10350.194*0.254 (6)
H17F0.08790.04110.03170.194*0.254 (6)
C180.37467 (12)0.31059 (15)0.22174 (12)0.0631 (6)
C190.11297 (13)0.27698 (17)0.21556 (12)0.0662 (6)
H1O70.1249 (18)0.270 (2)0.0612 (18)0.131 (12)*
H1O80.3669 (16)0.3016 (18)0.0676 (16)0.107 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1027 (11)0.0731 (9)0.0911 (10)0.0184 (8)0.0143 (8)0.0273 (8)
F20.0528 (8)0.1192 (12)0.0964 (10)0.0196 (7)0.0136 (7)0.0125 (9)
F30.1094 (11)0.1064 (11)0.0548 (7)0.0210 (9)0.0313 (7)0.0068 (7)
F40.0893 (10)0.0979 (11)0.0846 (9)0.0251 (8)0.0223 (7)0.0234 (8)
F50.0472 (7)0.1460 (14)0.0895 (10)0.0020 (8)0.0177 (7)0.0190 (9)
F60.0921 (10)0.1193 (12)0.0559 (8)0.0020 (8)0.0331 (7)0.0065 (8)
O10.278 (4)0.0839 (15)0.1069 (17)0.0169 (18)0.0065 (19)0.0513 (13)
O20.235 (3)0.0943 (16)0.0572 (11)0.0125 (16)0.0104 (14)0.0131 (11)
O30.044 (7)0.079 (8)0.057 (7)0.004 (6)0.012 (6)0.002 (6)
C130.079 (8)0.125 (10)0.103 (10)0.054 (8)0.009 (8)0.031 (9)
C140.138 (15)0.166 (17)0.132 (16)0.080 (13)0.004 (13)0.017 (14)
O3A0.073 (4)0.105 (5)0.078 (3)0.048 (3)0.006 (3)0.011 (3)
C13A0.078 (3)0.126 (5)0.080 (3)0.052 (3)0.007 (2)0.012 (3)
C14A0.142 (6)0.118 (5)0.123 (5)0.060 (4)0.038 (4)0.009 (4)
O40.0514 (9)0.1103 (13)0.0595 (9)0.0113 (8)0.0097 (7)0.0095 (9)
O60.0560 (9)0.0897 (11)0.0515 (8)0.0178 (7)0.0057 (7)0.0130 (8)
N10.0508 (9)0.0483 (9)0.0396 (8)0.0002 (7)0.0042 (7)0.0060 (7)
N20.132 (2)0.0692 (15)0.0711 (14)0.0120 (13)0.0019 (13)0.0252 (12)
O70.0592 (8)0.0592 (9)0.0471 (7)0.0066 (7)0.0009 (6)0.0057 (6)
O80.0608 (9)0.0571 (8)0.0475 (7)0.0029 (7)0.0057 (6)0.0089 (6)
C10.0440 (10)0.0502 (10)0.0399 (9)0.0018 (8)0.0015 (7)0.0017 (8)
C20.0446 (10)0.0419 (10)0.0375 (9)0.0009 (8)0.0014 (7)0.0024 (7)
C30.0443 (10)0.0533 (11)0.0389 (9)0.0062 (8)0.0027 (7)0.0050 (8)
C40.0442 (10)0.0583 (12)0.0391 (9)0.0002 (8)0.0062 (8)0.0001 (8)
C50.0466 (10)0.0516 (11)0.0392 (9)0.0041 (8)0.0007 (8)0.0000 (8)
C60.0562 (11)0.0420 (10)0.0456 (10)0.0019 (8)0.0001 (8)0.0043 (8)
C70.120 (2)0.0524 (13)0.0545 (12)0.0009 (13)0.0073 (12)0.0081 (11)
C80.167 (3)0.0501 (14)0.0751 (17)0.0019 (16)0.0128 (18)0.0135 (13)
C90.136 (2)0.0401 (12)0.0913 (19)0.0018 (14)0.0111 (17)0.0053 (13)
C100.0848 (16)0.0515 (12)0.0583 (12)0.0006 (11)0.0009 (11)0.0111 (10)
C110.0652 (13)0.0460 (11)0.0462 (10)0.0023 (9)0.0020 (9)0.0001 (9)
C120.0459 (11)0.0676 (13)0.0494 (11)0.0056 (9)0.0035 (9)0.0047 (10)
C150.0502 (11)0.0625 (13)0.0466 (11)0.0102 (9)0.0058 (9)0.0052 (9)
O50.0769 (11)0.0878 (11)0.0671 (9)0.0391 (9)0.0074 (8)0.0215 (8)
C160.082 (4)0.095 (4)0.086 (4)0.056 (3)0.011 (3)0.019 (3)
C170.075 (3)0.134 (4)0.129 (4)0.032 (3)0.012 (2)0.007 (3)
C16A0.101 (14)0.120 (13)0.109 (12)0.031 (12)0.013 (10)0.037 (10)
C17A0.136 (11)0.134 (12)0.116 (10)0.064 (9)0.050 (8)0.012 (8)
C180.0622 (14)0.0700 (15)0.0568 (12)0.0126 (11)0.0081 (10)0.0028 (11)
C190.0577 (13)0.0868 (17)0.0546 (12)0.0053 (12)0.0142 (10)0.0058 (12)
Geometric parameters (Å, º) top
F1—C181.329 (3)C1—C21.544 (2)
F2—C181.337 (2)C1—H1A0.9800
F3—C181.324 (2)C2—C61.514 (2)
F4—C191.332 (3)C2—C31.545 (2)
F5—C191.338 (3)C2—H2A0.9800
F6—C191.326 (3)C3—C151.514 (3)
O1—N21.200 (3)C3—C41.534 (3)
O2—N21.195 (3)C3—H3A0.9800
O3—C121.31 (4)C4—C191.533 (3)
O3—C131.67 (5)C5—C181.532 (3)
C13—C141.14 (5)C6—C111.386 (2)
C13—H13A0.9700C6—C71.387 (3)
C13—H13B0.9700C7—C81.377 (3)
C14—H14A0.9600C7—H7A0.9300
C14—H14B0.9600C8—C91.376 (3)
C14—H14C0.9600C8—H8A0.9300
O3A—C121.326 (12)C9—C101.371 (3)
O3A—C13A1.473 (13)C9—H9A0.9300
C13A—C14A1.567 (18)C10—C111.372 (3)
C13A—H13C0.9700C11—H11A0.9300
C13A—H13D0.9700C15—O51.322 (2)
C14A—H14D0.9600O5—C161.454 (11)
C14A—H14E0.9600O5—C16A1.59 (4)
C14A—H14F0.9600C16—C171.503 (14)
O4—C121.196 (2)C16—H16A0.9700
O6—C151.202 (2)C16—H16B0.9700
N1—C41.436 (2)C17—H17A0.9600
N1—C51.438 (2)C17—H17B0.9600
N1—H1N10.8269C17—H17C0.9600
N2—C101.476 (3)C16A—C17A1.51 (4)
O7—C41.410 (2)C16A—H16C0.9700
O7—H1O70.95 (3)C16A—H16D0.9700
O8—C51.414 (2)C17A—H17D0.9600
O8—H1O80.94 (3)C17A—H17E0.9600
C1—C121.515 (3)C17A—H17F0.9600
C1—C51.532 (3)
C12—O3—C13106 (3)C11—C6—C7118.70 (18)
C14—C13—O3110 (3)C11—C6—C2118.75 (16)
C14—C13—H13A111.0C7—C6—C2122.54 (17)
O3—C13—H13A109.7C8—C7—C6120.9 (2)
C14—C13—H13B109.7C8—C7—H7A119.5
O3—C13—H13B109.7C6—C7—H7A119.5
H13A—C13—H13B108.2C9—C8—C7120.2 (2)
C12—O3A—C13A117.4 (10)C9—C8—H8A119.9
O3A—C13A—C14A100.3 (9)C7—C8—H8A119.9
O3A—C13A—H13C111.7C10—C9—C8118.6 (2)
C14A—C13A—H13C111.7C10—C9—H9A120.7
O3A—C13A—H13D111.7C8—C9—H9A120.7
C14A—C13A—H13D111.7C9—C10—C11122.1 (2)
H13C—C13A—H13D109.5C9—C10—N2119.5 (2)
C13A—C14A—H14D109.5C11—C10—N2118.4 (2)
C13A—C14A—H14E109.5C10—C11—C6119.42 (18)
H14D—C14A—H14E109.5C10—C11—H11A120.3
C13A—C14A—H14F109.5C6—C11—H11A120.3
H14D—C14A—H14F109.5O4—C12—O3123.9 (19)
H14E—C14A—H14F109.5O4—C12—O3A124.9 (6)
C4—N1—C5118.89 (14)O4—C12—C1124.46 (18)
C4—N1—H1N1105.3O3—C12—C1111.2 (19)
C5—N1—H1N1107.8O3A—C12—C1110.6 (6)
O2—N2—O1122.1 (2)O6—C15—O5124.63 (18)
O2—N2—C10119.4 (2)O6—C15—C3124.15 (17)
O1—N2—C10118.5 (3)O5—C15—C3111.21 (16)
C4—O7—H1O7109.0 (19)C15—O5—C16116.0 (6)
C5—O8—H1O8110.3 (17)C15—O5—C16A123.6 (17)
C12—C1—C5112.05 (15)O5—C16—C17112.0 (8)
C12—C1—C2110.23 (14)O5—C16—H16A109.2
C5—C1—C2108.68 (14)C17—C16—H16A109.2
C12—C1—H1A108.6O5—C16—H16B109.2
C5—C1—H1A108.6C17—C16—H16B109.2
C2—C1—H1A108.6H16A—C16—H16B107.9
C6—C2—C1113.77 (14)C17A—C16A—O599 (2)
C6—C2—C3112.92 (14)C17A—C16A—H16C112.0
C1—C2—C3106.34 (13)O5—C16A—H16C112.0
C6—C2—H2A107.9C17A—C16A—H16D112.0
C1—C2—H2A107.9O5—C16A—H16D112.0
C3—C2—H2A107.9H16C—C16A—H16D109.7
C15—C3—C4112.82 (16)C16A—C17A—H17D109.5
C15—C3—C2110.25 (15)C16A—C17A—H17E109.5
C4—C3—C2108.93 (14)H17D—C17A—H17E109.5
C15—C3—H3A108.2C16A—C17A—H17F109.5
C4—C3—H3A108.2H17D—C17A—H17F109.5
C2—C3—H3A108.2H17E—C17A—H17F109.5
O7—C4—N1109.97 (15)F3—C18—F1106.91 (18)
O7—C4—C19107.16 (15)F3—C18—F2107.10 (19)
N1—C4—C19105.75 (15)F1—C18—F2106.74 (18)
O7—C4—C3112.72 (14)F3—C18—C5113.17 (17)
N1—C4—C3110.43 (15)F1—C18—C5112.19 (18)
C19—C4—C3110.53 (16)F2—C18—C5110.38 (17)
O8—C5—N1109.87 (15)F6—C19—F4106.42 (18)
O8—C5—C1112.92 (14)F6—C19—F5107.68 (19)
N1—C5—C1110.29 (14)F4—C19—F5107.00 (19)
O8—C5—C18106.40 (15)F6—C19—C4112.99 (18)
N1—C5—C18105.58 (15)F4—C19—C4111.84 (19)
C1—C5—C18111.45 (16)F5—C19—C4110.60 (17)
C12—O3—C13—C14174 (4)C7—C6—C11—C100.1 (3)
C12—O3A—C13A—C14A108.6 (8)C2—C6—C11—C10178.85 (18)
C12—C1—C2—C648.7 (2)C13—O3—C12—O433 (3)
C5—C1—C2—C6171.81 (14)C13—O3—C12—O3A66 (13)
C12—C1—C2—C3173.59 (15)C13—O3—C12—C1153.9 (18)
C5—C1—C2—C363.26 (17)C13A—O3A—C12—O48.6 (12)
C6—C2—C3—C1547.4 (2)C13A—O3A—C12—O380 (14)
C1—C2—C3—C15172.88 (15)C13A—O3A—C12—C1175.2 (8)
C6—C2—C3—C4171.73 (14)C5—C1—C12—O457.3 (3)
C1—C2—C3—C462.81 (17)C2—C1—C12—O463.8 (3)
C5—N1—C4—O774.3 (2)C5—C1—C12—O3115.9 (16)
C5—N1—C4—C19170.28 (16)C2—C1—C12—O3123.0 (16)
C5—N1—C4—C350.7 (2)C5—C1—C12—O3A126.5 (5)
C15—C3—C4—O754.4 (2)C2—C1—C12—O3A112.3 (5)
C2—C3—C4—O768.37 (18)C4—C3—C15—O657.1 (3)
C15—C3—C4—N1177.85 (14)C2—C3—C15—O665.0 (3)
C2—C3—C4—N155.08 (18)C4—C3—C15—O5124.01 (18)
C15—C3—C4—C1965.5 (2)C2—C3—C15—O5113.95 (18)
C2—C3—C4—C19171.74 (15)O6—C15—O5—C163.6 (7)
C4—N1—C5—O873.9 (2)C3—C15—O5—C16175.3 (6)
C4—N1—C5—C151.2 (2)O6—C15—O5—C16A0 (2)
C4—N1—C5—C18171.71 (16)C3—C15—O5—C16A179 (2)
C12—C1—C5—O854.7 (2)C15—O5—C16—C1785.9 (8)
C2—C1—C5—O867.35 (18)C16A—O5—C16—C1774 (16)
C12—C1—C5—N1178.06 (14)C15—O5—C16A—C17A84 (3)
C2—C1—C5—N156.01 (18)C16—O5—C16A—C17A63 (15)
C12—C1—C5—C1865.0 (2)O8—C5—C18—F3174.73 (17)
C2—C1—C5—C18172.94 (15)N1—C5—C18—F368.5 (2)
C1—C2—C6—C11120.73 (19)C1—C5—C18—F351.2 (2)
C3—C2—C6—C11117.93 (19)O8—C5—C18—F164.2 (2)
C1—C2—C6—C760.4 (2)N1—C5—C18—F152.5 (2)
C3—C2—C6—C761.0 (2)C1—C5—C18—F1172.31 (16)
C11—C6—C7—C80.0 (4)O8—C5—C18—F254.7 (2)
C2—C6—C7—C8178.9 (2)N1—C5—C18—F2171.46 (17)
C6—C7—C8—C90.1 (5)C1—C5—C18—F268.8 (2)
C7—C8—C9—C100.3 (5)O7—C4—C19—F6175.74 (18)
C8—C9—C10—C110.3 (4)N1—C4—C19—F667.0 (2)
C8—C9—C10—N2178.3 (3)C3—C4—C19—F652.6 (2)
O2—N2—C10—C9174.1 (3)O7—C4—C19—F464.2 (2)
O1—N2—C10—C96.8 (4)N1—C4—C19—F453.1 (2)
O2—N2—C10—C117.2 (4)C3—C4—C19—F4172.61 (17)
O1—N2—C10—C11171.9 (3)O7—C4—C19—F555.0 (2)
C9—C10—C11—C60.2 (4)N1—C4—C19—F5172.24 (18)
N2—C10—C11—C6178.4 (2)C3—C4—C19—F568.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1O7···O60.95 (3)2.06 (3)2.848 (2)139 (3)
O8—H1O8···O40.94 (3)2.09 (3)2.839 (2)136 (2)
O7—H1O7···O4i0.95 (3)2.28 (3)2.882 (2)121 (2)
O8—H1O8···O6i0.94 (3)2.26 (3)2.877 (2)123 (2)
C11—H11A···O7i0.932.503.272 (2)141
C11—H11A···O8i0.932.443.222 (2)142
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC19H20F6N2O8
Mr518.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)17.7353 (16), 15.2025 (14), 17.3003 (16)
β (°) 91.049 (2)
V3)4663.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.21 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
19801, 5339, 3229
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.02
No. of reflections5339
No. of parameters376
No. of restraints104
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1O7···O60.95 (3)2.06 (3)2.848 (2)139 (3)
O8—H1O8···O40.94 (3)2.09 (3)2.839 (2)136 (2)
O7—H1O7···O4i0.95 (3)2.28 (3)2.882 (2)121 (2)
O8—H1O8···O6i0.94 (3)2.26 (3)2.877 (2)123 (2)
C11—H11A···O7i0.93002.50003.272 (2)141.00
C11—H11A···O8i0.93002.44003.222 (2)142.00
Symmetry code: (i) x+1/2, y+1/2, z.
 

Footnotes

Visiting Professor, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. BPR, VV and SS are grateful to VIT University for providing facilities to carry out the research work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPalakshi Reddy, B., Rajesh, K. & Vijayakumar, V. (2011a). J. Chin. Chem. Soc. 58, 384–388.  Google Scholar
First citationPalakshi Reddy, B., Rajesh, K. & Vijayakumar, V. (2011b). Arab. J. Chem. doi:10.1016/j.arabjc.2011.01.027.  Google Scholar
First citationPalakshi Reddy, B., Rajesh, K. & Vijayakumar, V. (2011c). Indian J. Heterocycl. Chem. 20, 281–282.  Google Scholar
First citationRajesh, K., Palakshi Reddy, B. & Vijayakumar, V. (2011). Ultrason. Sonochem. doi:10.1016/j.ultsonch.2011.10.018.  Google Scholar
First citationRathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o400-o401
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds