organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o268-o269

4-Meth­­oxy­benzamidinium 2,6-dimeth­­oxy­benzoate

aChemistry Department, "Sapienza" University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it

(Received 16 December 2011; accepted 22 December 2011; online 7 January 2012)

The title compound, C8H11N2O+·C9H9O4, was synthesized by the reaction of 4-meth­oxy­benzamidine (4-amidino­anisole) and 2,6-dimeth­oxy­benzoic acid. The structure consists of non-planar pairs of hydrogen-bonded 4-meth­oxy­benzamidinium cations and 2,6-dimeth­oxy­benzoate anions. In the cation, the amidinium group is tilted by 27.94 (10)° with respect to the benzene ring. In the anion, the sterically bulky ortho-meth­oxy substituents force the carb­oxy­ate group to be twisted away from the plane of the benzene ring by 73.24 (6)°. The ions are further associated in the crystal into chains along the b-axis direction by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the biological and pharmacological relevance of benzamidine, see: Marquart et al. (1983[Marquart, M., Walter, J., Deisenhofer, J., Bode, W. & Huber, R. (1983). Acta Cryst. B39, 480-490.]); Sprang et al. (1987[Sprang, S., Standing, T., Fletterick, R. J., Strong, R. M., Finer-Moor, J., Xuong, N. H., Hamlin, N. R., Rutter, W. & Kreik, C. S. (1987). Science, 237, 905-909.]); Bode et al. (1990[Bode, W., Turk, D. & Stürzebecher, J. (1990). Eur. J. Biochem. 193, 175-180.]); Powers & Harper (1999[Powers, J. C. & Harper, J. W. (1999). Proteinase inhibitors, edited by A. J. Barrett & G. Salvesen, pp. 55-152. Amsterdam: Elsevier.]); Grzesiak et al. (2000[Grzesiak, A., Helland, R., Smalas, A. O., Krowarsch, D., Dadlez, M. & Otlewski, J. (2000). J. Mol. Biol. 301, 205-217.]). For the structure of benzamidine, see: Barker et al. (1996[Barker, J., Phillips, P. R., Wallbridge, M. G. H. & Powell, H. R. (1996). Acta Cryst. C52, 2617-2619.]). For supra­molecular association in proton-transfer adducts containing benzamidinium cations, see; Papoutsakis et al. (1999[Papoutsakis, D., Kirby, J. P., Jackson, J. E. & Nocera, D. G. (1999). Chem. Eur. J. 5, 1474-1480.]); Portalone (2008[Portalone, G. (2008). Acta Cryst. E64, o1282-o1283.], 2010[Portalone, G. (2010). Acta Cryst. C66, o295-o301.]). For the structure of benzdiamidine, see: Jokić et al. (2001)[Jokić, M., Bajić, M., Žinić, M., Perić, B. & Kojić-Prodić, B. (2001). Acta Cryst. C57, 1354-1355.]. For the ortho­rhom­bic and tetra­gonal polymorphs of 2,6-dimeth­oxy­benzoic acid, see: Swaminathan et al. (1976[Swaminathan, S., Vimala, T. M. & Lotter, H. (1976). Acta Cryst. B32, 1897-1900.]); Bryan & White (1982[Bryan, R. F. & White, D. H. (1982). Acta Cryst. B38, 1014-1016.]); Portalone (2009[Portalone, G. (2009). Acta Cryst. E65, o327-o328.], 2011[Portalone, G. (2011). Acta Cryst. E67, o3394-o3395.]). For the analysis of benzene ring deformations induced by substitution, see: Schultz et al. (1993[Schultz, Gy., Nagy, T., Portalone, G., Ramondo, F., Hargittai, I. & Domenicano, A. (1993). Struct. Chem. 4, 183-190.]); Portalone et al. (1998[Portalone, G., Ramondo, F., Domenicano, A. & Hargittai, I. (1998). J. Organomet. Chem. 560, 183-190.]); For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Motherwell et al. (1999[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044-1056.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N2O+·C9H9O4

  • Mr = 332.35

  • Monoclinic, P 21 /c

  • a = 12.6594 (3) Å

  • b = 9.6754 (2) Å

  • c = 13.7923 (4) Å

  • β = 99.241 (2)°

  • V = 1667.42 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.971, Tmax = 0.976

  • 76316 measured reflections

  • 4217 independent reflections

  • 3914 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.131

  • S = 1.17

  • 4217 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.93 (2) 1.84 (2) 2.7576 (18) 169 (2)
N1—H1B⋯O2i 0.88 (2) 1.91 (2) 2.7166 (18) 152 (2)
N2—H2B⋯O1ii 0.86 (3) 2.31 (2) 2.868 (2) 123 (2)
N2—H2A⋯O2 0.91 (3) 2.08 (3) 2.976 (2) 170 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This Laboratory is currently engaged in the systematic structural analysis of molecular salts of benzamidine (Portalone, 2008, 2010). Benzamidine is a strong Lewis base and its cation can be easily anchored onto numerous inorganic and organic anions and polyanions, largely because of the presence of four potential donor sites for hydrogen-bonding. Consequently, benzamidinium ions appear to be very promising building blocks in supramolecular chemistry as multiple hydrogen bonding donor. Benzamidine has biological and pharmacological relevance (Powers & Harper, 1999; Grzesiak et al., 2000). Its cation has also been included in a number of protein structures (Marquart et al., 1983; Sprang et al., 1987; Bode et al., 1990).

The asymmetric unit of the title compound comprises a non-planar R22(8) hydrogen-bonded pair formed by one 4-methoxybenzamidinium cation and one 2,6-dimethoxybenzoate anion (Fig. 1). In the anion, the o-methoxy substituents force the carboxy group to be twisted away from the plane of the phenyl ring by 73.24 (6)°. The C—O distances of the carboxylate group range from 1.2440 (18) to 1.2509 (18) Å, indicating the delocalization of the negative charge. The pattern of bond lengths and bond angles of the phenyl ring is consistent with that reported in the structure determination of the two polymorphs of 2,6-dimethoxybenzoic acid (Swaminathan et al., 1976; Bryan & White, 1982; Portalone, 2009, 2011), and a comparison of the present results with those obtained for similar benzene derivatives in the gas phase (Schultz et al., 1993; Portalone et al., 1998) shows no appreciable effects of the crystal environment on the ring deformation induced by substituents. In the cation, the amidinium group forms a dihedral angle of 27.94 (10)° with the phenyl ring, which is close to the values observed in neutral benzamidine (22.8°, Barker et al., 1996) as well as in protonated benzamidinium (20.7°, Papoutsakis et al., 1999; 28.5 and 31.9°, Portalone, 2008, 2010) and benzdiamidine (24.5°, Jokić et al., 2001). The lack of planarity in all these systems is obviously caused by steric hindrances between the H atoms of the aromatic ring and the amidine moiety. The pattern of bond lengths and bond angles of the benzamidinium cation agrees with that reported in previous structural investigations (Papoutsakis et al., 1999; Portalone, 2008, 2010). In particular the amidinium group, true to one's expectations, features similar C-N bonds [1.299 (2) and 1.316 (2) Å], evidencing the delocalization of the π electrons and double-bond character.

Analysis of the crystal packing (Fig. 2) shows that the pairs are associated in the crystal by extensive hydrogen bonding. Those pairs of cations and anions are joined by intermolecular R44(8) N—H···O interactions (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999) (Table 1) leading to a chain structure running along the b direction.

Related literature top

For the biological and pharmacological relevance of benzamidine, see: Marquart et al. (1983); Sprang et al. (1987); Bode et al. (1990); Powers & Harper (1999); Grzesiak et al. (2000). For the structure of benzamidine, see: Barker et al. (1996). For supramolecular association in proton-transfer adducts containing benzamidinium cations, see; Papoutsakis et al. (1999); Portalone (2008, 2010). For the structure of benzdiamidine, see: Jokić et al. (2001). For the orthorhombic and tetragonal polymorphs of 2,6-dimethoxybenzoic acid, see: Swaminathan et al. (1976); Bryan & White (1982); Portalone (2009, 2011). For the analysis of benzene ring deformations induced by substitution, see: Schultz et al. (1993); Portalone et al. (1998); For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999).

Experimental top

The title compound was formed during cocrystallization in a 1:1 molar ratio of 2,6-dimethoxybenzoic acid (1 mmol, Aldrich at 98% purity) and 4-methoxybenzamidine (1 mmol, Fluka at 96% purity). The two components were dissolved in water (10 ml) and gently heated under reflux for 3 h. After cooling the solution to an ambient temperature, colourless crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent after two weeks.

Refinement top

The amine H atoms were located in a difference Fourier map and refined freely. All other H atoms could be identified in difference Fourier maps, but were placed in calculated positions, with C—H = 0.97 Å (phenyl) and 0.99 Å (methyl), and refined as riding on their carrier atoms. The Uiso values were kept equal to 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing displacements ellipsoids drawn the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. Displacements ellipsoids are at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
[amino(4-methoxyphenyl)methylidene]azanium 2,6-dimethoxybenzoate top
Crystal data top
C8H11N2O+·C9H9O4F(000) = 704
Mr = 332.35Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 41031 reflections
a = 12.6594 (3) Åθ = 2.9–34.8°
b = 9.6754 (2) ŵ = 0.10 mm1
c = 13.7923 (4) ÅT = 298 K
β = 99.241 (2)°Tablets, colourless
V = 1667.42 (7) Å30.30 × 0.30 × 0.25 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
4217 independent reflections
Radiation source: Enhance (Mo) X-ray source3914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.0696 pixels mm-1θmax = 28.5°, θmin = 2.9°
ω and ϕ scansh = 1616
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1212
Tmin = 0.971, Tmax = 0.976l = 1818
76316 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.878P]
where P = (Fo2 + 2Fc2)/3
4217 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C8H11N2O+·C9H9O4V = 1667.42 (7) Å3
Mr = 332.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6594 (3) ŵ = 0.10 mm1
b = 9.6754 (2) ÅT = 298 K
c = 13.7923 (4) Å0.30 × 0.30 × 0.25 mm
β = 99.241 (2)°
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
4217 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
3914 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.976Rint = 0.026
76316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.32 e Å3
4217 reflectionsΔρmin = 0.18 e Å3
239 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.29 (release 10-06-2008 CrysAlis171 .NET) (compiled Jun 10 2008,16:49:55) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.10799 (10)0.11594 (17)0.24016 (10)0.0540 (4)
N10.44446 (13)0.09706 (15)0.15597 (11)0.0413 (4)
H1A0.4973 (17)0.110 (2)0.2099 (16)0.049 (6)*
H1B0.4294 (17)0.011 (2)0.1385 (15)0.045 (5)*
N20.39964 (14)0.32294 (16)0.15666 (14)0.0467 (4)
H2A0.442 (2)0.329 (3)0.2161 (19)0.063 (7)*
H2B0.3761 (19)0.396 (3)0.1250 (18)0.059 (7)*
C10.31657 (12)0.17948 (16)0.02049 (11)0.0303 (3)
C20.33754 (13)0.07531 (19)0.04288 (12)0.0376 (4)
H20.40060.01810.02500.045*
C30.27065 (13)0.0509 (2)0.13109 (13)0.0408 (4)
H30.28710.02160.17490.049*
C40.17991 (13)0.13163 (19)0.15559 (12)0.0375 (4)
C50.15748 (13)0.2361 (2)0.09328 (14)0.0426 (4)
H50.09390.29240.11090.051*
C60.22544 (13)0.26050 (18)0.00599 (13)0.0388 (4)
H60.20960.33440.03700.047*
C70.38977 (12)0.20070 (15)0.11435 (12)0.0316 (3)
C170.12111 (18)0.0003 (3)0.30073 (15)0.0591 (6)
H17A0.1146 (14)0.0864 (14)0.2636 (7)0.089*
H17B0.0653 (12)0.0014 (10)0.3597 (11)0.089*
H17C0.1925 (12)0.0034 (10)0.3209 (11)0.089*
O10.61718 (10)0.11290 (12)0.30539 (9)0.0400 (3)
O20.55414 (10)0.31629 (12)0.34359 (10)0.0421 (3)
O30.63894 (11)0.06691 (15)0.52149 (10)0.0517 (4)
O40.78817 (10)0.40567 (14)0.34411 (9)0.0447 (3)
C80.71797 (11)0.23514 (15)0.43547 (11)0.0276 (3)
C90.72422 (14)0.15283 (17)0.51889 (12)0.0366 (4)
C100.81319 (17)0.1596 (2)0.59275 (14)0.0523 (5)
H100.81650.10420.65180.063*
C110.89636 (15)0.2462 (2)0.58046 (15)0.0524 (5)
H110.95930.24910.63080.063*
C120.89261 (13)0.3286 (2)0.49875 (13)0.0425 (4)
H120.95220.38850.49140.051*
C130.80189 (12)0.32480 (16)0.42671 (11)0.0315 (3)
C140.62180 (11)0.22199 (15)0.35457 (10)0.0270 (3)
C150.62678 (17)0.0059 (2)0.61327 (15)0.0523 (5)
H15A0.6294 (13)0.0783 (10)0.6634 (8)0.078*
H15B0.5577 (11)0.0421 (16)0.6066 (3)0.078*
H15C0.6849 (11)0.0606 (15)0.6329 (7)0.078*
C160.86484 (16)0.5108 (2)0.33788 (14)0.0477 (5)
H16A0.9338 (10)0.4683 (6)0.3302 (11)0.071*
H16B0.8399 (7)0.5704 (12)0.2808 (10)0.071*
H16C0.8742 (9)0.5669 (13)0.3984 (9)0.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0399 (7)0.0729 (10)0.0426 (7)0.0057 (7)0.0136 (6)0.0001 (7)
N10.0484 (8)0.0244 (7)0.0428 (8)0.0029 (6)0.0181 (7)0.0010 (6)
N20.0499 (9)0.0259 (7)0.0573 (10)0.0001 (6)0.0121 (8)0.0043 (7)
C10.0278 (7)0.0275 (7)0.0339 (7)0.0028 (6)0.0002 (6)0.0054 (6)
C20.0279 (7)0.0432 (9)0.0391 (9)0.0068 (7)0.0025 (6)0.0002 (7)
C30.0344 (8)0.0496 (10)0.0363 (8)0.0056 (7)0.0002 (6)0.0046 (7)
C40.0280 (7)0.0481 (10)0.0340 (8)0.0026 (7)0.0022 (6)0.0077 (7)
C50.0310 (8)0.0456 (10)0.0478 (10)0.0105 (7)0.0042 (7)0.0070 (8)
C60.0371 (8)0.0335 (8)0.0440 (9)0.0063 (7)0.0005 (7)0.0015 (7)
C70.0307 (7)0.0247 (7)0.0372 (8)0.0049 (6)0.0013 (6)0.0019 (6)
C170.0533 (12)0.0791 (16)0.0397 (10)0.0039 (11)0.0081 (8)0.0063 (10)
O10.0410 (6)0.0318 (6)0.0416 (6)0.0013 (5)0.0104 (5)0.0114 (5)
O20.0363 (6)0.0267 (6)0.0568 (8)0.0032 (5)0.0126 (5)0.0046 (5)
O30.0525 (8)0.0551 (8)0.0425 (7)0.0201 (6)0.0072 (6)0.0171 (6)
O40.0446 (7)0.0508 (7)0.0354 (6)0.0217 (6)0.0034 (5)0.0049 (5)
C80.0273 (7)0.0251 (7)0.0279 (7)0.0004 (5)0.0027 (5)0.0048 (5)
C90.0378 (8)0.0331 (8)0.0356 (8)0.0037 (6)0.0043 (6)0.0027 (6)
C100.0547 (11)0.0540 (12)0.0405 (10)0.0065 (9)0.0154 (8)0.0128 (9)
C110.0418 (10)0.0579 (12)0.0486 (11)0.0046 (9)0.0204 (8)0.0008 (9)
C120.0302 (8)0.0475 (10)0.0459 (10)0.0094 (7)0.0052 (7)0.0060 (8)
C130.0310 (7)0.0326 (8)0.0295 (7)0.0035 (6)0.0001 (6)0.0054 (6)
C140.0272 (7)0.0237 (7)0.0281 (7)0.0064 (5)0.0018 (5)0.0015 (5)
C150.0532 (11)0.0604 (12)0.0452 (10)0.0034 (9)0.0133 (9)0.0112 (9)
C160.0494 (10)0.0501 (11)0.0445 (10)0.0213 (9)0.0103 (8)0.0032 (8)
Geometric parameters (Å, º) top
O5—C41.3680 (19)O1—C141.2509 (18)
O5—C171.427 (3)O2—C141.2440 (18)
N1—C71.299 (2)O3—C91.368 (2)
N1—H1A0.93 (2)O3—C151.427 (2)
N1—H1B0.88 (2)O4—C131.370 (2)
N2—C71.316 (2)O4—C161.418 (2)
N2—H2A0.91 (3)C8—C91.391 (2)
N2—H2B0.86 (3)C8—C131.392 (2)
C1—C21.387 (2)C8—C141.5189 (18)
C1—C61.394 (2)C9—C101.394 (2)
C1—C71.480 (2)C10—C111.377 (3)
C2—C31.386 (2)C10—H100.9700
C2—H20.9700C11—C121.375 (3)
C3—C41.386 (2)C11—H110.9700
C3—H30.9700C12—C131.393 (2)
C4—C51.385 (3)C12—H120.9700
C5—C61.383 (2)C15—H15A0.9817
C5—H50.9700C15—H15B0.9817
C6—H60.9700C15—H15C0.9817
C17—H17A0.9877C16—H16A0.9865
C17—H17B0.9877C16—H16B0.9865
C17—H17C0.9877C16—H16C0.9865
C4—O5—C17117.56 (15)C13—O4—C16117.61 (13)
C7—N1—H1A120.8 (13)C9—C8—C13119.07 (13)
C7—N1—H1B122.1 (14)C9—C8—C14119.47 (13)
H1A—N1—H1B116.8 (19)C13—C8—C14121.43 (13)
C7—N2—H2A117.3 (16)O3—C9—C8115.43 (13)
C7—N2—H2B120.8 (16)O3—C9—C10123.91 (16)
H2A—N2—H2B121 (2)C8—C9—C10120.65 (16)
C2—C1—C6118.52 (14)C11—C10—C9118.85 (17)
C2—C1—C7119.69 (14)C11—C10—H10120.6
C6—C1—C7121.78 (15)C9—C10—H10120.6
C3—C2—C1121.67 (15)C12—C11—C10121.83 (16)
C3—C2—H2119.2C12—C11—H11119.1
C1—C2—H2119.2C10—C11—H11119.1
C4—C3—C2118.91 (16)C11—C12—C13119.02 (16)
C4—C3—H3120.5C11—C12—H12120.5
C2—C3—H3120.5C13—C12—H12120.5
O5—C4—C5115.80 (15)O4—C13—C8115.57 (13)
O5—C4—C3123.89 (17)O4—C13—C12123.92 (15)
C5—C4—C3120.31 (15)C8—C13—C12120.52 (15)
C6—C5—C4120.24 (15)O2—C14—O1125.56 (13)
C6—C5—H5119.9O2—C14—C8118.88 (13)
C4—C5—H5119.9O1—C14—C8115.54 (13)
C5—C6—C1120.34 (16)O3—C15—H15A109.5
C5—C6—H6119.8O3—C15—H15B109.5
C1—C6—H6119.8H15A—C15—H15B109.5
N1—C7—N2119.47 (15)O3—C15—H15C109.5
N1—C7—C1119.60 (14)H15A—C15—H15C109.5
N2—C7—C1120.93 (15)H15B—C15—H15C109.5
O5—C17—H17A109.5O4—C16—H16A109.5
O5—C17—H17B109.5O4—C16—H16B109.5
H17A—C17—H17B109.5H16A—C16—H16B109.5
O5—C17—H17C109.5O4—C16—H16C109.5
H17A—C17—H17C109.5H16A—C16—H16C109.5
H17B—C17—H17C109.5H16B—C16—H16C109.5
C9—O3—C15118.21 (14)
C6—C1—C2—C30.2 (3)C14—C8—C9—O31.5 (2)
C7—C1—C2—C3179.38 (16)C13—C8—C9—C100.1 (3)
C1—C2—C3—C40.9 (3)C14—C8—C9—C10177.89 (17)
C17—O5—C4—C5172.81 (18)O3—C9—C10—C11177.5 (2)
C17—O5—C4—C37.5 (3)C8—C9—C10—C111.9 (3)
C2—C3—C4—O5179.46 (17)C9—C10—C11—C121.8 (3)
C2—C3—C4—C50.8 (3)C10—C11—C12—C130.3 (3)
O5—C4—C5—C6179.86 (17)C16—O4—C13—C8172.11 (15)
C3—C4—C5—C60.1 (3)C16—O4—C13—C128.1 (3)
C4—C5—C6—C10.6 (3)C9—C8—C13—O4177.88 (15)
C2—C1—C6—C50.5 (3)C14—C8—C13—O44.2 (2)
C7—C1—C6—C5178.64 (16)C9—C8—C13—C122.3 (2)
C2—C1—C7—N127.6 (2)C14—C8—C13—C12175.68 (15)
C6—C1—C7—N1151.54 (17)C11—C12—C13—O4177.78 (17)
C2—C1—C7—N2152.93 (18)C11—C12—C13—C82.4 (3)
C6—C1—C7—N227.9 (2)C9—C8—C14—O2107.53 (17)
C15—O3—C9—C8164.66 (17)C13—C8—C14—O274.5 (2)
C15—O3—C9—C1015.9 (3)C9—C8—C14—O171.0 (2)
C13—C8—C9—O3179.53 (15)C13—C8—C14—O1106.91 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.93 (2)1.84 (2)2.7576 (18)169 (2)
N1—H1B···O2i0.88 (2)1.91 (2)2.7166 (18)152 (2)
N2—H2B···O1ii0.86 (3)2.31 (2)2.868 (2)123 (2)
N2—H2A···O20.91 (3)2.08 (3)2.976 (2)170 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H11N2O+·C9H9O4
Mr332.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.6594 (3), 9.6754 (2), 13.7923 (4)
β (°) 99.241 (2)
V3)1667.42 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.971, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
76316, 4217, 3914
Rint0.026
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.131, 1.17
No. of reflections4217
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.93 (2)1.84 (2)2.7576 (18)169 (2)
N1—H1B···O2i0.88 (2)1.91 (2)2.7166 (18)152 (2)
N2—H2B···O1ii0.86 (3)2.31 (2)2.868 (2)123 (2)
N2—H2A···O20.91 (3)2.08 (3)2.976 (2)170 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarker, J., Phillips, P. R., Wallbridge, M. G. H. & Powell, H. R. (1996). Acta Cryst. C52, 2617–2619.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBode, W., Turk, D. & Stürzebecher, J. (1990). Eur. J. Biochem. 193, 175–180.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBryan, R. F. & White, D. H. (1982). Acta Cryst. B38, 1014–1016.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrzesiak, A., Helland, R., Smalas, A. O., Krowarsch, D., Dadlez, M. & Otlewski, J. (2000). J. Mol. Biol. 301, 205–217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJokić, M., Bajić, M., Žinić, M., Perić, B. & Kojić-Prodić, B. (2001). Acta Cryst. C57, 1354–1355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarquart, M., Walter, J., Deisenhofer, J., Bode, W. & Huber, R. (1983). Acta Cryst. B39, 480–490.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPapoutsakis, D., Kirby, J. P., Jackson, J. E. & Nocera, D. G. (1999). Chem. Eur. J. 5, 1474–1480.  CrossRef CAS Google Scholar
First citationPortalone, G. (2008). Acta Cryst. E64, o1282–o1283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortalone, G. (2009). Acta Cryst. E65, o327–o328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPortalone, G. (2010). Acta Cryst. C66, o295–o301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPortalone, G. (2011). Acta Cryst. E67, o3394–o3395.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPortalone, G., Ramondo, F., Domenicano, A. & Hargittai, I. (1998). J. Organomet. Chem. 560, 183–190.  Web of Science CrossRef CAS Google Scholar
First citationPowers, J. C. & Harper, J. W. (1999). Proteinase inhibitors, edited by A. J. Barrett & G. Salvesen, pp. 55–152. Amsterdam: Elsevier.  Google Scholar
First citationSchultz, Gy., Nagy, T., Portalone, G., Ramondo, F., Hargittai, I. & Domenicano, A. (1993). Struct. Chem. 4, 183–190.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSprang, S., Standing, T., Fletterick, R. J., Strong, R. M., Finer-Moor, J., Xuong, N. H., Hamlin, N. R., Rutter, W. & Kreik, C. S. (1987). Science, 237, 905–909.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSwaminathan, S., Vimala, T. M. & Lotter, H. (1976). Acta Cryst. B32, 1897–1900.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o268-o269
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds