organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,6E)-2,6-Bis(4-methyl­benzyl­­idene)cyclo­hex-3-en-1-one

aOrganic Chemistry Laboratory, Chemistry and Chemical Engineering, Research Center of Iran, PO Box 14335-186, Tehran, Iran, and bFachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
*Correspondence e-mail: abaee@ccerci.ac.ir, massa@chemie.uni-marburg.de

(Received 20 December 2011; accepted 25 December 2011; online 11 January 2012)

The title compound, C22H20O, shows an approximately planar cyclo­hexenone ring [maximum deviation = 0.069 (4) Å], with a disordered position of the C=C bond [ratio = 0.71 (2)/0.29 (2)]. The benzene rings of the 4-methyl­benzyl­idene units, attached in the 2- and 6-positions to the cyclo­hexenone ring, are rotated in the same direction by 28.6 (4) and 22.4 (4)°, with respect to the mean plane of the cyclo­hexenone ring [fraction 0.71 (2); maximum deviation = 0.06 (3) Å]. In the crystal, mol­ecules are packed in the manner of a distorted hexa­gonal rod packing with their long axes all aligned along [201]. A number of C—H⋯π inter­actions stablize the crystal structure.

Related literature

For background information to aldol condensation reactions in hetero- and homocyclic ketones, see: Abaee et al. (2007[Abaee, M. S., Mojtahedi, M. M., Zahedi, M. M., Sharifi, R., Mesbah, A. W. & Massa, W. (2007). Synth. Commun. 37, 2949-2957.]). For the crystal structure of the analogous compound with 4-meth­oxy­benzyl­idene substituents in the 2- and 6- positions on the cyclo­hexenone ring, see: Abaee et al. (2007[Abaee, M. S., Mojtahedi, M. M., Zahedi, M. M., Sharifi, R., Mesbah, A. W. & Massa, W. (2007). Synth. Commun. 37, 2949-2957.]). For other similar substituted cyclo­hexenone structures, see: Shi et al. (2008[Shi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199.]); Guo et al. (2008[Guo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, o1626.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20O

  • Mr = 300.38

  • Monoclinic, P 21

  • a = 10.7108 (14) Å

  • b = 7.2772 (7) Å

  • c = 11.4690 (14) Å

  • β = 114.366 (14)°

  • V = 814.32 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 193 K

  • 0.50 × 0.24 × 0.15 mm

Data collection
  • Stoe IPDS image plate diffractometer

  • 6110 measured reflections

  • 1709 independent reflections

  • 1219 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.071

  • S = 0.98

  • 1709 reflections

  • 212 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C8–C11,C12a,C13, C1–C6 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg2i 0.95 2.78 3.538 (3) 137
C6—H6⋯Cg3ii 0.95 2.64 3.423 (3) 139
C16—H16⋯Cg3iii 0.95 2.85 3.496 (3) 126
C13—H13b⋯Cg1ii 0.99 2.89 3.642 (6) 134
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x+2, y+{\script{1\over 2}}, -z]; (iii) [-x+3, y-{\script{1\over 2}}, -z+1].

Data collection: EXPOSE (Stoe & Cie, 1999[Stoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL (Stoe & Cie, 1999[Stoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: INTEGRATE (Stoe & Cie, 1999[Stoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of our studies on aldol condensation reactions in hetero- and homocyclic ketones (Abaee et al., 2007), we herein report on the synthesis and crystal structure of the title compound.

It crystallizes in the acentric space group P21 but the molecule shows pseudosymmetry m (Cs), with the mirror plane perpendicular to the main molecular plane. The Cs symmetry is broken by the central symmetry-less cyclohexenone ring, but a second orientation of the molecule generated by this mirror plane appears as an alternative disordered orientation in a ratio of 0.71 (2)/0.29 (2) (Fig. 1). A split atom model was refined [C12a/C12b: occupancies 0.71 (2)/(0.29 (2)] using restraints providing the same bond lengths for corresponding atom pairs, C11—C12a/C13—C12b and C11—C12b/C13—C12a, of 1.475 (5)/1.319 (5)Å. The strong anisotropy of the displacement parameters of the O atom may be associated to this disorder. In addition, one of the terminal methyl groups, C21, showed 1:1 disorder over two orientations [occupancy of 0.5 for each of the six H-atom postions].

A second pseudosymmetric mirror plane can be found in the main plane of the molecule, the realisation of which would lead to the centrosymmetric space group P21/m. The clear inclination of both benzene rings [II (C1-C6) and III (C15-C20)] by 28.6 (4) and 22.4 (4)°, respectively, to the cyclohexenone ring I (O1,C8-C11,C12a,C13) rules out this possibility. Benzene rings II and III are inclined to one another by 8.66 (13)°.

In the presence of only one O atom besides 22 C and 20 H atoms, the absolute structure could not be determined, and from the synthesis the formation of a racemate is expected. In an analogous compound, with 4-methoxybenzylidene substituents in the 2- and 6- positions on the cyclohexenone ring (Abaee et al., 2007), the benzene rings are rotated in opposite directions with respect to the central ring plane, while in the title compound the rotation is in the same direction (Fig. 1). In general the bond distances and angles are similar to those observed in analogues structures (Abaee et al., 2007; Shi et al., 2008; Guo et al., 2008).

In the crystal, molecules pack in the manner of a distorted hexagonal rod packing with their long axes all aligned along the [201] direction (Figs. 2 and 3). The intermolecular contacts are reinforced by C–H···π interactions (Table 1).

Related literature top

For background information to aldol condensation reactions in hetero- and homocyclic ketones, see: Abaee et al. (2007). For the crystal structure of the analogous compound with 4-methoxybenzylidene substituents in the 2- and 6- positions on the cyclohexenone ring, see: Abaee et al. (2007). For other similar substituted cyclohexenone structures, see: Shi et al. (2008); Guo et al. (2008).

Experimental top

A mixture of cyclohex-2-enone (193 µL, 2 mmol), 4-methylbenzaldehyde (471 µL, 4 mmol), triethylamine (1122 µL, 8 mmol), and ZnBr2 (900 mg, 4 mmol) in 5 ml dry CH2Cl2 was stirred at room temperature under argon atmosphere for 10 h. The progress of the reaction was checked by TLC using a 1:8 mixture of EtOAc/hexane. At the end of the reaction, the mixture was diluted with CH2Cl2 and washed with brine. The organic layer was dried using Na2SO4 and concentrated under reduced pressure. The product obtained was isolated (540 mg, 90%) by column chromatography over silicagel using a 1:8 mixture of EtOAc/hexane. The solid product was recrystallized from EtOAc to give light-orange block-like crystals of the title compound.

Refinement top

For the disordered region of the central cyclohexenone ring, a split atom model was refined [C12a/C12b: occupancies 0.71 (2)/0.29 (2)] using restraints providing the same bond lengths for corresponding atom pairs: C11—C12a/C13—C12b = 1.475 (5)Å and C13—C12a/C11—C12b 1.319 (5) Å. The anisotropic displacement parameters of the split atoms, C12a and C12b, were set to be equal. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 1386 Friedel pairs were merged and Δf " set to zero. All the H atoms could be located in a difference Fourier map. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: C-H = 0.95 and 0.99 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: EXPOSE (Stoe & Cie, 1999); cell refinement: CELL (Stoe & Cie, 1999); data reduction: INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labels and 50% probability displacement ellipsoids. The less occupied (by 29%) disordered orientation of a part of the central ring is drawn in transparent red.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis, showing the parallel orientation of the molecules along the [201] direction; O-atoms red, H-atoms omitted.
[Figure 3] Fig. 3. Arrangement of molecules according to a distorted hexagonal rod packing in projection along direction [201]; O-atoms red, H-atoms omitted.
(2E,6E)-2,6-Bis(4-methylbenzylidene)cyclohex-3-en-1-one top
Crystal data top
C22H20OF(000) = 320
Mr = 300.38Dx = 1.225 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5168 reflections
a = 10.7108 (14) Åθ = 2.0–25.8°
b = 7.2772 (7) ŵ = 0.07 mm1
c = 11.4690 (14) ÅT = 193 K
β = 114.366 (14)°Block, light-orange
V = 814.32 (17) Å30.50 × 0.24 × 0.15 mm
Z = 2
Data collection top
Stoe IPDS image plate
diffractometer
1219 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
Detector resolution: 6.7 pixels mm-1h = 1313
ϕ–scansk = 88
6110 measured reflectionsl = 1314
1709 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.071H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
1709 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.17 e Å3
3 restraintsΔρmin = 0.15 e Å3
Crystal data top
C22H20OV = 814.32 (17) Å3
Mr = 300.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.7108 (14) ŵ = 0.07 mm1
b = 7.2772 (7) ÅT = 193 K
c = 11.4690 (14) Å0.50 × 0.24 × 0.15 mm
β = 114.366 (14)°
Data collection top
Stoe IPDS image plate
diffractometer
1219 reflections with I > 2σ(I)
6110 measured reflectionsRint = 0.060
1709 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.98Δρmax = 0.17 e Å3
1709 reflectionsΔρmin = 0.15 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.00222 (16)0.8042 (5)0.28700 (15)0.0927 (11)
C10.3618 (2)0.8455 (4)0.22735 (19)0.0337 (6)
C20.3948 (2)0.7517 (4)0.1120 (2)0.0359 (6)
H20.32410.69310.09610.043*
C30.5283 (2)0.7427 (4)0.0206 (2)0.0336 (6)
H30.54730.68040.05770.040*
C40.6368 (2)0.8242 (4)0.04127 (19)0.0310 (5)
C50.6034 (2)0.9148 (4)0.1573 (2)0.0338 (6)
H50.67390.97050.17490.041*
C60.4685 (2)0.9248 (4)0.2476 (2)0.0343 (6)
H60.44890.98820.32570.041*
C70.7743 (2)0.8148 (4)0.0625 (2)0.0344 (6)
H70.77560.79660.14490.041*
C80.8999 (2)0.8275 (5)0.0616 (2)0.0354 (6)
C91.0200 (2)0.8195 (5)0.1884 (2)0.0460 (7)
C101.1616 (2)0.8318 (5)0.19458 (18)0.0323 (5)
C111.1787 (2)0.8531 (5)0.07247 (19)0.0428 (7)
H11A1.22010.97500.07340.051*0.71 (2)
H11B1.24500.75920.07100.051*0.71 (2)
H11C1.26800.86620.07480.051*0.29 (2)
C12A1.0537 (11)0.837 (4)0.0473 (6)0.041 (2)0.71 (2)
H12A1.06480.82530.12500.049*0.71 (2)
C12B1.0710 (15)0.854 (12)0.0385 (8)0.041 (2)0.29 (2)
H12B1.08690.86550.11370.049*0.29 (2)
C130.9276 (2)0.8378 (5)0.0544 (2)0.0445 (6)
H13A0.87880.73350.10990.053*0.29 (2)
H13B0.88320.95140.10040.053*0.29 (2)
H13C0.85460.83430.13730.053*0.71 (2)
C141.2658 (2)0.8164 (4)0.3111 (2)0.0351 (6)
H141.23660.79760.37790.042*
C151.4143 (2)0.8230 (4)0.35534 (19)0.0312 (5)
C161.4931 (2)0.7558 (4)0.4790 (2)0.0342 (6)
H161.44780.70560.52760.041*
C171.6344 (2)0.7606 (4)0.5319 (2)0.0382 (6)
H171.68390.71360.61570.046*
C181.7060 (2)0.8332 (5)0.4649 (2)0.0372 (6)
C191.6289 (2)0.8998 (4)0.3425 (2)0.0371 (7)
H191.67500.94900.29440.045*
C201.4862 (2)0.8969 (3)0.2881 (2)0.0350 (6)
H201.43710.94550.20460.042*
C210.2162 (2)0.8587 (5)0.3252 (2)0.0496 (8)
H21A0.15590.79390.29380.074*0.50
H21B0.20860.80250.40560.074*0.50
H21C0.18900.98810.34010.074*0.50
H21D0.21310.92910.39920.074*0.50
H21E0.16040.92050.28750.074*0.50
H21F0.18000.73490.35290.074*0.50
C221.8600 (2)0.8394 (6)0.5234 (2)0.0556 (8)
H22A1.89590.74800.59200.083*
H22B1.89090.96210.55870.083*
H22C1.89350.81220.45770.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (9)0.212 (3)0.0306 (9)0.0030 (17)0.0155 (7)0.0097 (17)
C10.0350 (13)0.0347 (16)0.0299 (12)0.0045 (14)0.0118 (10)0.0026 (14)
C20.0321 (13)0.0397 (16)0.0388 (14)0.0034 (12)0.0176 (11)0.0027 (13)
C30.0386 (14)0.0361 (16)0.0296 (12)0.0024 (13)0.0176 (11)0.0020 (12)
C40.0349 (12)0.0289 (13)0.0312 (11)0.0045 (14)0.0155 (9)0.0022 (15)
C50.0343 (13)0.0342 (15)0.0364 (13)0.0003 (12)0.0182 (11)0.0004 (13)
C60.0394 (14)0.0341 (15)0.0301 (12)0.0047 (12)0.0149 (11)0.0026 (11)
C70.0324 (12)0.0400 (17)0.0286 (11)0.0001 (13)0.0105 (9)0.0028 (14)
C80.0299 (12)0.0428 (14)0.0316 (12)0.0007 (15)0.0107 (10)0.0016 (15)
C90.0378 (13)0.070 (2)0.0324 (12)0.0009 (16)0.0169 (11)0.0034 (17)
C100.0311 (12)0.0370 (14)0.0277 (11)0.0028 (15)0.0110 (10)0.0013 (14)
C110.0362 (12)0.062 (2)0.0325 (12)0.0033 (15)0.0169 (10)0.0044 (15)
C12A0.041 (2)0.054 (7)0.0294 (12)0.002 (5)0.0169 (14)0.001 (3)
C12B0.041 (2)0.054 (7)0.0294 (12)0.002 (5)0.0169 (14)0.001 (3)
C130.0358 (13)0.0627 (18)0.0334 (12)0.0018 (16)0.0126 (10)0.0047 (16)
C140.0315 (12)0.0443 (17)0.0306 (11)0.0003 (15)0.0140 (10)0.0024 (15)
C150.0354 (12)0.0321 (14)0.0252 (11)0.0002 (14)0.0117 (10)0.0059 (14)
C160.0386 (13)0.0352 (16)0.0319 (12)0.0023 (12)0.0175 (11)0.0009 (12)
C170.0364 (14)0.0416 (16)0.0284 (12)0.0007 (12)0.0051 (11)0.0001 (12)
C180.0318 (12)0.0410 (15)0.0361 (12)0.0005 (15)0.0112 (10)0.0045 (16)
C190.0361 (15)0.0401 (17)0.0393 (14)0.0032 (12)0.0197 (12)0.0015 (13)
C200.0376 (14)0.0359 (17)0.0301 (12)0.0001 (13)0.0127 (11)0.0018 (12)
C210.0363 (13)0.066 (2)0.0384 (13)0.0014 (15)0.0075 (11)0.0007 (16)
C220.0354 (14)0.072 (2)0.0537 (16)0.003 (2)0.0123 (12)0.004 (2)
Geometric parameters (Å, º) top
O1—C91.227 (3)C12B—C131.475 (11)
C1—C61.383 (3)C12B—H12B0.9500
C1—C21.398 (3)C13—H13A0.9900
C1—C211.503 (3)C13—H13B0.9900
C2—C31.382 (3)C13—H13C0.9500
C2—H20.9500C14—C151.458 (3)
C3—C41.409 (3)C14—H140.9500
C3—H30.9500C15—C201.403 (3)
C4—C51.393 (3)C15—C161.406 (3)
C4—C71.465 (3)C16—C171.379 (3)
C5—C61.390 (3)C16—H160.9500
C5—H50.9500C17—C181.395 (3)
C6—H60.9500C17—H170.9500
C7—C81.352 (3)C18—C191.390 (3)
C7—H70.9500C18—C221.503 (3)
C8—C131.479 (3)C19—C201.392 (3)
C8—C91.493 (3)C19—H190.9500
C9—C101.491 (3)C20—H200.9500
C10—C141.346 (3)C21—H21A0.9800
C10—C111.494 (3)C21—H21B0.9800
C11—C12B1.319 (12)C21—H21C0.9800
C11—C12A1.475 (9)C21—H21D0.9800
C11—H11A0.9900C21—H21E0.9800
C11—H11B0.9900C21—H21F0.9800
C11—H11C0.9500C22—H22A0.9800
C12A—C131.319 (10)C22—H22B0.9800
C12A—H12A0.9500C22—H22C0.9800
C6—C1—C2117.35 (19)C12A—C13—H13B106.9
C6—C1—C21121.5 (2)C12B—C13—H13B104.3
C2—C1—C21121.1 (2)C8—C13—H13B106.9
C3—C2—C1121.3 (2)H13A—C13—H13B106.7
C3—C2—H2119.4C12A—C13—H13C117.4
C1—C2—H2119.4C12B—C13—H13C120.7
C2—C3—C4121.3 (2)C8—C13—H13C120.7
C2—C3—H3119.4H13A—C13—H13C48.5
C4—C3—H3119.4H13B—C13—H13C58.2
C5—C4—C3117.09 (19)C10—C14—C15133.0 (2)
C5—C4—C7125.0 (2)C10—C14—H14113.5
C3—C4—C7117.8 (2)C15—C14—H14113.5
C6—C5—C4121.0 (2)C20—C15—C16116.78 (19)
C6—C5—H5119.5C20—C15—C14126.1 (2)
C4—C5—H5119.5C16—C15—C14117.1 (2)
C1—C6—C5122.0 (2)C17—C16—C15121.9 (2)
C1—C6—H6119.0C17—C16—H16119.1
C5—C6—H6119.0C15—C16—H16119.1
C8—C7—C4131.4 (2)C16—C17—C18121.4 (2)
C8—C7—H7114.3C16—C17—H17119.3
C4—C7—H7114.3C18—C17—H17119.3
C7—C8—C13125.34 (19)C19—C18—C17117.1 (2)
C7—C8—C9116.8 (2)C19—C18—C22121.8 (2)
C13—C8—C9117.79 (19)C17—C18—C22121.1 (2)
O1—C9—C10120.20 (19)C18—C19—C20122.2 (2)
O1—C9—C8120.1 (2)C18—C19—H19118.9
C10—C9—C8119.67 (19)C20—C19—H19118.9
C14—C10—C9116.93 (19)C19—C20—C15120.6 (2)
C14—C10—C11124.51 (19)C19—C20—H20119.7
C9—C10—C11118.53 (18)C15—C20—H20119.7
C12B—C11—C12A6 (4)C1—C21—H21A109.5
C12B—C11—C10120.5 (4)C1—C21—H21B109.5
C12A—C11—C10116.7 (3)H21A—C21—H21B109.5
C12B—C11—H11A102.5C1—C21—H21C109.5
C12A—C11—H11A108.1H21A—C21—H21C109.5
C10—C11—H11A108.1H21B—C21—H21C109.5
C12B—C11—H11B109.5C1—C21—H21D109.5
C12A—C11—H11B108.1H21A—C21—H21D141.1
C10—C11—H11B108.1H21B—C21—H21D56.3
H11A—C11—H11B107.3H21C—C21—H21D56.3
C12B—C11—H11C119.7C1—C21—H21E109.5
C12A—C11—H11C123.4H21A—C21—H21E56.3
C10—C11—H11C119.7H21B—C21—H21E141.1
H11A—C11—H11C57.9H21C—C21—H21E56.3
H11B—C11—H11C49.5H21D—C21—H21E109.5
C13—C12A—C11124.8 (4)C1—C21—H21F109.5
C13—C12A—H12A117.6H21A—C21—H21F56.3
C11—C12A—H12A117.6H21B—C21—H21F56.3
C11—C12B—C13124.8 (6)H21C—C21—H21F141.1
C11—C12B—H12B117.6H21D—C21—H21F109.5
C13—C12B—H12B117.6H21E—C21—H21F109.5
C12A—C13—C12B6 (4)C18—C22—H22A109.5
C12A—C13—C8121.6 (3)C18—C22—H22B109.5
C12B—C13—C8118.5 (3)H22A—C22—H22B109.5
C12A—C13—H13A106.9C18—C22—H22C109.5
C12B—C13—H13A112.7H22A—C22—H22C109.5
C8—C13—H13A106.9H22B—C22—H22C109.5
C6—C1—C2—C31.5 (4)C12B—C11—C12A—C13121 (34)
C21—C1—C2—C3178.6 (3)C10—C11—C12A—C1312 (3)
C1—C2—C3—C41.4 (4)C12A—C11—C12B—C1350 (25)
C2—C3—C4—C50.3 (4)C10—C11—C12B—C131 (9)
C2—C3—C4—C7177.6 (2)C11—C12A—C13—C12B50 (25)
C3—C4—C5—C60.5 (4)C11—C12A—C13—C89 (3)
C7—C4—C5—C6176.5 (2)C11—C12B—C13—C12A121 (34)
C2—C1—C6—C50.7 (4)C11—C12B—C13—C83 (9)
C21—C1—C6—C5179.5 (3)C7—C8—C13—C12A175.2 (17)
C4—C5—C6—C10.4 (4)C9—C8—C13—C12A1.1 (17)
C5—C4—C7—C825.5 (5)C7—C8—C13—C12B179 (4)
C3—C4—C7—C8157.5 (3)C9—C8—C13—C12B5 (4)
C4—C7—C8—C136.2 (6)C9—C10—C14—C15179.3 (3)
C4—C7—C8—C9177.4 (3)C11—C10—C14—C153.0 (6)
C7—C8—C9—O10.7 (5)C10—C14—C15—C2018.6 (6)
C13—C8—C9—O1177.4 (4)C10—C14—C15—C16164.2 (3)
C7—C8—C9—C10179.7 (3)C20—C15—C16—C170.5 (4)
C13—C8—C9—C103.1 (5)C14—C15—C16—C17178.0 (3)
O1—C9—C10—C143.0 (5)C15—C16—C17—C180.1 (4)
C8—C9—C10—C14177.4 (3)C16—C17—C18—C190.2 (4)
O1—C9—C10—C11179.1 (4)C16—C17—C18—C22179.5 (3)
C8—C9—C10—C110.4 (5)C17—C18—C19—C200.6 (4)
C14—C10—C11—C12B175 (4)C22—C18—C19—C20179.1 (3)
C9—C10—C11—C12B3 (4)C18—C19—C20—C151.0 (4)
C14—C10—C11—C12A170.2 (14)C16—C15—C20—C190.9 (4)
C9—C10—C11—C12A7.5 (15)C14—C15—C20—C19178.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C8–C11,C12a,C13, C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2i0.952.783.538 (3)137
C6—H6···Cg3ii0.952.643.423 (3)139
C16—H16···Cg3iii0.952.853.496 (3)126
C13—H13b···Cg1ii0.992.893.642 (6)134
Symmetry codes: (i) x+1, y1/2, z; (ii) x+2, y+1/2, z; (iii) x+3, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC22H20O
Mr300.38
Crystal system, space groupMonoclinic, P21
Temperature (K)193
a, b, c (Å)10.7108 (14), 7.2772 (7), 11.4690 (14)
β (°) 114.366 (14)
V3)814.32 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.24 × 0.15
Data collection
DiffractometerStoe IPDS image plate
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6110, 1709, 1219
Rint0.060
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.071, 0.98
No. of reflections1709
No. of parameters212
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: EXPOSE (Stoe & Cie, 1999), CELL (Stoe & Cie, 1999), INTEGRATE (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip 2010).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C8–C11,C12a,C13, C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2i0.952.783.538 (3)137
C6—H6···Cg3ii0.952.643.423 (3)139
C16—H16···Cg3iii0.952.853.496 (3)126
C13—H13b···Cg1ii0.992.893.642 (6)134
Symmetry codes: (i) x+1, y1/2, z; (ii) x+2, y+1/2, z; (iii) x+3, y1/2, z+1.
 

Acknowledgements

The authors would like to thank the Ministry of Science, Research and Technology of Iran for partial financial support of this work.

References

First citationAbaee, M. S., Mojtahedi, M. M., Zahedi, M. M., Sharifi, R., Mesbah, A. W. & Massa, W. (2007). Synth. Commun. 37, 2949–2957.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGuo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, o1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1999). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds