organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Chloro­benzyl­­idene)-4-nitro­benzohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@yahoo.cn

(Received 24 December 2011; accepted 25 December 2011; online 11 January 2012)

In the title compound, C14H10ClN3O3, the dihedral angle between the benzene rings is 6.64 (13)°. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds, forming chains running along the c axis direction.

Related literature

For general background to hydrazones, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Pyta et al. (2010[Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147-154.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Tang (2010[Tang, C.-B. (2010). Acta Cryst. E66, o2482.], 2011[Tang, C.-B. (2011). Acta Cryst. E67, o271.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClN3O3

  • Mr = 303.70

  • Monoclinic, P 21 /c

  • a = 11.2332 (18) Å

  • b = 13.3778 (18) Å

  • c = 8.9770 (16) Å

  • β = 90.408 (2)°

  • V = 1349.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.957

  • 10640 measured reflections

  • 2931 independent reflections

  • 1882 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.146

  • S = 1.03

  • 2931 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.89 (1) 2.06 (1) 2.915 (3) 160 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). As a continuation of our work on the structural study on such compounds (Tang, 2010, 2011), we reports herein on the crystal structure of the title new hydrazone compound.

In the molecule of the title compound (Fig. 1), the dihedral angle between the two benzene rings is 6.64 (13)°. Bond lengths in the compound are normal (Allen et al., 1987) and comparable to those in the similar compounds (Tang, 2010; Tang, 2011).

In the crystal, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains running along the c axis direction (Fig. 2).

Related literature top

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010, 2011). For reference bond-length data, see: Allen et al. (1987).

Experimental top

2-Chlorobenzaldehyde (0.1 mmol, 14.1 mg) and 4-nitrobenzohydrazide (0.1 mmol, 18.2 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear yellow solution. Yellow needle-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

The amino H atom was located in a difference Fourier map and refined isotropically, with an N—H distance restraint of 0.90 (1) Å. C-bound H atoms were included in calculated positions and refined as riding atoms: C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis, with hydrogen bonds shown as dashed lines.
N'-(2-Chlorobenzylidene)-4-nitrobenzohydrazide top
Crystal data top
C14H10ClN3O3F(000) = 624
Mr = 303.70Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.2332 (18) ÅCell parameters from 2464 reflections
b = 13.3778 (18) Åθ = 2.4–24.5°
c = 8.9770 (16) ŵ = 0.30 mm1
β = 90.408 (2)°T = 298 K
V = 1349.0 (4) Å3Cut from needle, yellow
Z = 40.18 × 0.17 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2931 independent reflections
Radiation source: fine-focus sealed tube1882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.949, Tmax = 0.957k = 1417
10640 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.5874P]
where P = (Fo2 + 2Fc2)/3
2931 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C14H10ClN3O3V = 1349.0 (4) Å3
Mr = 303.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2332 (18) ŵ = 0.30 mm1
b = 13.3778 (18) ÅT = 298 K
c = 8.9770 (16) Å0.18 × 0.17 × 0.15 mm
β = 90.408 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2931 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1882 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.957Rint = 0.045
10640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.36 e Å3
2931 reflectionsΔρmin = 0.29 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23505 (8)0.62569 (6)1.10065 (9)0.0782 (3)
H20.246 (3)0.265 (2)1.1045 (13)0.080*
N10.18950 (18)0.33163 (14)0.9198 (2)0.0444 (5)
N20.23517 (19)0.25548 (14)1.0072 (2)0.0446 (5)
N30.4488 (2)0.1478 (2)1.3026 (3)0.0667 (7)
O10.26845 (19)0.15983 (13)0.80373 (18)0.0620 (5)
O20.4173 (3)0.23176 (19)1.2688 (3)0.1126 (10)
O30.5111 (2)0.12928 (18)1.4092 (3)0.0902 (8)
C10.1488 (2)0.59971 (19)0.9450 (3)0.0513 (6)
C20.1308 (2)0.50090 (18)0.8991 (3)0.0452 (6)
C30.0625 (2)0.4872 (2)0.7698 (3)0.0553 (7)
H30.04930.42270.73480.066*
C40.0149 (3)0.5657 (3)0.6941 (3)0.0679 (8)
H40.03120.55410.60940.082*
C50.0344 (3)0.6622 (2)0.7416 (4)0.0709 (9)
H50.00200.71540.68850.085*
C60.1015 (3)0.6800 (2)0.8673 (4)0.0644 (8)
H60.11490.74500.89980.077*
C70.1807 (2)0.41629 (18)0.9816 (3)0.0463 (6)
H70.20610.42471.07960.056*
C80.2731 (2)0.17126 (17)0.9389 (3)0.0434 (6)
C90.3213 (2)0.09038 (17)1.0373 (2)0.0392 (5)
C100.3769 (2)0.10957 (18)1.1718 (3)0.0443 (6)
H100.38450.17511.20520.053*
C110.4216 (2)0.03155 (19)1.2576 (3)0.0495 (6)
H110.46050.04411.34740.059*
C120.4069 (2)0.06443 (19)1.2070 (3)0.0479 (6)
C130.3536 (2)0.08568 (19)1.0728 (3)0.0558 (7)
H130.34560.15141.04040.067*
C140.3122 (2)0.00768 (19)0.9871 (3)0.0539 (7)
H140.27770.02070.89470.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1009 (6)0.0532 (5)0.0802 (6)0.0085 (4)0.0221 (5)0.0047 (4)
N10.0560 (12)0.0374 (11)0.0397 (11)0.0027 (9)0.0030 (9)0.0046 (9)
N20.0662 (13)0.0345 (11)0.0329 (11)0.0010 (9)0.0045 (9)0.0007 (9)
N30.0637 (15)0.0569 (16)0.0792 (18)0.0213 (12)0.0113 (13)0.0006 (14)
O10.1089 (16)0.0463 (10)0.0308 (10)0.0018 (10)0.0020 (9)0.0018 (8)
O20.134 (2)0.0514 (15)0.152 (3)0.0189 (14)0.0636 (19)0.0076 (15)
O30.1053 (18)0.0902 (18)0.0747 (16)0.0349 (14)0.0268 (14)0.0009 (13)
C10.0545 (14)0.0475 (15)0.0518 (15)0.0003 (12)0.0045 (12)0.0070 (12)
C20.0504 (13)0.0428 (14)0.0425 (14)0.0001 (11)0.0078 (11)0.0052 (11)
C30.0590 (16)0.0573 (17)0.0496 (16)0.0051 (13)0.0006 (12)0.0021 (13)
C40.0709 (19)0.078 (2)0.0548 (17)0.0151 (16)0.0082 (14)0.0057 (16)
C50.081 (2)0.063 (2)0.068 (2)0.0191 (16)0.0024 (17)0.0202 (16)
C60.0742 (19)0.0443 (16)0.075 (2)0.0044 (14)0.0094 (16)0.0094 (14)
C70.0579 (14)0.0440 (14)0.0369 (13)0.0017 (11)0.0019 (11)0.0026 (11)
C80.0579 (14)0.0369 (13)0.0353 (13)0.0113 (11)0.0005 (10)0.0003 (10)
C90.0476 (12)0.0365 (12)0.0337 (12)0.0051 (10)0.0043 (10)0.0016 (10)
C100.0510 (13)0.0369 (13)0.0450 (14)0.0038 (10)0.0014 (11)0.0087 (11)
C110.0507 (14)0.0530 (16)0.0446 (14)0.0034 (12)0.0080 (11)0.0057 (12)
C120.0468 (13)0.0443 (14)0.0526 (15)0.0089 (11)0.0004 (11)0.0007 (12)
C130.0694 (17)0.0355 (13)0.0625 (18)0.0044 (12)0.0095 (14)0.0119 (12)
C140.0749 (18)0.0416 (14)0.0450 (14)0.0001 (13)0.0130 (13)0.0117 (12)
Geometric parameters (Å, º) top
Cl1—C11.729 (3)C4—H40.9300
N1—C71.265 (3)C5—C61.373 (4)
N1—N21.382 (3)C5—H50.9300
N2—C81.353 (3)C6—H60.9300
N2—H20.891 (10)C7—H70.9300
N3—O31.207 (3)C8—C91.495 (3)
N3—O21.216 (3)C9—C101.380 (3)
N3—C121.482 (3)C9—C141.390 (3)
O1—C81.224 (3)C10—C111.389 (3)
C1—C61.385 (4)C10—H100.9300
C1—C21.399 (3)C11—C121.372 (3)
C2—C31.399 (3)C11—H110.9300
C2—C71.462 (3)C12—C131.371 (3)
C3—C41.358 (4)C13—C141.375 (4)
C3—H30.9300C13—H130.9300
C4—C51.377 (5)C14—H140.9300
C7—N1—N2116.14 (19)N1—C7—C2120.1 (2)
C8—N2—N1118.26 (19)N1—C7—H7119.9
C8—N2—H2122 (2)C2—C7—H7119.9
N1—N2—H2120 (2)O1—C8—N2122.8 (2)
O3—N3—O2123.6 (3)O1—C8—C9120.5 (2)
O3—N3—C12119.0 (3)N2—C8—C9116.7 (2)
O2—N3—C12117.4 (3)C10—C9—C14119.4 (2)
C6—C1—C2122.0 (3)C10—C9—C8122.8 (2)
C6—C1—Cl1117.5 (2)C14—C9—C8117.8 (2)
C2—C1—Cl1120.5 (2)C9—C10—C11120.3 (2)
C1—C2—C3116.5 (2)C9—C10—H10119.8
C1—C2—C7121.9 (2)C11—C10—H10119.8
C3—C2—C7121.6 (2)C12—C11—C10118.5 (2)
C4—C3—C2121.7 (3)C12—C11—H11120.7
C4—C3—H3119.2C10—C11—H11120.7
C2—C3—H3119.2C13—C12—C11122.4 (2)
C3—C4—C5120.6 (3)C13—C12—N3119.2 (2)
C3—C4—H4119.7C11—C12—N3118.4 (2)
C5—C4—H4119.7C12—C13—C14118.5 (2)
C6—C5—C4120.1 (3)C12—C13—H13120.7
C6—C5—H5119.9C14—C13—H13120.7
C4—C5—H5119.9C13—C14—C9120.7 (2)
C5—C6—C1119.1 (3)C13—C14—H14119.6
C5—C6—H6120.4C9—C14—H14119.6
C1—C6—H6120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.89 (1)2.06 (1)2.915 (3)160 (3)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10ClN3O3
Mr303.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.2332 (18), 13.3778 (18), 8.9770 (16)
β (°) 90.408 (2)
V3)1349.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.18 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
10640, 2931, 1882
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.146, 1.03
No. of reflections2931
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.89 (1)2.064 (14)2.915 (3)160 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2010). Acta Cryst. E66, o2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2011). Acta Cryst. E67, o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds