organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­bromo-6-[(E)-({3-[(E)-(3,5-di­bromo-2-oxido­benzyl­­idene)aza­nium­yl]-2,2-di­methyl­prop­yl}iminium­yl)meth­yl]phenolate

aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. of IRAN, bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 25 December 2011; accepted 27 December 2011; online 11 January 2012)

In the title mol­ecule, C19H18Br4N2O2, the dihedral angle between the benzene rings is 73.9 (2)°. Two intra­molecular N—H⋯O hydrogen bonds make S(6) ring motifs. In the crystal, mol­ecules are linked via C—H⋯O inter­actions, forming chains propagating along the a-axis directon. A short C⋯Br [3.401 (5) Å] contact is present in the crystal structure, which is further stabilized by a ππ inter­action [centroid–centroid distance = 3.739 (3) Å].

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18Br4N2O

  • Mr = 625.99

  • Orthorhombic, P b c a

  • a = 11.6861 (3) Å

  • b = 11.4616 (3) Å

  • c = 31.3782 (9) Å

  • V = 4202.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.68 mm−1

  • T = 291 K

  • 0.25 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.250, Tmax = 0.459

  • 38547 measured reflections

  • 5242 independent reflections

  • 2756 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.138

  • S = 1.04

  • 5242 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.85 1.82 2.549 (5) 142
N2—H2⋯O2 0.86 1.80 2.537 (5) 143
C8—H8A⋯O2i 0.97 2.53 3.424 (7) 152
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structure analysis of Schiff base ligands (Kargar et al., 2011; Kia et al., 2010), we synthesized the title compound and report herein on its crystal structure.

The title compound (Fig. 1) is a potential tetradentate Zwitterionic Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to thoses observed for related structures (Kargar et al., 2011; Kia et al., 2010).

In the molecule there are two intramolecular N—H···O hydrogen bonds (Table 1) making S(6) ring motifs (Bernstein et al., 1995). The dihedral angle between the benzene rings is 73.9 (2)°. An interesting feature of the crystal structure is the short C6···Br1ii contact [3.401 (5) Å; (ii) -x+1/2, y-1/2, z] , which is shorter than the sum of the van der Waals radii [3.55 Å] of these atoms.

In the crystal, molecules are linked together along the a axis into chains through an intermolecular C—H···O interaction (Fig. 2 and Table 1). The crystal structure is further stabilized by an intermolecular π-π interaction [Cg1···Cg2iii = 3.739 (3)Å; (iii) x, -y-1/2, z+1/2; Cg1 and Cg2 are the centroid of benzene rings (C1–C6) and (C14–19), respectively].

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen bond motifs, see: Bernstein et al. (1995). For related structures, see: Kargar et al. (2011); Kia et al. (2010).

Experimental top

The title compound was synthesized by adding 3,5-dibromo-salicylaldehyde (2 mmol) to a solution of 2,2-dimethyl-1,3-propanediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Yellow single crystals of the title compound, suitable for X-ray structure determination, were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days.

Refinement top

The NH H-atoms were located in a difference Fourier map and were refined as riding atoms with Uiso (H) = 1.2 Ueq (N). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed lines show the intramolecular N-H···O hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b-axis, showing linking of molecules into a chain along the a-axis through the intermolecular C—H···O intearctions (dashed lines). Only the H atoms involved in these interactions are shown.
2,4-Dibromo-6-[(E)-({3-[(E)-(3,5-dibromo-2- oxidobenzylidene)azaniumyl]-2,2-dimethylpropyl}iminiumyl)methyl]phenolate top
Crystal data top
C19H18Br4N2OF(000) = 2416
Mr = 625.99Dx = 1.979 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2370 reflections
a = 11.6861 (3) Åθ = 2.5–27.5°
b = 11.4616 (3) ŵ = 7.68 mm1
c = 31.3782 (9) ÅT = 291 K
V = 4202.8 (2) Å3Block, yellow
Z = 80.25 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5242 independent reflections
Radiation source: fine-focus sealed tube2756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ and ω scansθmax = 28.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1515
Tmin = 0.250, Tmax = 0.459k = 1515
38547 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0616P)2]
where P = (Fo2 + 2Fc2)/3
5242 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C19H18Br4N2OV = 4202.8 (2) Å3
Mr = 625.99Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.6861 (3) ŵ = 7.68 mm1
b = 11.4616 (3) ÅT = 291 K
c = 31.3782 (9) Å0.25 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5242 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2756 reflections with I > 2σ(I)
Tmin = 0.250, Tmax = 0.459Rint = 0.090
38547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
5242 reflectionsΔρmin = 0.64 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.34182 (5)0.30064 (6)0.37158 (2)0.0653 (2)
Br20.17302 (6)0.00225 (6)0.49759 (2)0.0695 (2)
Br30.32582 (5)0.27233 (8)0.11028 (2)0.0748 (3)
Br40.02936 (5)0.17726 (6)0.006978 (18)0.0531 (2)
O10.1272 (3)0.2212 (3)0.32548 (12)0.0456 (9)
O20.1731 (3)0.1290 (3)0.16822 (12)0.0493 (10)
N10.0616 (3)0.1131 (4)0.31559 (14)0.0399 (11)
H10.00920.16010.30810.048*
N20.0054 (3)0.0002 (3)0.18846 (14)0.0401 (11)
H20.06810.03640.19300.048*
C10.0493 (4)0.0982 (4)0.37894 (16)0.0339 (11)
C20.1341 (4)0.1743 (4)0.36298 (16)0.0348 (12)
C30.2273 (4)0.1966 (4)0.39035 (17)0.0399 (13)
C40.2376 (4)0.1472 (5)0.42992 (17)0.0430 (13)
H40.30020.16450.44710.052*
C50.1525 (4)0.0701 (5)0.44416 (17)0.0417 (13)
C60.0597 (4)0.0475 (4)0.41923 (17)0.0398 (13)
H60.00260.00220.42910.048*
C70.0502 (4)0.0723 (5)0.35284 (17)0.0396 (13)
H70.10720.02430.36380.047*
C80.1584 (4)0.0846 (5)0.28844 (17)0.0422 (13)
H8A0.21740.04780.30550.051*
H8B0.18990.15600.27670.051*
C90.1256 (4)0.0031 (4)0.25192 (16)0.0351 (12)
C100.0651 (4)0.1058 (4)0.26898 (17)0.0438 (13)
H10A0.10970.13920.29160.066*
H10B0.05680.16180.24640.066*
H10C0.00900.08480.27960.066*
C110.2360 (4)0.0326 (5)0.22920 (19)0.0528 (16)
H11A0.27450.03590.21890.079*
H11B0.21800.08270.20560.079*
H11C0.28490.07320.24880.079*
C120.0487 (4)0.0721 (5)0.22116 (17)0.0444 (13)
H12A0.01050.11110.23750.053*
H12B0.09430.13180.20730.053*
C130.0332 (4)0.0110 (4)0.15044 (17)0.0379 (12)
H130.10050.02710.14290.045*
C140.0254 (4)0.0815 (4)0.11903 (15)0.0338 (11)
C150.1304 (4)0.1368 (4)0.13050 (17)0.0365 (12)
C160.1851 (4)0.2010 (5)0.09768 (18)0.0407 (13)
C170.1389 (4)0.2107 (4)0.05729 (17)0.0412 (13)
H170.17760.25220.03630.049*
C180.0336 (4)0.1579 (4)0.04800 (15)0.0354 (11)
C190.0218 (4)0.0939 (4)0.07783 (16)0.0365 (12)
H190.09090.05800.07120.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0620 (4)0.0651 (4)0.0688 (5)0.0276 (3)0.0133 (3)0.0081 (4)
Br20.0780 (5)0.0835 (5)0.0470 (4)0.0080 (4)0.0106 (3)0.0238 (3)
Br30.0533 (4)0.1174 (6)0.0537 (4)0.0359 (4)0.0020 (3)0.0015 (4)
Br40.0591 (4)0.0723 (4)0.0279 (3)0.0027 (3)0.0031 (3)0.0027 (3)
O10.056 (2)0.048 (2)0.033 (2)0.0070 (18)0.0035 (18)0.0054 (18)
O20.043 (2)0.071 (3)0.034 (2)0.0015 (18)0.0082 (18)0.008 (2)
N10.037 (2)0.051 (3)0.032 (3)0.0050 (19)0.001 (2)0.005 (2)
N20.040 (2)0.046 (3)0.035 (3)0.0020 (19)0.007 (2)0.008 (2)
C10.039 (3)0.034 (3)0.029 (3)0.001 (2)0.002 (2)0.007 (2)
C20.044 (3)0.030 (3)0.031 (3)0.004 (2)0.002 (2)0.008 (2)
C30.042 (3)0.033 (3)0.044 (4)0.001 (2)0.005 (3)0.007 (3)
C40.043 (3)0.048 (3)0.038 (3)0.004 (3)0.008 (3)0.002 (3)
C50.053 (3)0.043 (3)0.029 (3)0.010 (3)0.004 (3)0.001 (2)
C60.046 (3)0.040 (3)0.033 (3)0.001 (2)0.004 (3)0.001 (3)
C70.046 (3)0.040 (3)0.033 (3)0.003 (2)0.008 (3)0.007 (2)
C80.035 (3)0.060 (4)0.032 (3)0.003 (3)0.005 (2)0.010 (3)
C90.030 (2)0.048 (3)0.028 (3)0.002 (2)0.003 (2)0.010 (2)
C100.046 (3)0.049 (3)0.037 (3)0.001 (3)0.003 (3)0.006 (3)
C110.036 (3)0.077 (4)0.045 (4)0.001 (3)0.005 (3)0.021 (3)
C120.052 (3)0.048 (3)0.033 (3)0.001 (3)0.004 (3)0.011 (3)
C130.041 (3)0.037 (3)0.036 (3)0.005 (2)0.000 (3)0.001 (2)
C140.040 (3)0.037 (3)0.024 (3)0.005 (2)0.003 (2)0.005 (2)
C150.033 (3)0.038 (3)0.039 (3)0.002 (2)0.001 (2)0.004 (3)
C160.036 (3)0.050 (3)0.036 (3)0.006 (2)0.005 (2)0.002 (3)
C170.046 (3)0.044 (3)0.033 (3)0.003 (3)0.012 (3)0.005 (3)
C180.046 (3)0.039 (3)0.022 (3)0.005 (2)0.000 (2)0.005 (2)
C190.035 (3)0.043 (3)0.031 (3)0.001 (2)0.000 (2)0.006 (2)
Geometric parameters (Å, º) top
Br1—C31.887 (5)C8—H8A0.9700
Br2—C51.886 (5)C8—H8B0.9700
Br3—C161.879 (5)C9—C111.530 (7)
Br4—C181.889 (5)C9—C101.531 (7)
O1—C21.296 (6)C9—C121.538 (7)
O2—C151.287 (6)C10—H10A0.9600
N1—C71.266 (6)C10—H10B0.9600
N1—C81.453 (6)C10—H10C0.9600
N1—H10.8479C11—H11A0.9600
N2—C131.282 (6)C11—H11B0.9600
N2—C121.460 (6)C11—H11C0.9600
N2—H20.8557C12—H12A0.9700
C1—C61.397 (7)C12—H12B0.9700
C1—C21.412 (7)C13—C141.447 (7)
C1—C71.454 (7)C13—H130.9300
C2—C31.410 (7)C14—C191.412 (7)
C3—C41.370 (7)C14—C151.427 (7)
C4—C51.403 (7)C15—C161.418 (7)
C4—H40.9300C16—C171.382 (7)
C5—C61.363 (7)C17—C181.402 (7)
C6—H60.9300C17—H170.9300
C7—H70.9300C18—C191.354 (7)
C8—C91.527 (7)C19—H190.9300
C7—N1—C8122.6 (5)C9—C10—H10A109.5
C7—N1—H1114.5C9—C10—H10B109.5
C8—N1—H1122.9H10A—C10—H10B109.5
C13—N2—C12123.9 (5)C9—C10—H10C109.5
C13—N2—H2114.0H10A—C10—H10C109.5
C12—N2—H2122.1H10B—C10—H10C109.5
C6—C1—C2121.2 (5)C9—C11—H11A109.5
C6—C1—C7119.6 (5)C9—C11—H11B109.5
C2—C1—C7119.2 (5)H11A—C11—H11B109.5
O1—C2—C3121.8 (5)C9—C11—H11C109.5
O1—C2—C1122.3 (5)H11A—C11—H11C109.5
C3—C2—C1115.9 (5)H11B—C11—H11C109.5
C4—C3—C2123.1 (5)N2—C12—C9113.8 (4)
C4—C3—Br1118.8 (4)N2—C12—H12A108.8
C2—C3—Br1118.1 (4)C9—C12—H12A108.8
C3—C4—C5119.1 (5)N2—C12—H12B108.8
C3—C4—H4120.4C9—C12—H12B108.8
C5—C4—H4120.4H12A—C12—H12B107.7
C6—C5—C4120.1 (5)N2—C13—C14121.5 (5)
C6—C5—Br2121.9 (4)N2—C13—H13119.2
C4—C5—Br2118.0 (4)C14—C13—H13119.2
C5—C6—C1120.6 (5)C19—C14—C15121.5 (5)
C5—C6—H6119.7C19—C14—C13119.6 (5)
C1—C6—H6119.7C15—C14—C13118.9 (5)
N1—C7—C1121.9 (5)O2—C15—C16121.9 (5)
N1—C7—H7119.1O2—C15—C14122.3 (5)
C1—C7—H7119.1C16—C15—C14115.8 (5)
N1—C8—C9112.5 (4)C17—C16—C15122.1 (5)
N1—C8—H8A109.1C17—C16—Br3120.0 (4)
C9—C8—H8A109.1C15—C16—Br3117.9 (4)
N1—C8—H8B109.1C16—C17—C18119.9 (5)
C9—C8—H8B109.1C16—C17—H17120.0
H8A—C8—H8B107.8C18—C17—H17120.0
C8—C9—C11107.5 (4)C19—C18—C17120.7 (5)
C8—C9—C10110.6 (4)C19—C18—Br4120.6 (4)
C11—C9—C10109.6 (4)C17—C18—Br4118.8 (4)
C8—C9—C12107.6 (4)C18—C19—C14120.0 (5)
C11—C9—C12109.7 (4)C18—C19—H19120.0
C10—C9—C12111.7 (4)C14—C19—H19120.0
C6—C1—C2—O1179.0 (4)C13—N2—C12—C997.7 (6)
C7—C1—C2—O10.9 (7)C8—C9—C12—N2170.1 (4)
C6—C1—C2—C31.0 (7)C11—C9—C12—N273.2 (5)
C7—C1—C2—C3179.1 (4)C10—C9—C12—N248.5 (6)
O1—C2—C3—C4179.1 (5)C12—N2—C13—C14178.6 (4)
C1—C2—C3—C40.9 (7)N2—C13—C14—C19178.4 (5)
O1—C2—C3—Br11.6 (6)N2—C13—C14—C151.9 (7)
C1—C2—C3—Br1178.4 (3)C19—C14—C15—O2178.1 (5)
C2—C3—C4—C50.4 (8)C13—C14—C15—O22.2 (7)
Br1—C3—C4—C5179.7 (4)C19—C14—C15—C161.9 (7)
C3—C4—C5—C61.7 (8)C13—C14—C15—C16177.8 (4)
C3—C4—C5—Br2177.0 (4)O2—C15—C16—C17179.2 (5)
C4—C5—C6—C11.5 (8)C14—C15—C16—C170.8 (7)
Br2—C5—C6—C1177.0 (4)O2—C15—C16—Br31.7 (7)
C2—C1—C6—C50.2 (8)C14—C15—C16—Br3178.3 (3)
C7—C1—C6—C5179.7 (5)C15—C16—C17—C181.2 (8)
C8—N1—C7—C1177.6 (4)Br3—C16—C17—C18179.7 (4)
C6—C1—C7—N1177.6 (5)C16—C17—C18—C192.3 (8)
C2—C1—C7—N12.2 (7)C16—C17—C18—Br4177.9 (4)
C7—N1—C8—C9107.5 (6)C17—C18—C19—C141.2 (7)
N1—C8—C9—C11173.0 (5)Br4—C18—C19—C14179.0 (4)
N1—C8—C9—C1053.4 (6)C15—C14—C19—C181.0 (7)
N1—C8—C9—C1268.8 (6)C13—C14—C19—C18178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.851.822.549 (5)142
N2—H2···O20.861.802.537 (5)143
C8—H8A···O2i0.972.533.424 (7)152
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H18Br4N2O
Mr625.99
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)11.6861 (3), 11.4616 (3), 31.3782 (9)
V3)4202.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)7.68
Crystal size (mm)0.25 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.250, 0.459
No. of measured, independent and
observed [I > 2σ(I)] reflections
38547, 5242, 2756
Rint0.090
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 1.04
No. of reflections5242
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.64

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.851.822.549 (5)142
N2—H2···O20.861.802.537 (5)143
C8—H8A···O2i0.972.533.424 (7)152
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

HK and MH thank PNU for financial support, and MNT thanks the GC University of Sargodha, Pakistan, for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds