organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[(4-{[(2-Hy­dr­oxy­phen­yl)(phen­yl)methyl­­idene]amino}­but­yl)imino](phen­yl)meth­yl}phenol

aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. of Iran, bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 25 December 2011; accepted 27 December 2011; online 7 January 2012)

The asymmetric unit of the title compound, C30H28N2O2, comprises half of a potential tetra­dentate Schiff base ligand; an inversion centre is situtated at the center of the butane­diamine spacer. The central methyl­ene segment of the diamine spacer is disordered over two positions with a refined site-occupancy ratio of 0.651 (7):0.349 (7). The phenyl ring and the hy­droxy-substituted benzene ring are almost perpendicular to each other, with a dihedral angle of 87.90 (8) Å. Intra­molecular O—H⋯N hydrogen bonds make S(6) ring motifs.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to Schiff bases in coordination chemistry, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Kargar et al. (2009[Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776-o777.]). For a related structure, see: Friscic et al. (1998[Friscic, T., Kaitner, B. & Mestrovic, E. (1998). Croat. Chem. Acta, 71, 87-91.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28N2O2

  • Mr = 448.54

  • Monoclinic, P 21 /n

  • a = 11.5720 (3) Å

  • b = 7.7803 (2) Å

  • c = 13.3914 (4) Å

  • β = 95.774 (2)°

  • V = 1199.56 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.25 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.250, Tmax = 0.459

  • 10739 measured reflections

  • 2951 independent reflections

  • 1706 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.02

  • 2951 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.80 2.5328 (16) 148

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands are one of the most prevalent systems in coordination chemistry (Granovski et al., 1993; Kargar et al., 2009). As part of a general study of potential tetradenate Schiff bases (Kargar et al., 2009), we have synthesized the title compound and report herein on its crystal structure.

The asymmetric unit of the title compound, Fig. 1, comprises half of a potential tetradentate Schiff base ligand. The inversion centre is situtated at the center of the butanediamine spacer. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for a related structure (Friscic et al., 1998).

There are intramolecular O—H···N hydrogen bonds (Table 1) making S(6) ring motifs (Bernstein et al., 1995). The phenyl ring and the hydroxy-substituted benzene ring are almost perpendicular to each other with a dihedral angle of 87.90 (8)Å. The central methylene segment (C15) of the diamine spacer was disordered over two positions with a refined site occupancy ratio of 0.651 (7)/0.349 (7).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen bond motifs, see: Bernstein et al. (1995). For background to Schiff bases in coordination chemistry, see: Granovski et al. (1993); Kargar et al. (2009). For a related structure, see: Friscic et al. (1998).

Experimental top

The title compound was synthesized by adding 2-hydroxybenzophenone (2 mmol) to a solution of 1,4-butylenediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Yellow single crystals of the title compound, suitable for X-ray structure determination, were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days. The sample was hygroscopic and for the data collection it was sealed in fine glass cappilary under an inert atmosphere.

Refinement top

The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93 and 0.97 Å for CH and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for OH, and k = 1.2 for all other H-atoms. The methylene segment (C15) of the diamine spacer was disordered over two positions with a refined site occupancy ratio 0.651 (7)/0.349 (7).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed lines show the intramolecular O-H···N hydrogen bonds [symmetry code: (A) -x, -y, -z].
2-{[(4-{[(2- Hydroxyphenyl)(phenyl)methylidene]amino}butyl)imino](phenyl)methyl}phenol top
Crystal data top
C30H28N2O2F(000) = 476
Mr = 448.54Dx = 1.242 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2370 reflections
a = 11.5720 (3) Åθ = 2.5–27.5°
b = 7.7803 (2) ŵ = 0.08 mm1
c = 13.3914 (4) ÅT = 291 K
β = 95.774 (2)°Block, yellow
V = 1199.56 (6) Å30.25 × 0.16 × 0.12 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2951 independent reflections
Radiation source: fine-focus sealed tube1706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1511
Tmin = 0.250, Tmax = 0.459k = 109
10739 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.0873P]
where P = (Fo2 + 2Fc2)/3
2951 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C30H28N2O2V = 1199.56 (6) Å3
Mr = 448.54Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.5720 (3) ŵ = 0.08 mm1
b = 7.7803 (2) ÅT = 291 K
c = 13.3914 (4) Å0.25 × 0.16 × 0.12 mm
β = 95.774 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2951 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1706 reflections with I > 2σ(I)
Tmin = 0.250, Tmax = 0.459Rint = 0.027
10739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
2951 reflectionsΔρmin = 0.13 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.08671 (10)0.51502 (14)0.09514 (8)0.0613 (3)
H10.04260.43480.07970.092*
N10.04017 (10)0.25674 (14)0.12091 (9)0.0500 (3)
C10.04494 (11)0.42065 (16)0.25836 (10)0.0428 (3)
C20.10105 (12)0.53074 (17)0.19507 (11)0.0469 (4)
C30.17362 (13)0.6602 (2)0.23703 (13)0.0595 (4)
H30.21060.73320.19540.071*
C40.19106 (14)0.6812 (2)0.33870 (13)0.0654 (5)
H40.24000.76810.36550.078*
C50.13674 (14)0.5747 (2)0.40225 (12)0.0631 (4)
H50.14880.58970.47140.076*
C60.06477 (13)0.44660 (19)0.36208 (11)0.0535 (4)
H60.02830.37520.40490.064*
C70.03030 (11)0.28060 (16)0.21646 (10)0.0436 (3)
C80.09188 (12)0.17392 (18)0.28775 (10)0.0481 (4)
C90.19981 (14)0.2220 (2)0.31276 (13)0.0633 (4)
H90.23630.31830.28300.076*
C100.25395 (17)0.1277 (3)0.38186 (15)0.0814 (6)
H100.32690.16100.39820.098*
C110.2023 (2)0.0122 (3)0.42610 (15)0.0852 (6)
H110.23840.07310.47410.102*
C120.0963 (2)0.0639 (3)0.39977 (16)0.0891 (6)
H120.06150.16210.42880.107*
C130.04048 (15)0.0282 (2)0.33051 (13)0.0701 (5)
H130.03130.00800.31290.084*
C140.11235 (13)0.1200 (2)0.07252 (12)0.0592 (4)
H14A0.16400.07640.11940.071*0.651 (7)
H14B0.15980.16700.01520.071*0.651 (7)
H14C0.12260.03010.12000.071*0.349 (7)
H14D0.18740.16540.04940.071*0.349 (7)
C150.0405 (3)0.0257 (4)0.0383 (3)0.0529 (10)0.651 (7)
H15A0.00500.07410.09630.063*0.651 (7)
H15B0.09230.11480.00960.063*0.651 (7)
C15A0.0554 (5)0.0468 (8)0.0156 (5)0.0503 (19)0.349 (7)
H15C0.03940.13990.06040.060*0.349 (7)
H15D0.10920.03140.05250.060*0.349 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0729 (8)0.0651 (7)0.0466 (7)0.0139 (5)0.0090 (5)0.0025 (5)
N10.0544 (8)0.0472 (7)0.0489 (8)0.0007 (5)0.0084 (6)0.0125 (5)
C10.0432 (8)0.0421 (7)0.0436 (8)0.0038 (6)0.0061 (6)0.0031 (6)
C20.0466 (8)0.0459 (8)0.0481 (9)0.0032 (6)0.0045 (6)0.0001 (6)
C30.0580 (10)0.0555 (9)0.0646 (11)0.0104 (7)0.0036 (8)0.0051 (8)
C40.0620 (11)0.0620 (10)0.0700 (12)0.0148 (8)0.0038 (8)0.0092 (9)
C50.0661 (11)0.0728 (11)0.0488 (9)0.0081 (8)0.0019 (8)0.0126 (8)
C60.0565 (10)0.0591 (9)0.0455 (9)0.0037 (7)0.0084 (7)0.0026 (7)
C70.0418 (8)0.0423 (8)0.0473 (9)0.0051 (6)0.0080 (6)0.0048 (6)
C80.0497 (9)0.0467 (8)0.0483 (8)0.0060 (6)0.0074 (7)0.0050 (6)
C90.0580 (10)0.0638 (10)0.0709 (11)0.0014 (8)0.0199 (8)0.0080 (8)
C100.0747 (13)0.0904 (15)0.0849 (14)0.0239 (11)0.0370 (11)0.0235 (12)
C110.1070 (17)0.0843 (15)0.0679 (13)0.0450 (13)0.0262 (12)0.0066 (11)
C120.1096 (17)0.0709 (12)0.0858 (15)0.0154 (11)0.0050 (12)0.0255 (10)
C130.0653 (11)0.0635 (10)0.0822 (13)0.0011 (8)0.0106 (9)0.0142 (9)
C140.0587 (10)0.0596 (10)0.0599 (10)0.0060 (7)0.0080 (7)0.0204 (8)
C150.063 (2)0.0466 (16)0.0497 (19)0.0073 (13)0.0104 (14)0.0057 (15)
C15A0.057 (4)0.048 (3)0.044 (4)0.008 (2)0.003 (2)0.009 (3)
Geometric parameters (Å, º) top
O1—C21.3373 (17)C10—C111.350 (3)
O1—H10.8200C10—H100.9300
N1—C71.2867 (17)C11—C121.371 (3)
N1—C141.4631 (18)C11—H110.9300
C1—C61.3994 (19)C12—C131.382 (3)
C1—C21.4087 (19)C12—H120.9300
C1—C71.4703 (19)C13—H130.9300
C2—C31.393 (2)C14—C151.504 (3)
C3—C41.366 (2)C14—C15A1.519 (6)
C3—H30.9300C14—H14A0.9700
C4—C51.383 (2)C14—H14B0.9700
C4—H40.9300C14—H14C0.9599
C5—C61.374 (2)C14—H14D0.9600
C5—H50.9300C15—C15i1.512 (7)
C6—H60.9300C15—H15A0.9700
C7—C81.4984 (19)C15—H15B0.9700
C8—C91.377 (2)C15A—C15Ai1.497 (13)
C8—C131.378 (2)C15A—H15C0.9700
C9—C101.380 (2)C15A—H15D0.9700
C9—H90.9300
C2—O1—H1109.5C8—C13—H13120.2
C7—N1—C14122.34 (13)C12—C13—H13120.2
C6—C1—C2118.03 (12)N1—C14—C15112.01 (15)
C6—C1—C7121.16 (13)N1—C14—C15A110.1 (2)
C2—C1—C7120.80 (12)C15—C14—C15A35.4 (2)
O1—C2—C3118.61 (13)N1—C14—H14A109.2
O1—C2—C1121.88 (12)C15—C14—H14A109.2
C3—C2—C1119.51 (13)C15A—C14—H14A135.7
C4—C3—C2120.74 (14)N1—C14—H14B109.2
C4—C3—H3119.6C15—C14—H14B109.2
C2—C3—H3119.6C15A—C14—H14B77.4
C3—C4—C5120.72 (14)H14A—C14—H14B107.9
C3—C4—H4119.6N1—C14—H14C109.9
C5—C4—H4119.6C15—C14—H14C76.2
C6—C5—C4119.27 (15)C15A—C14—H14C109.4
C6—C5—H5120.4H14A—C14—H14C36.2
C4—C5—H5120.4H14B—C14—H14C134.5
C5—C6—C1121.72 (14)N1—C14—H14D109.4
C5—C6—H6119.1C15—C14—H14D133.6
C1—C6—H6119.1C15A—C14—H14D109.7
N1—C7—C1118.45 (12)H14A—C14—H14D75.0
N1—C7—C8123.60 (12)H14B—C14—H14D35.3
C1—C7—C8117.95 (12)H14C—C14—H14D108.3
C9—C8—C13119.12 (15)C14—C15—C15i114.0 (4)
C9—C8—C7120.37 (14)C14—C15—H14C36.2
C13—C8—C7120.50 (13)C15i—C15—H14C148.7
C8—C9—C10120.18 (17)C14—C15—H15A108.7
C8—C9—H9119.9C15i—C15—H15A108.7
C10—C9—H9119.9H14C—C15—H15A82.4
C11—C10—C9120.84 (19)C14—C15—H15B108.7
C11—C10—H10119.6C15i—C15—H15B108.7
C9—C10—H10119.6H14C—C15—H15B94.6
C10—C11—C12119.46 (18)H15A—C15—H15B107.6
C10—C11—H11120.3C15Ai—C15A—C14113.1 (7)
C12—C11—H11120.3C15Ai—C15A—H15C109.0
C11—C12—C13120.74 (19)C14—C15A—H15C109.0
C11—C12—H12119.6C15Ai—C15A—H15D109.0
C13—C12—H12119.6C14—C15A—H15D109.0
C8—C13—C12119.62 (18)H15C—C15A—H15D107.8
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.802.5328 (16)148

Experimental details

Crystal data
Chemical formulaC30H28N2O2
Mr448.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)11.5720 (3), 7.7803 (2), 13.3914 (4)
β (°) 95.774 (2)
V3)1199.56 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.250, 0.459
No. of measured, independent and
observed [I > 2σ(I)] reflections
10739, 2951, 1706
Rint0.027
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.02
No. of reflections2951
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.802.5328 (16)148
 

Acknowledgements

HK and AJ thank PNU for financial support, and MNT thanks the GC University of Sargodha, Pakistan for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFriscic, T., Kaitner, B. & Mestrovic, E. (1998). Croat. Chem. Acta, 71, 87–91.  CAS Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776–o777.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds