organic compounds
2-Hydroxy-N′-(4-hydroxybenzylidene)-3-methylbenzohydrazide
aDepartment of Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao 066600, People's Republic of China
*Correspondence e-mail: zhaofu_zhu@163.com
The title compound, C15H14N2O3, was prepared by condensing 4-hydroxybenzaldehyde and 2-hydroxy-3-methylbenzohydrazide in methanol. The two benzene rings make a dihedral angle of 19.03 (11)°. An intramolecular O—H⋯O hydrogen bond is observed. The is stabilized by intermolecular O—H⋯O and N—H⋯O hydrogen bonds and C—H⋯O interactions, which lead to the formation of a three-dimensional network.
Related literature
For the crystal structures of similar hydrazone compounds, see: Fun et al. (2011); Horkaew et al. (2011); Zhi et al. (2011); Huang & Wu (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811055930/su2356sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811055930/su2356Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811055930/su2356Isup3.cml
4-Hydroxybenzaldehyde (122.1 mg, 1.0 mmol) and 2-hydroxy-3-methylbenzohydrazide (166.2 mg, 1.0 mmol) were mixed in methanol (60 ml). The mixture was refluxed for 30 min, then cooled to room temperature, yielding a colourless solution. Colourless crystals were formed when the solution was left to evaporate in air for several days.
All the H atoms were placed in calculated positions and refined as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(O,N,C), where k = 1.5 for OH and CH3 H-atoms and k = 1.2 for all other H-atoms. In the absence of significant
effects the of 2.5 (15) for 1092 Friedel pairs, has no meaning.Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H14N2O3 | F(000) = 568 |
Mr = 270.28 | Dx = 1.374 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1375 reflections |
a = 7.3872 (17) Å | θ = 2.6–24.5° |
b = 13.012 (2) Å | µ = 0.10 mm−1 |
c = 13.592 (2) Å | T = 298 K |
V = 1306.5 (4) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.20 × 0.17 mm |
Bruker SMART CCD area-detector diffractometer | 2663 independent reflections |
Radiation source: fine-focus sealed tube | 1953 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scans | θmax = 26.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −9→8 |
Tmin = 0.981, Tmax = 0.984 | k = −13→16 |
6296 measured reflections | l = −17→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0494P)2] where P = (Fo2 + 2Fc2)/3 |
2663 reflections | (Δ/σ)max = 0.001 |
184 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C15H14N2O3 | V = 1306.5 (4) Å3 |
Mr = 270.28 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.3872 (17) Å | µ = 0.10 mm−1 |
b = 13.012 (2) Å | T = 298 K |
c = 13.592 (2) Å | 0.20 × 0.20 × 0.17 mm |
Bruker SMART CCD area-detector diffractometer | 2663 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1953 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.984 | Rint = 0.032 |
6296 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.13 e Å−3 |
2663 reflections | Δρmin = −0.19 e Å−3 |
184 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.0995 (3) | 0.79013 (12) | 0.51891 (12) | 0.0453 (5) | |
N2 | 0.1159 (3) | 0.72214 (12) | 0.44083 (12) | 0.0455 (5) | |
H2A | 0.1404 | 0.7437 | 0.3825 | 0.055* | |
O1 | 0.1126 (2) | 1.18743 (10) | 0.79368 (10) | 0.0516 (4) | |
H1 | 0.0544 | 1.1672 | 0.8412 | 0.077* | |
O2 | 0.0499 (2) | 0.59172 (10) | 0.54350 (10) | 0.0523 (5) | |
O3 | 0.1334 (3) | 0.40715 (11) | 0.49251 (11) | 0.0600 (5) | |
H3 | 0.1016 | 0.4528 | 0.5303 | 0.090* | |
C1 | 0.1268 (3) | 0.96163 (14) | 0.57681 (14) | 0.0376 (5) | |
C2 | 0.0866 (3) | 0.93585 (16) | 0.67358 (15) | 0.0430 (6) | |
H2 | 0.0608 | 0.8679 | 0.6894 | 0.052* | |
C3 | 0.0846 (3) | 1.00949 (16) | 0.74632 (14) | 0.0433 (6) | |
H3A | 0.0602 | 0.9908 | 0.8110 | 0.052* | |
C4 | 0.1188 (3) | 1.11133 (14) | 0.72333 (15) | 0.0395 (5) | |
C5 | 0.1604 (3) | 1.13823 (17) | 0.62779 (15) | 0.0479 (6) | |
H5 | 0.1856 | 1.2063 | 0.6121 | 0.057* | |
C6 | 0.1646 (3) | 1.06390 (16) | 0.55602 (16) | 0.0457 (6) | |
H6 | 0.1935 | 1.0826 | 0.4919 | 0.055* | |
C7 | 0.1324 (3) | 0.88408 (15) | 0.49972 (15) | 0.0424 (5) | |
H7 | 0.1604 | 0.9034 | 0.4356 | 0.051* | |
C8 | 0.0922 (3) | 0.62132 (15) | 0.45912 (15) | 0.0410 (5) | |
C9 | 0.1136 (3) | 0.54807 (15) | 0.37750 (14) | 0.0393 (5) | |
C10 | 0.1344 (3) | 0.44378 (16) | 0.39901 (15) | 0.0437 (5) | |
C11 | 0.1573 (3) | 0.37050 (17) | 0.32441 (17) | 0.0487 (6) | |
C12 | 0.1510 (3) | 0.40437 (19) | 0.22839 (17) | 0.0541 (6) | |
H12 | 0.1634 | 0.3569 | 0.1777 | 0.065* | |
C13 | 0.1266 (3) | 0.50748 (19) | 0.20530 (17) | 0.0537 (6) | |
H13 | 0.1215 | 0.5281 | 0.1399 | 0.064* | |
C14 | 0.1101 (3) | 0.57847 (17) | 0.27877 (15) | 0.0465 (5) | |
H14 | 0.0964 | 0.6476 | 0.2630 | 0.056* | |
C15 | 0.1874 (4) | 0.26079 (17) | 0.35184 (19) | 0.0692 (8) | |
H15A | 0.2038 | 0.2206 | 0.2933 | 0.104* | |
H15B | 0.0842 | 0.2357 | 0.3875 | 0.104* | |
H15C | 0.2934 | 0.2555 | 0.3924 | 0.104* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0612 (13) | 0.0413 (10) | 0.0334 (10) | 0.0007 (9) | 0.0050 (9) | −0.0060 (7) |
N2 | 0.0655 (13) | 0.0413 (10) | 0.0297 (9) | 0.0004 (9) | 0.0056 (10) | −0.0025 (8) |
O1 | 0.0721 (12) | 0.0415 (8) | 0.0411 (8) | −0.0051 (8) | 0.0055 (8) | −0.0065 (7) |
O2 | 0.0801 (12) | 0.0455 (9) | 0.0312 (8) | −0.0016 (8) | 0.0081 (8) | 0.0011 (7) |
O3 | 0.0948 (13) | 0.0435 (9) | 0.0416 (9) | 0.0010 (10) | 0.0016 (10) | 0.0033 (7) |
C1 | 0.0427 (12) | 0.0367 (11) | 0.0335 (11) | 0.0039 (10) | −0.0002 (10) | 0.0008 (9) |
C2 | 0.0518 (14) | 0.0346 (11) | 0.0427 (12) | −0.0004 (10) | 0.0029 (11) | 0.0039 (10) |
C3 | 0.0576 (16) | 0.0410 (12) | 0.0313 (11) | 0.0001 (10) | 0.0038 (11) | 0.0010 (9) |
C4 | 0.0436 (13) | 0.0366 (11) | 0.0383 (12) | 0.0026 (10) | 0.0018 (11) | −0.0053 (9) |
C5 | 0.0598 (15) | 0.0362 (11) | 0.0475 (14) | −0.0068 (10) | 0.0091 (12) | 0.0031 (10) |
C6 | 0.0579 (15) | 0.0453 (13) | 0.0339 (11) | 0.0019 (11) | 0.0046 (12) | 0.0053 (10) |
C7 | 0.0469 (13) | 0.0434 (13) | 0.0368 (12) | 0.0037 (11) | 0.0051 (11) | −0.0005 (10) |
C8 | 0.0458 (13) | 0.0425 (12) | 0.0347 (12) | −0.0010 (10) | −0.0004 (11) | 0.0019 (9) |
C9 | 0.0429 (12) | 0.0411 (11) | 0.0340 (11) | −0.0024 (10) | −0.0009 (11) | −0.0042 (9) |
C10 | 0.0491 (14) | 0.0453 (12) | 0.0365 (12) | −0.0060 (11) | −0.0005 (11) | −0.0023 (10) |
C11 | 0.0458 (14) | 0.0508 (14) | 0.0495 (14) | −0.0061 (11) | 0.0031 (11) | −0.0102 (11) |
C12 | 0.0519 (15) | 0.0624 (16) | 0.0481 (14) | −0.0065 (12) | 0.0039 (12) | −0.0237 (12) |
C13 | 0.0602 (16) | 0.0687 (16) | 0.0322 (12) | −0.0023 (14) | 0.0010 (12) | −0.0033 (11) |
C14 | 0.0520 (14) | 0.0515 (13) | 0.0360 (12) | 0.0003 (11) | −0.0003 (11) | 0.0011 (10) |
C15 | 0.083 (2) | 0.0445 (14) | 0.0800 (19) | −0.0051 (13) | 0.0022 (16) | −0.0157 (13) |
N1—C7 | 1.273 (2) | C5—H5 | 0.9300 |
N1—N2 | 1.387 (2) | C6—H6 | 0.9300 |
N2—C8 | 1.347 (2) | C7—H7 | 0.9300 |
N2—H2A | 0.8600 | C8—C9 | 1.471 (3) |
O1—C4 | 1.377 (2) | C9—C10 | 1.397 (3) |
O1—H1 | 0.8200 | C9—C14 | 1.399 (3) |
O2—C8 | 1.249 (2) | C10—C11 | 1.402 (3) |
O3—C10 | 1.357 (2) | C11—C12 | 1.378 (3) |
O3—H3 | 0.8200 | C11—C15 | 1.492 (3) |
C1—C6 | 1.389 (3) | C12—C13 | 1.390 (3) |
C1—C2 | 1.389 (3) | C12—H12 | 0.9300 |
C1—C7 | 1.455 (3) | C13—C14 | 1.366 (3) |
C2—C3 | 1.377 (3) | C13—H13 | 0.9300 |
C2—H2 | 0.9300 | C14—H14 | 0.9300 |
C3—C4 | 1.385 (3) | C15—H15A | 0.9600 |
C3—H3A | 0.9300 | C15—H15B | 0.9600 |
C4—C5 | 1.380 (3) | C15—H15C | 0.9600 |
C5—C6 | 1.374 (3) | ||
C7—N1—N2 | 116.04 (18) | O2—C8—N2 | 120.15 (18) |
C8—N2—N1 | 117.96 (17) | O2—C8—C9 | 121.28 (18) |
C8—N2—H2A | 121.0 | N2—C8—C9 | 118.56 (18) |
N1—N2—H2A | 121.0 | C10—C9—C14 | 118.51 (19) |
C4—O1—H1 | 109.5 | C10—C9—C8 | 118.92 (18) |
C10—O3—H3 | 109.5 | C14—C9—C8 | 122.55 (18) |
C6—C1—C2 | 117.84 (18) | O3—C10—C9 | 122.45 (19) |
C6—C1—C7 | 120.81 (18) | O3—C10—C11 | 116.04 (19) |
C2—C1—C7 | 121.34 (18) | C9—C10—C11 | 121.5 (2) |
C3—C2—C1 | 120.93 (18) | C12—C11—C10 | 117.6 (2) |
C3—C2—H2 | 119.5 | C12—C11—C15 | 123.2 (2) |
C1—C2—H2 | 119.5 | C10—C11—C15 | 119.2 (2) |
C2—C3—C4 | 120.13 (19) | C11—C12—C13 | 121.8 (2) |
C2—C3—H3A | 119.9 | C11—C12—H12 | 119.1 |
C4—C3—H3A | 119.9 | C13—C12—H12 | 119.1 |
O1—C4—C5 | 118.58 (18) | C14—C13—C12 | 120.0 (2) |
O1—C4—C3 | 121.69 (18) | C14—C13—H13 | 120.0 |
C5—C4—C3 | 119.73 (18) | C12—C13—H13 | 120.0 |
C6—C5—C4 | 119.64 (19) | C13—C14—C9 | 120.6 (2) |
C6—C5—H5 | 120.2 | C13—C14—H14 | 119.7 |
C4—C5—H5 | 120.2 | C9—C14—H14 | 119.7 |
C5—C6—C1 | 121.70 (19) | C11—C15—H15A | 109.5 |
C5—C6—H6 | 119.1 | C11—C15—H15B | 109.5 |
C1—C6—H6 | 119.1 | H15A—C15—H15B | 109.5 |
N1—C7—C1 | 120.85 (19) | C11—C15—H15C | 109.5 |
N1—C7—H7 | 119.6 | H15A—C15—H15C | 109.5 |
C1—C7—H7 | 119.6 | H15B—C15—H15C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.82 | 1.86 | 2.575 (2) | 146 |
O1—H1···O2i | 0.82 | 2.00 | 2.809 (2) | 167 |
N2—H2A···O1ii | 0.86 | 2.36 | 3.067 (2) | 139 |
C3—H3A···O2i | 0.93 | 2.51 | 3.208 (2) | 132 |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+1/2, −y+2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H14N2O3 |
Mr | 270.28 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 7.3872 (17), 13.012 (2), 13.592 (2) |
V (Å3) | 1306.5 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.20 × 0.20 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.981, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6296, 2663, 1953 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.103, 0.99 |
No. of reflections | 2663 |
No. of parameters | 184 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.19 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.82 | 1.86 | 2.575 (2) | 146 |
O1—H1···O2i | 0.82 | 2.00 | 2.809 (2) | 167 |
N2—H2A···O1ii | 0.86 | 2.36 | 3.067 (2) | 139 |
C3—H3A···O2i | 0.93 | 2.51 | 3.208 (2) | 132 |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+1/2, −y+2, z−1/2. |
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the last few years, the crystal structures of a number of hydrazone compounds have been reported (Fun et al., 2011; Horkaew et al., 2011; Zhi et al., 2011; Huang & Wu, 2010). As an extension of work on such compounds, we report herein on the synthesis and crystal structure of the title compound.
In the title molecule, Fig. 1, there is an intramolecular O3—H3···O2 hydrogen bond (Table 1). The benzene rings, (C1—C6) and (C9—C14), make a dihedral angle of 19.03 (11)°. All the geometrical parameters are within normal ranges and are comparable with those in similar compounds, mentioned above.
In the crystal, molecules are linked via O—H···O and N—H···O hydrogen bonds and C-H···O interactions, leading to the formation of a three-dimensional network (Table 1 and Fig. 2).