organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4,6-Dimeth­­oxy­pyrimidin-2-yl)­­oxy]benzaldehyde

aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China.
*Correspondence e-mail: dc_wang@hotmail.com

(Received 27 December 2011; accepted 9 January 2012; online 18 January 2012)

In the title compound, C13H12N2O4, the dihedral angle between the benzene and pyrimidine rings is 55.57 (13)°. The carbonyl group and the two methoxyl groups are approximately coplanar with the benzene ring and pyrimidine ring; the C—C—C—O, C—O—C—N and C—O—C—C torsion angles being −6.1 (5), −4.8 (4) and 179.9 (3)°, respectively. In the crystal, mol­ecules are linked via C—H⋯O inter­actions, forming chains propagating along [110].

Related literature

For the synthesis of the title compound, see: Yang & Lu (2010[Yang, Z. M. & Lu, L. (2010). J. Label. Compd Radiopharm. 53, 192-197.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O4

  • Mr = 260.25

  • Monoclinic, P 21

  • a = 3.9920 (8) Å

  • b = 7.3670 (15) Å

  • c = 20.885 (4) Å

  • β = 94.87 (3)°

  • V = 612.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.989

  • 2563 measured reflections

  • 2227 independent reflections

  • 1790 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.131

  • S = 1.00

  • 2227 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.93 2.54 3.400 (4) 154
Symmetry code: (i) x-1, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important organic intermediate for the synthesis of 2-pyrimidine-oxy-N-aryl benzyl amine derivatives, which are important compounds for new pesticides. In the process of synthesising one such derivative we obtained crystals of the title compound, and we report herein on its crystal structure.

As illustrated in Fig. 1, the molecular structure of the title compound is not planar, the dihedral angle between the (C1—C6) benzene and the (N1/N2,C8-C10) pyrimidine rings is 55.57 (13) °. The carbonyl group and the two methoxyl groups are approximately coplanar with the benzene ring and pyrimidine ring, as shown by the torsion angles C4—C5—C7—O1 = -6.1 (5) °, C13—O4—C11—N2 = -4.8 (4) ° and C12—O3—C9—C10 = 179.9 (3) °.

In the crystal, there is a C-H···O interaction present (Table 1), that results in the formation of chains that run along direction [110].

Related literature top

For the synthesis of the title compound, see: Yang & Lu (2010).

Experimental top

The title compound was synthesized according to the published procedure (Yang & Lu, 2010). A solution of 12.2 g salicylaldehyde, 21.8 g of 2,6-dimethoxy-4- (Methylsulfonyl) Pyrimidine, and 41.4 g of K2CO3, in 150 ml acetonitrile, was heated to 220 K for 4 h. The solution was then filtered, and the filtrates were concentrated under reduced pressure. Colourless block-like crystals of the title compund, suitable for X-ray diffraction, were obtained by slow evaporation of the solvent [Yield 86%].

Refinement top

The C-bound H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 and 0.96 Å for CH and CH3 and H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 1023 Friedel pairs were merged and Δf " set to zero.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.
2-[(4,6-Dimethoxypyrimidin-2-yl)oxy]benzaldehyde top
Crystal data top
C13H12N2O4F(000) = 272
Mr = 260.25Dx = 1.412 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 3.9920 (8) Åθ = 9–13°
b = 7.3670 (15) ŵ = 0.11 mm1
c = 20.885 (4) ÅT = 293 K
β = 94.87 (3)°Block, colourless
V = 612.0 (2) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1790 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
ω/2θ scansh = 04
Absorption correction: ψ scan
(SADABS; Sheldrick, 1996)
k = 88
Tmin = 0.969, Tmax = 0.989l = 2525
2563 measured reflections3 standard reflections every 200 reflections
2227 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
2227 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C13H12N2O4V = 612.0 (2) Å3
Mr = 260.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.9920 (8) ŵ = 0.11 mm1
b = 7.3670 (15) ÅT = 293 K
c = 20.885 (4) Å0.30 × 0.20 × 0.10 mm
β = 94.87 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1790 reflections with I > 2σ(I)
Absorption correction: ψ scan
(SADABS; Sheldrick, 1996)
Rint = 0.024
Tmin = 0.969, Tmax = 0.9893 standard reflections every 200 reflections
2563 measured reflections intensity decay: 1%
2227 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.131H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
2227 reflectionsΔρmin = 0.14 e Å3
172 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.4553 (7)0.5127 (4)0.39674 (15)0.0925 (11)
O20.8453 (6)0.7927 (3)0.27202 (8)0.0581 (7)
O30.7500 (5)0.7425 (3)0.05537 (8)0.0591 (8)
O41.2359 (6)1.2581 (3)0.15175 (9)0.0598 (8)
N10.7955 (6)0.7671 (3)0.16578 (10)0.0457 (8)
N21.0511 (6)1.0293 (3)0.21505 (10)0.0460 (7)
C10.8229 (7)1.0480 (4)0.34509 (13)0.0503 (9)
C20.9064 (7)1.1207 (4)0.40473 (14)0.0515 (10)
C31.1033 (7)1.0252 (4)0.44989 (14)0.0518 (10)
C41.2202 (7)0.8574 (4)0.43577 (13)0.0460 (9)
C51.1421 (7)0.7798 (4)0.37569 (12)0.0413 (8)
C60.9419 (7)0.8792 (4)0.33036 (12)0.0411 (8)
C71.2647 (9)0.5998 (4)0.36179 (17)0.0638 (11)
C80.9023 (7)0.8697 (4)0.21501 (12)0.0432 (9)
C90.8461 (7)0.8376 (4)0.10859 (12)0.0444 (9)
C100.9930 (7)1.0035 (4)0.10102 (13)0.0501 (10)
C111.0929 (7)1.0950 (4)0.15650 (13)0.0433 (8)
C120.5970 (8)0.5691 (5)0.06309 (14)0.0629 (11)
C131.3137 (9)1.3609 (4)0.20875 (15)0.0583 (11)
H1B0.686401.112400.314800.0600*
H2B0.829001.235600.414600.0620*
H3A1.157401.075100.490400.0620*
H4A1.354100.793900.466800.0550*
H7A1.188900.548100.322600.0760*
H10A1.023001.051200.060700.0600*
H12A0.541800.515400.021600.0940*
H12B0.395900.583900.084700.0940*
H12C0.750700.491600.088100.0940*
H13A1.414001.474100.198000.0880*
H13B1.468301.294000.237500.0880*
H13C1.111301.383900.229200.0880*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1009 (19)0.0614 (16)0.112 (2)0.0237 (15)0.0101 (16)0.0028 (15)
O20.0881 (15)0.0545 (12)0.0307 (10)0.0212 (11)0.0003 (9)0.0054 (8)
O30.0734 (15)0.0684 (14)0.0350 (11)0.0096 (12)0.0019 (10)0.0057 (9)
O40.0798 (15)0.0533 (12)0.0477 (12)0.0107 (12)0.0134 (11)0.0053 (9)
N10.0502 (13)0.0510 (14)0.0349 (12)0.0028 (11)0.0023 (9)0.0010 (9)
N20.0527 (13)0.0485 (13)0.0366 (12)0.0027 (12)0.0026 (10)0.0050 (10)
C10.0556 (17)0.0529 (17)0.0426 (15)0.0039 (14)0.0052 (13)0.0098 (13)
C20.0619 (18)0.0447 (16)0.0505 (17)0.0076 (14)0.0196 (14)0.0002 (12)
C30.0563 (16)0.0596 (19)0.0405 (15)0.0086 (16)0.0102 (12)0.0091 (13)
C40.0465 (15)0.0540 (17)0.0369 (14)0.0036 (13)0.0002 (11)0.0059 (12)
C50.0481 (15)0.0390 (14)0.0375 (14)0.0038 (12)0.0075 (11)0.0036 (11)
C60.0477 (14)0.0454 (14)0.0299 (13)0.0074 (13)0.0022 (11)0.0029 (11)
C70.080 (2)0.0497 (18)0.0615 (19)0.0067 (18)0.0051 (16)0.0043 (15)
C80.0482 (15)0.0474 (17)0.0333 (14)0.0010 (14)0.0007 (11)0.0052 (11)
C90.0455 (14)0.0550 (17)0.0320 (14)0.0048 (13)0.0014 (11)0.0005 (12)
C100.0630 (18)0.0565 (18)0.0317 (14)0.0012 (15)0.0092 (13)0.0071 (12)
C110.0485 (15)0.0397 (14)0.0426 (15)0.0008 (13)0.0085 (11)0.0046 (11)
C120.066 (2)0.074 (2)0.0476 (17)0.0141 (17)0.0017 (15)0.0155 (16)
C130.072 (2)0.0521 (18)0.0505 (17)0.0099 (17)0.0037 (15)0.0043 (13)
Geometric parameters (Å, º) top
O1—C71.196 (5)C5—C61.394 (4)
O2—C61.400 (3)C5—C71.451 (4)
O2—C81.355 (3)C9—C101.371 (4)
O3—C91.342 (3)C10—C111.370 (4)
O3—C121.431 (4)C1—H1B0.9300
O4—C111.338 (4)C2—H2B0.9300
O4—C131.423 (4)C3—H3A0.9300
N1—C81.318 (3)C4—H4A0.9300
N1—C91.334 (3)C7—H7A0.9300
N2—C81.317 (4)C10—H10A0.9300
N2—C111.339 (3)C12—H12A0.9600
C1—C21.371 (4)C12—H12B0.9600
C1—C61.375 (4)C12—H12C0.9600
C2—C31.370 (4)C13—H13A0.9600
C3—C41.362 (4)C13—H13B0.9600
C4—C51.390 (4)C13—H13C0.9600
C6—O2—C8121.3 (2)N2—C11—C10123.0 (3)
C9—O3—C12117.9 (2)C2—C1—H1B120.00
C11—O4—C13118.7 (2)C6—C1—H1B120.00
C8—N1—C9114.3 (2)C1—C2—H2B120.00
C8—N2—C11114.4 (2)C3—C2—H2B120.00
C2—C1—C6119.6 (3)C2—C3—H3A120.00
C1—C2—C3120.4 (3)C4—C3—H3A120.00
C2—C3—C4120.3 (3)C3—C4—H4A120.00
C3—C4—C5120.9 (3)C5—C4—H4A120.00
C4—C5—C6118.0 (3)O1—C7—H7A117.00
C4—C5—C7120.2 (3)C5—C7—H7A117.00
C6—C5—C7121.9 (3)C9—C10—H10A122.00
O2—C6—C1122.1 (2)C11—C10—H10A122.00
O2—C6—C5116.9 (3)O3—C12—H12A109.00
C1—C6—C5120.8 (2)O3—C12—H12B109.00
O1—C7—C5125.2 (3)O3—C12—H12C109.00
O2—C8—N1112.2 (2)H12A—C12—H12B109.00
O2—C8—N2118.8 (2)H12A—C12—H12C109.00
N1—C8—N2129.0 (2)H12B—C12—H12C109.00
O3—C9—N1119.0 (3)O4—C13—H13A109.00
O3—C9—C10117.7 (2)O4—C13—H13B109.00
N1—C9—C10123.3 (2)O4—C13—H13C110.00
C9—C10—C11116.0 (3)H13A—C13—H13B109.00
O4—C11—N2118.7 (2)H13A—C13—H13C110.00
O4—C11—C10118.3 (2)H13B—C13—H13C109.00
C8—O2—C6—C5126.4 (3)C2—C1—C6—O2175.3 (3)
C6—O2—C8—N1179.6 (2)C6—C1—C2—C30.9 (4)
C6—O2—C8—N20.1 (4)C1—C2—C3—C40.5 (4)
C8—O2—C6—C159.2 (4)C2—C3—C4—C50.2 (4)
C12—O3—C9—C10179.9 (3)C3—C4—C5—C60.3 (4)
C12—O3—C9—N10.0 (4)C3—C4—C5—C7179.1 (3)
C13—O4—C11—C10174.6 (3)C4—C5—C6—O2175.2 (3)
C13—O4—C11—N24.8 (4)C6—C5—C7—O1174.6 (3)
C9—N1—C8—N20.4 (4)C7—C5—C6—C1178.6 (3)
C8—N1—C9—O3179.2 (2)C4—C5—C7—O16.1 (5)
C8—N1—C9—C100.7 (4)C4—C5—C6—C10.7 (4)
C9—N1—C8—O2179.9 (2)C7—C5—C6—O24.1 (4)
C11—N2—C8—N11.0 (4)O3—C9—C10—C11178.9 (3)
C8—N2—C11—C100.7 (4)N1—C9—C10—C111.0 (4)
C11—N2—C8—O2179.3 (3)C9—C10—C11—N20.2 (4)
C8—N2—C11—O4178.7 (3)C9—C10—C11—O4179.6 (3)
C2—C1—C6—C51.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.932.543.400 (4)154
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H12N2O4
Mr260.25
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)3.9920 (8), 7.3670 (15), 20.885 (4)
β (°) 94.87 (3)
V3)612.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
2563, 2227, 1790
Rint0.024
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.00
No. of reflections2227
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.932.543.400 (4)154
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

We are grateful to Professor Hua-Qin Wang for measuring the data and the Center of Testing and Analysis, Nanjing University, for financial support.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z. M. & Lu, L. (2010). J. Label. Compd Radiopharm. 53, 192–197.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds