organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o340-o341

(E)-1-(3-Eth­­oxy-2-hy­dr­oxy­benzyl­­idene)thio­semicarbazide

aArdakan Branch, Islamic Azad University, Ardakan, Iran, bDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. of IRAN, cX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, dDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and eDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: A.Adabi@iauardakan.ac.ir, dmntahir_uos@yahoo.com

(Received 27 December 2011; accepted 5 January 2012; online 11 January 2012)

The title compound, C10H13N3O2S, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In the crystal, the A and B mol­ecules are linked via pairs of N—H⋯O and O—H⋯S hydrogen bonds, forming dimers with R22(14) and R22(6) ring motifs. These dimers are linked via a pair of N—H⋯S hydrogen bonds with an R22(8) ring motif, forming chains propagating along the c-axis direction. The crystal was refined as an inversion twin with a final BASF ratio of 0.54 (11):0.46 (11).

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to thio­semicarbazones in coordination chemistry, see: Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]). For their biological applications, see: for example, Maccioni et al. (2003[Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco 58, 951-959.]); Ferrari et al. (2000[Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89-97.]). For related structures, see: Kargar et al. (2010a[Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o2999.],b[Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010b). Acta Cryst. E66, o2982.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3O2S

  • Mr = 239.29

  • Monoclinic, P 21

  • a = 6.0728 (3) Å

  • b = 16.1595 (8) Å

  • c = 12.8490 (6) Å

  • β = 90.238 (3)°

  • V = 1260.91 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 291 K

  • 0.24 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.800, Tmax = 0.926

  • 12062 measured reflections

  • 5428 independent reflections

  • 2303 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.119

  • S = 0.92

  • 5428 reflections

  • 293 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2232 Friedel pairs

  • Flack parameter: 0.54 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯S2i 0.83 2.53 3.180 (4) 135
O3—H3O⋯S1ii 0.83 2.43 3.143 (4) 145
N2—H2N⋯O3i 0.90 2.20 2.954 (6) 142
N5—H5N⋯O1ii 0.87 2.17 3.009 (5) 160
N3—H3NB⋯S2iii 0.90 2.53 3.403 (4) 166
N6—H6NB⋯S1iv 0.88 2.55 3.398 (5) 161
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x+1, y, z-1; (iv) x-1, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiosemicarbazones constitute an important class of N,S donor ligands due to their propensity to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). Herein, we report on the crystal structure of the new title thiosemicarbazone compound.

The title compound crystallized with two independent molecules (A and B) in the asymmetric unit, Fig. 1. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those observed for related structures (Kargar et al., 2010a,b).

In the crystal, the A and B molecules are linked via pairs of N-H···O and O-H···S hydrogen bonds (Table 1 and Fig. 2) to form dimers, with R22(14) and R22(6) ring motifs (Bernstein et al., 1995). These dimers are further linked via a pair of N-H···S hydrogen bonds, with an R22(8) ring motif, to form chains that extend in direction [0 0 1] (Table 1 and Fig. 2).

The crystal was refined as an inversion twin with a final refined BASF ratio of 0.54 (11)/0.46 (11) for 2232 Friedel pairs.

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to thiosemicarbazones in coordination chemistry, see: Casas et al. (2000). For their biological applications, see: for example, Maccioni et al. (2003); Ferrari et al. (2000). For related structures, see: Kargar et al. (2010a,b).

Experimental top

A mixture of 3-ethoxysalicylalehyde (0.01 mol) and hydrazinecarbothioamide (0.01 mol) in 20 ml of ethanol was refluxed for about 2 h. On cooling, the solid separated was filtered and recrystallized from ethanol. Colourless plate-like crystals of the title compound, suitable for X-ray diffraction, were obtained by slow evaporation of a solution in ethanol.

Refinement top

O- and N-bound H atoms were located in a difference Fourier map and were initially refined with the O-H and N-H distances restrained to 0.82 (2) and 0.86 (2) Å, respectively. In the final cycles of refinement they were constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N), respectively. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms. The crystal was refined as an inversion twin with a final refined BASF ratio of 0.54 (11)/0.46 (11) for 2232 Friedel pairs.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. A partial crystal packing diagram of the title compound, viewed down the a-axis, showing a one-dimensional extended chain along the c-axis formed via intermolecular O—H···S, N—H···O, and N—H···S hydrogen bonds [dashed lines; see Table 1 for details; only the H atoms involved in these interactions are shown].
(E)-1-(3-Ethoxy-2-hydroxybenzylidene)thiosemicarbazide top
Crystal data top
C10H13N3O2SF(000) = 504
Mr = 239.29Dx = 1.261 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2525 reflections
a = 6.0728 (3) Åθ = 2.5–29.5°
b = 16.1595 (8) ŵ = 0.25 mm1
c = 12.8490 (6) ÅT = 291 K
β = 90.238 (3)°Plate, colourless
V = 1260.91 (11) Å30.24 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5428 independent reflections
Radiation source: fine-focus sealed tube2303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ϕ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 87
Tmin = 0.800, Tmax = 0.926k = 2119
12062 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0341P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 0.92Δρmax = 0.21 e Å3
5428 reflectionsΔρmin = 0.21 e Å3
293 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0087 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2232 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.54 (11)
Crystal data top
C10H13N3O2SV = 1260.91 (11) Å3
Mr = 239.29Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.0728 (3) ŵ = 0.25 mm1
b = 16.1595 (8) ÅT = 291 K
c = 12.8490 (6) Å0.24 × 0.14 × 0.08 mm
β = 90.238 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5428 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2303 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.926Rint = 0.075
12062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.21 e Å3
S = 0.92Δρmin = 0.21 e Å3
5428 reflectionsAbsolute structure: Flack (1983), 2232 Friedel pairs
293 parametersAbsolute structure parameter: 0.54 (11)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2843 (8)0.3987 (3)1.0328 (4)0.0372 (13)
C20.1042 (9)0.3625 (4)1.0844 (4)0.0424 (15)
C30.0613 (8)0.3257 (4)1.0275 (4)0.0485 (16)
H30.18040.30201.06170.058*
C40.0523 (9)0.3236 (4)0.9203 (4)0.0562 (16)
H40.16370.29800.88240.067*
C50.1241 (9)0.3600 (3)0.8695 (4)0.0478 (15)
H50.12870.35940.79720.057*
C60.2951 (8)0.3976 (3)0.9255 (4)0.0381 (13)
C70.0470 (9)0.3298 (4)1.2529 (4)0.062 (2)
H7A0.05260.27081.23900.074*
H7B0.19000.35341.23670.074*
C80.0081 (10)0.3445 (4)1.3637 (4)0.079 (2)
H8A0.14690.31901.37980.118*
H8B0.10460.32111.40690.118*
H8C0.01770.40291.37630.118*
C90.4833 (8)0.4345 (3)0.8726 (4)0.0420 (14)
H90.59450.45870.91210.050*
C100.7230 (8)0.4779 (3)0.6336 (4)0.0528 (17)
N10.4996 (7)0.4345 (3)0.7738 (3)0.0486 (13)
N20.6925 (7)0.4696 (3)0.7372 (3)0.0530 (14)
H2N0.78900.48480.78660.064*
N30.5579 (7)0.4547 (3)0.5733 (3)0.0652 (15)
H3NA0.42960.43460.59110.078*
H3NB0.56980.46110.50430.078*
O10.4483 (5)0.4339 (2)1.0882 (2)0.0512 (12)
H1O0.42060.42841.15110.077*
O20.1182 (6)0.3677 (2)1.1904 (3)0.0550 (10)
S10.9596 (2)0.51784 (12)0.58949 (9)0.0666 (5)
C110.2184 (8)0.6114 (3)0.8747 (4)0.0383 (13)
C120.3909 (9)0.6490 (4)0.8233 (4)0.0451 (15)
C130.5576 (9)0.6839 (4)0.8776 (5)0.0503 (17)
H130.67390.70910.84300.060*
C140.5540 (9)0.6818 (3)0.9861 (5)0.0528 (17)
H140.66960.70511.02360.063*
C150.3844 (9)0.6461 (4)1.0377 (4)0.0427 (15)
H150.38290.64601.11010.051*
C160.2128 (8)0.6097 (3)0.9825 (4)0.0353 (13)
C170.5280 (10)0.6936 (4)0.6567 (4)0.071 (2)
H17A0.67580.67240.66730.086*
H17B0.52470.75120.67790.086*
C180.4616 (12)0.6855 (4)0.5436 (4)0.102 (3)
H18A0.47820.62900.52190.152*
H18B0.55370.72030.50180.152*
H18C0.31060.70200.53530.152*
C190.2344 (8)0.5427 (3)1.2735 (4)0.0509 (16)
C200.0220 (8)0.5732 (3)1.0337 (4)0.0389 (15)
H200.08410.54610.99400.047*
N40.0013 (6)0.5781 (3)1.1322 (3)0.0391 (11)
N50.1924 (6)0.5445 (3)1.1704 (3)0.0479 (13)
H5N0.28450.51671.13150.058*
N60.0761 (8)0.5723 (3)1.3345 (3)0.0693 (16)
H6NA0.05490.57591.30770.083*
H6NB0.09890.56381.40140.083*
O30.0473 (5)0.5768 (2)0.8190 (2)0.0515 (11)
H3O0.06500.57910.75520.077*
O40.3715 (6)0.6459 (2)0.7167 (3)0.0589 (11)
S20.4755 (2)0.50462 (12)1.31643 (9)0.0625 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (3)0.040 (4)0.038 (3)0.002 (3)0.004 (3)0.000 (3)
C20.040 (3)0.048 (4)0.039 (3)0.001 (3)0.009 (3)0.005 (3)
C30.036 (3)0.050 (4)0.059 (4)0.006 (3)0.012 (3)0.001 (3)
C40.046 (4)0.059 (5)0.064 (4)0.011 (3)0.003 (3)0.001 (3)
C50.054 (4)0.044 (4)0.045 (3)0.003 (3)0.003 (3)0.004 (3)
C60.037 (3)0.041 (4)0.037 (3)0.002 (3)0.002 (2)0.000 (3)
C70.061 (4)0.057 (5)0.068 (5)0.002 (3)0.032 (3)0.020 (4)
C80.090 (5)0.096 (7)0.051 (4)0.002 (4)0.028 (4)0.014 (4)
C90.038 (3)0.049 (4)0.040 (3)0.002 (3)0.001 (2)0.000 (3)
C100.047 (3)0.077 (5)0.035 (3)0.010 (3)0.002 (3)0.005 (3)
N10.048 (3)0.069 (4)0.029 (3)0.006 (3)0.007 (2)0.003 (3)
N20.048 (3)0.084 (4)0.027 (2)0.011 (3)0.001 (2)0.002 (2)
N30.062 (3)0.105 (5)0.029 (3)0.030 (3)0.000 (2)0.002 (3)
O10.049 (2)0.077 (3)0.027 (2)0.016 (2)0.0058 (18)0.005 (2)
O20.060 (3)0.068 (3)0.037 (2)0.010 (2)0.0164 (19)0.004 (2)
S10.0488 (9)0.1187 (16)0.0325 (8)0.0175 (10)0.0068 (7)0.0012 (10)
C110.038 (3)0.039 (4)0.038 (3)0.001 (3)0.004 (3)0.008 (3)
C120.043 (3)0.053 (4)0.039 (3)0.007 (3)0.014 (3)0.001 (3)
C130.037 (4)0.054 (4)0.060 (4)0.005 (3)0.015 (3)0.009 (3)
C140.043 (3)0.047 (4)0.068 (4)0.008 (3)0.007 (3)0.001 (3)
C150.045 (4)0.041 (4)0.042 (3)0.003 (3)0.007 (3)0.005 (3)
C160.034 (3)0.034 (4)0.037 (3)0.002 (3)0.003 (2)0.001 (3)
C170.081 (4)0.077 (5)0.056 (4)0.013 (4)0.038 (4)0.009 (4)
C180.131 (6)0.123 (7)0.050 (4)0.001 (5)0.039 (4)0.008 (4)
C190.048 (3)0.072 (5)0.032 (3)0.000 (3)0.002 (3)0.003 (3)
C200.038 (3)0.050 (4)0.030 (3)0.006 (3)0.002 (2)0.002 (3)
N40.032 (2)0.051 (3)0.034 (3)0.006 (2)0.0008 (19)0.005 (2)
N50.041 (3)0.072 (4)0.031 (2)0.010 (2)0.0018 (19)0.000 (2)
N60.063 (3)0.113 (5)0.032 (3)0.025 (3)0.003 (3)0.004 (3)
O30.051 (2)0.070 (3)0.034 (2)0.017 (2)0.0040 (18)0.0036 (19)
O40.063 (3)0.067 (3)0.047 (2)0.013 (2)0.019 (2)0.001 (2)
S20.0463 (9)0.1101 (15)0.0313 (8)0.0101 (10)0.0066 (6)0.0014 (9)
Geometric parameters (Å, º) top
C1—O11.347 (5)C11—O31.378 (5)
C1—C61.381 (6)C11—C121.382 (6)
C1—C21.409 (6)C11—C161.385 (6)
C2—O21.367 (6)C12—C131.351 (7)
C2—C31.375 (7)C12—O41.375 (6)
C3—C41.379 (7)C13—C141.395 (8)
C3—H30.9300C13—H130.9300
C4—C51.387 (6)C14—C151.356 (6)
C4—H40.9300C14—H140.9300
C5—C61.399 (6)C15—C161.389 (7)
C5—H50.9300C15—H150.9300
C6—C91.460 (6)C16—C201.459 (6)
C7—O21.426 (5)C17—O41.447 (5)
C7—C81.480 (8)C17—C181.513 (8)
C7—H7A0.9700C17—H17A0.9700
C7—H7B0.9700C17—H17B0.9700
C8—H8A0.9600C18—H18A0.9600
C8—H8B0.9600C18—H18B0.9600
C8—H8C0.9600C18—H18C0.9600
C9—N11.273 (6)C19—N61.327 (6)
C9—H90.9300C19—N51.350 (5)
C10—N31.319 (6)C19—S21.684 (5)
C10—N21.351 (5)C20—N41.277 (6)
C10—S11.676 (5)C20—H200.9300
N1—N21.386 (5)N4—N51.374 (5)
N2—H2N0.8964N5—H5N0.8736
N3—H3NA0.8753N6—H6NA0.8703
N3—H3NB0.8958N6—H6NB0.8816
O1—H1O0.8316O3—H3O0.8286
O1—C1—C6119.7 (4)O3—C11—C12120.1 (5)
O1—C1—C2120.0 (5)O3—C11—C16119.3 (4)
C6—C1—C2120.3 (5)C12—C11—C16120.6 (5)
O2—C2—C3126.7 (5)C13—C12—O4126.2 (5)
O2—C2—C1113.5 (5)C13—C12—C11120.3 (5)
C3—C2—C1119.8 (5)O4—C12—C11113.5 (5)
C2—C3—C4120.6 (5)C12—C13—C14119.5 (5)
C2—C3—H3119.7C12—C13—H13120.3
C4—C3—H3119.7C14—C13—H13120.3
C3—C4—C5119.6 (5)C15—C14—C13120.9 (5)
C3—C4—H4120.2C15—C14—H14119.5
C5—C4—H4120.2C13—C14—H14119.5
C4—C5—C6121.0 (5)C14—C15—C16120.0 (5)
C4—C5—H5119.5C14—C15—H15120.0
C6—C5—H5119.5C16—C15—H15120.0
C1—C6—C5118.7 (5)C11—C16—C15118.7 (5)
C1—C6—C9120.0 (5)C11—C16—C20118.8 (5)
C5—C6—C9121.3 (5)C15—C16—C20122.4 (5)
O2—C7—C8108.4 (5)O4—C17—C18107.0 (5)
O2—C7—H7A110.0O4—C17—H17A110.3
C8—C7—H7A110.0C18—C17—H17A110.3
O2—C7—H7B110.0O4—C17—H17B110.3
C8—C7—H7B110.0C18—C17—H17B110.3
H7A—C7—H7B108.4H17A—C17—H17B108.6
C7—C8—H8A109.5C17—C18—H18A109.5
C7—C8—H8B109.5C17—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
C7—C8—H8C109.5C17—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5
N1—C9—C6121.9 (5)N6—C19—N5115.6 (4)
N1—C9—H9119.0N6—C19—S2124.6 (4)
C6—C9—H9119.0N5—C19—S2119.8 (4)
N3—C10—N2116.4 (4)N4—C20—C16120.9 (5)
N3—C10—S1124.1 (4)N4—C20—H20119.5
N2—C10—S1119.5 (4)C16—C20—H20119.5
C9—N1—N2114.1 (5)C20—N4—N5115.3 (4)
C10—N2—N1119.6 (4)C19—N5—N4121.5 (4)
C10—N2—H2N125.4C19—N5—H5N115.4
N1—N2—H2N115.0N4—N5—H5N122.6
C10—N3—H3NA128.8C19—N6—H6NA116.8
C10—N3—H3NB119.0C19—N6—H6NB113.8
H3NA—N3—H3NB112.1H6NA—N6—H6NB122.9
C1—O1—H1O108.4C11—O3—H3O113.3
C2—O2—C7119.6 (4)C12—O4—C17117.2 (4)
O1—C1—C2—O20.0 (7)O3—C11—C12—C13179.2 (5)
C6—C1—C2—O2179.3 (5)C16—C11—C12—C130.7 (8)
O1—C1—C2—C3179.1 (5)O3—C11—C12—O41.1 (7)
C6—C1—C2—C30.1 (8)C16—C11—C12—O4179.6 (4)
O2—C2—C3—C4178.7 (5)O4—C12—C13—C14179.8 (5)
C1—C2—C3—C40.3 (8)C11—C12—C13—C140.1 (8)
C2—C3—C4—C50.9 (8)C12—C13—C14—C150.8 (8)
C3—C4—C5—C61.1 (8)C13—C14—C15—C161.2 (8)
O1—C1—C6—C5179.3 (4)O3—C11—C16—C15178.9 (5)
C2—C1—C6—C50.1 (7)C12—C11—C16—C150.3 (7)
O1—C1—C6—C90.1 (7)O3—C11—C16—C201.7 (7)
C2—C1—C6—C9179.4 (5)C12—C11—C16—C20176.8 (5)
C4—C5—C6—C10.7 (8)C14—C15—C16—C110.6 (8)
C4—C5—C6—C9178.7 (5)C14—C15—C16—C20177.6 (5)
C1—C6—C9—N1179.8 (5)C11—C16—C20—N4172.5 (5)
C5—C6—C9—N10.4 (8)C15—C16—C20—N44.5 (8)
C6—C9—N1—N2177.9 (4)C16—C20—N4—N5177.3 (4)
N3—C10—N2—N12.9 (8)N6—C19—N5—N42.6 (8)
S1—C10—N2—N1178.2 (4)S2—C19—N5—N4177.4 (4)
C9—N1—N2—C10175.9 (5)C20—N4—N5—C19177.6 (5)
C3—C2—O2—C72.3 (8)C13—C12—O4—C178.7 (8)
C1—C2—O2—C7176.8 (5)C11—C12—O4—C17171.6 (5)
C8—C7—O2—C2179.8 (5)C18—C17—O4—C12175.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···S2i0.832.533.180 (4)135
O3—H3O···S1ii0.832.433.143 (4)145
N2—H2N···O3i0.902.202.954 (6)142
N5—H5N···O1ii0.872.173.009 (5)160
N3—H3NB···S2iii0.902.533.403 (4)166
N6—H6NB···S1iv0.882.553.398 (5)161
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z1; (iv) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H13N3O2S
Mr239.29
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)6.0728 (3), 16.1595 (8), 12.8490 (6)
β (°) 90.238 (3)
V3)1260.91 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.24 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.800, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
12062, 5428, 2303
Rint0.075
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.119, 0.92
No. of reflections5428
No. of parameters293
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21
Absolute structureFlack (1983), 2232 Friedel pairs
Absolute structure parameter0.54 (11)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···S2i0.832.533.180 (4)135
O3—H3O···S1ii0.832.433.143 (4)145
N2—H2N···O3i0.902.202.954 (6)142
N5—H5N···O1ii0.872.173.009 (5)160
N3—H3NB···S2iii0.902.533.403 (4)166
N6—H6NB···S1iv0.882.553.398 (5)161
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z1; (iv) x1, y, z+1.
 

Acknowledgements

AAA thanks the Islamic Azad University, Ardakan Branch (this paper was extracted from the research project). HK thanks PNU for financial support. MNT thanks Sargodha University for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationFerrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o2999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010b). Acta Cryst. E66, o2982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco 58, 951–959.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o340-o341
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds