organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o324-o325

(E)-1-(2-Hy­dr­oxy-5-meth­­oxy­benzyl­­idene)thio­semicarbazide

aArdakan Branch, Islamic Azad University, Ardakan, Iran, bDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. of IRAN, cX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, IRAN, dDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and eDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: A.Adabi@iauardakan.ac.ir, dmntahir_uos@yahoo.com

(Received 28 December 2011; accepted 29 December 2011; online 11 January 2012)

In the title mol­ecule, C9H11N3O2S, an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of N—H⋯S inter­actions, forming inversion dimers with R22(8) ring motifs. These dimers are further linked via N—H⋯S and N—H⋯O hydrogen bonds, forming a two-dimensional network lying parallel to (100). The crystal structure is further stabilized by inter­molecular ππ inter­actions [centroid–centroid distance = 3.7972 (9) Å].

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to thio­semicarbazones in coordination chemistry, see: Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]). For their biological applications, see: Maccioni et al. (2003[Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco 58, 951-959.]); Ferrari et al. (2000[Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89-97.]). For related structures, see: Kargar et al. (2010a[Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o2999.],b[Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010b). Acta Cryst. E66, o2981.]); Adabi Ardakani et al. (2012[Adabi Ardakani, A., Kargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o340-o341.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2S

  • Mr = 225.27

  • Monoclinic, P 21 /c

  • a = 7.4878 (2) Å

  • b = 9.9880 (2) Å

  • c = 14.3754 (3) Å

  • β = 91.846 (1)°

  • V = 1074.55 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 K

  • 0.24 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.800, Tmax = 0.926

  • 10176 measured reflections

  • 2673 independent reflections

  • 2365 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.110

  • S = 1.07

  • 2673 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.97 2.6844 (15) 146
N2—H2⋯S1i 0.86 2.61 3.3706 (12) 148
N3—H3A⋯S1ii 0.86 2.66 3.2706 (12) 129
N3—H3B⋯O1iii 0.86 2.11 2.9604 (17) 172
Symmetry codes: (i) -x, -y, -z+2; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiosemicarbazones constitute an important class of N,S donor ligands due to their propensity to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). We report herein on the synthesis and crystal structure of the title a hydrazone Schiff base compound.

The asymmetric unit of the title compound, Fig. 1, comprises a hydrazone Schiff base ligand. The bond lengths and angles are within the normal ranges and are comparable to those reported for related structures (Kargar et al., 2010a,b; Adabi et al., 2012). An intramolecular O—H···N hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal, pairs of intermolecular N—H···S hydrogen bonds make inversion dimers with an R22(8) ring motif. Intermolecular N—H···S and N—H···O hydrogen bonds link neighbouring molecules into a two-dimensional extended network parallel to (1 0 0). For details of the hydrogen bonding see Table 1, and Fig. 2. The crystal structure is further stabilized by an intermolecular π···π interaction [Cg1···Cg1i = 3.7972 (9)Å; (i) -x+1, -y+1, -z+2; Cg1 is the centroid of ring (C1–C6)].

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to thiosemicarbazones in coordination chemistry, see: Casas et al. (2000). For their biological applications, see: Maccioni et al. (2003); Ferrari et al. (2000). For related structures, see: Kargar et al. (2010a,b); Adabi Ardakani et al. (2012).

Experimental top

A mixture of 5-methoxysalicylalehyde (0.01 mol) and hydrazinecarbothioamide (0.01 mol) in 20 ml of ethanol was refluxed for about 2 h. On cooling, the solid separated was filtered and recrystallized from ethanol. Colourless plate-like crystals of the title compound, suitable for X-ray diffraction, were obtained by slow evaporation of a solution in ethanol.

Refinement top

O- and N-bound H atoms were located in a difference Fourier map and were constrained to ride on their parent atoms: O-H = 0.82 Å, N-H = 0.86 Å, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 and 0.96 Å for CH and CH3 H-atoms, respectively, with Uiso (H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 40% probability displacement ellipsoids and the atomic numbering. The intramolecular O-H···N hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a-axis, showing the two-dimensional extended network parallel to (1 0 0). The N—H···S and N—H···O, hydrogen bonds are shown as dashed lines [see Table 1 for details; only the H atoms involved in these interactions are shown].
(E)-1-(2-Hydroxy-5-methoxybenzylidene)thiosemicarbazide top
Crystal data top
C9H11N3O2SF(000) = 472
Mr = 225.27Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2750 reflections
a = 7.4878 (2) Åθ = 2.4–27.5°
b = 9.9880 (2) ŵ = 0.29 mm1
c = 14.3754 (3) ÅT = 291 K
β = 91.846 (1)°Plate, colourless
V = 1074.55 (4) Å30.24 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2673 independent reflections
Radiation source: fine-focus sealed tube2365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.800, Tmax = 0.926k = 1313
10176 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2733P]
where P = (Fo2 + 2Fc2)/3
2673 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C9H11N3O2SV = 1074.55 (4) Å3
Mr = 225.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4878 (2) ŵ = 0.29 mm1
b = 9.9880 (2) ÅT = 291 K
c = 14.3754 (3) Å0.24 × 0.14 × 0.08 mm
β = 91.846 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2673 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2365 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.926Rint = 0.016
10176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
2673 reflectionsΔρmin = 0.24 e Å3
138 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26170 (16)0.48062 (13)0.97372 (9)0.0346 (3)
C20.24057 (17)0.58273 (14)1.03826 (10)0.0386 (3)
C30.2907 (2)0.71257 (15)1.01635 (13)0.0510 (4)
H30.27580.78121.05910.061*
C40.3626 (2)0.73967 (16)0.93147 (14)0.0573 (4)
H40.39620.82680.91750.069*
C50.3857 (2)0.63922 (17)0.86653 (12)0.0512 (4)
C60.33436 (19)0.51057 (16)0.88716 (10)0.0438 (3)
H60.34780.44290.84350.053*
C70.4842 (3)0.5753 (3)0.71703 (14)0.0797 (7)
H7A0.55740.50540.74370.120*
H7B0.54150.61240.66410.120*
H7C0.37010.53920.69780.120*
C80.21137 (17)0.34293 (13)0.99115 (9)0.0365 (3)
H80.22700.27980.94450.044*
C90.02639 (18)0.11834 (12)1.14708 (9)0.0353 (3)
N10.14624 (14)0.30443 (10)1.06812 (8)0.0349 (2)
N20.10299 (16)0.17032 (11)1.07211 (8)0.0388 (3)
H20.12550.11921.02580.047*
N30.0098 (2)0.19397 (12)1.22149 (8)0.0507 (3)
H3A0.04780.27521.22140.061*
H3B0.03900.16201.27010.061*
O10.17090 (17)0.56061 (11)1.12351 (8)0.0514 (3)
H10.14840.48071.12920.077*
O20.4601 (2)0.67718 (16)0.78420 (11)0.0777 (4)
S10.04238 (6)0.04281 (3)1.14369 (3)0.04739 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0324 (6)0.0336 (6)0.0378 (6)0.0011 (5)0.0011 (5)0.0040 (5)
C20.0356 (6)0.0346 (6)0.0455 (7)0.0003 (5)0.0019 (5)0.0011 (5)
C30.0486 (8)0.0323 (7)0.0722 (10)0.0006 (6)0.0028 (7)0.0008 (7)
C40.0489 (8)0.0387 (7)0.0844 (12)0.0041 (6)0.0022 (8)0.0213 (8)
C50.0422 (7)0.0543 (9)0.0573 (9)0.0021 (6)0.0051 (6)0.0232 (7)
C60.0430 (7)0.0474 (8)0.0411 (7)0.0017 (6)0.0048 (5)0.0072 (6)
C70.0654 (11)0.123 (2)0.0515 (10)0.0004 (12)0.0163 (9)0.0260 (12)
C80.0411 (6)0.0329 (6)0.0356 (6)0.0024 (5)0.0041 (5)0.0009 (5)
C90.0440 (6)0.0293 (6)0.0326 (6)0.0004 (5)0.0021 (5)0.0016 (5)
N10.0401 (5)0.0285 (5)0.0362 (5)0.0025 (4)0.0027 (4)0.0010 (4)
N20.0540 (6)0.0282 (5)0.0346 (5)0.0040 (4)0.0091 (5)0.0012 (4)
N30.0834 (9)0.0347 (6)0.0347 (6)0.0109 (6)0.0138 (6)0.0034 (5)
O10.0678 (7)0.0401 (5)0.0473 (6)0.0046 (5)0.0163 (5)0.0072 (4)
O20.0770 (9)0.0822 (10)0.0750 (9)0.0103 (7)0.0193 (7)0.0389 (8)
S10.0754 (3)0.02908 (19)0.0382 (2)0.00904 (14)0.01049 (17)0.00096 (12)
Geometric parameters (Å, º) top
C1—C21.3912 (19)C7—H7A0.9600
C1—C61.4063 (18)C7—H7B0.9600
C1—C81.4499 (17)C7—H7C0.9600
C2—O11.3653 (17)C8—N11.2824 (16)
C2—C31.389 (2)C8—H80.9300
C3—C41.376 (2)C9—N31.3187 (17)
C3—H30.9300C9—N21.3415 (16)
C4—C51.385 (3)C9—S11.6901 (13)
C4—H40.9300N1—N21.3797 (14)
C5—C61.376 (2)N2—H20.8600
C5—O21.3774 (19)N3—H3A0.8600
C6—H60.9300N3—H3B0.8600
C7—O21.418 (3)O1—H10.8200
C2—C1—C6119.32 (13)H7A—C7—H7B109.5
C2—C1—C8122.98 (12)O2—C7—H7C109.5
C6—C1—C8117.70 (12)H7A—C7—H7C109.5
O1—C2—C3117.94 (13)H7B—C7—H7C109.5
O1—C2—C1122.33 (12)N1—C8—C1122.80 (12)
C3—C2—C1119.72 (13)N1—C8—H8118.6
C4—C3—C2120.06 (15)C1—C8—H8118.6
C4—C3—H3120.0N3—C9—N2118.93 (12)
C2—C3—H3120.0N3—C9—S1122.17 (10)
C3—C4—C5121.07 (14)N2—C9—S1118.89 (10)
C3—C4—H4119.5C8—N1—N2115.04 (11)
C5—C4—H4119.5C9—N2—N1121.08 (11)
C6—C5—O2124.45 (17)C9—N2—H2119.5
C6—C5—C4119.29 (14)N1—N2—H2119.5
O2—C5—C4116.26 (15)C9—N3—H3A120.0
C5—C6—C1120.53 (15)C9—N3—H3B120.0
C5—C6—H6119.7H3A—N3—H3B120.0
C1—C6—H6119.7C2—O1—H1109.5
O2—C7—H7A109.5C5—O2—C7116.83 (15)
O2—C7—H7B109.5
C6—C1—C2—O1179.97 (12)C2—C1—C6—C50.6 (2)
C8—C1—C2—O10.2 (2)C8—C1—C6—C5179.64 (13)
C6—C1—C2—C30.2 (2)C2—C1—C8—N11.2 (2)
C8—C1—C2—C3179.54 (13)C6—C1—C8—N1179.03 (12)
O1—C2—C3—C4179.62 (14)C1—C8—N1—N2178.93 (11)
C1—C2—C3—C40.6 (2)N3—C9—N2—N17.2 (2)
C2—C3—C4—C50.2 (2)S1—C9—N2—N1173.92 (10)
C3—C4—C5—C60.6 (2)C8—N1—N2—C9177.01 (12)
C3—C4—C5—O2179.49 (14)C6—C5—O2—C70.0 (2)
O2—C5—C6—C1179.10 (14)C4—C5—O2—C7179.90 (16)
C4—C5—C6—C11.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.972.6844 (15)146
N2—H2···S1i0.862.613.3706 (12)148
N3—H3A···S1ii0.862.663.2706 (12)129
N3—H3B···O1iii0.862.112.9604 (17)172
Symmetry codes: (i) x, y, z+2; (ii) x, y+1/2, z+5/2; (iii) x, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC9H11N3O2S
Mr225.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)7.4878 (2), 9.9880 (2), 14.3754 (3)
β (°) 91.846 (1)
V3)1074.55 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.24 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.800, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
10176, 2673, 2365
Rint0.016
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.110, 1.07
No. of reflections2673
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.972.6844 (15)146
N2—H2···S1i0.862.613.3706 (12)148
N3—H3A···S1ii0.862.663.2706 (12)129
N3—H3B···O1iii0.862.112.9604 (17)172
Symmetry codes: (i) x, y, z+2; (ii) x, y+1/2, z+5/2; (iii) x, y1/2, z+5/2.
 

Acknowledgements

AAA thanks the Islamic Azad University, Ardakan Branch (this paper was extracted from the research project). HK thanks PNU for financial support. MNT thanks Sargodha University for research facilities.

References

First citationAdabi Ardakani, A., Kargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o340–o341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationFerrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o2999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010b). Acta Cryst. E66, o2981.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco 58, 951–959.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o324-o325
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds