organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Meth­­oxy­pheneth­yl)-3,5-di­phenyl-4H-1,2,4-triazole

aDepartment of Physics, Saveetha School of Engineering, Saveetha University, Chennai-5, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College (w) (Autonomous), Thanjavur-7, India, and cDepartment of Chemistry, Faculty of Arts and Sciences, Karadeniz Teknik University, Trabzon 61080, Turkey
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 29 December 2011; accepted 4 January 2012; online 14 January 2012)

In the title compound, C23H21N3O, the dihedral angles formed by the mean plane of the triazole ring [maximum deviation = 0.007 (1) Å] and the three phenyl rings are 51.13 (8), 52.84 (8) and 47.04 (8)°. In the crystal, mol­ecules are linked by weak C—H⋯N inter­actions, forming infinite chains propagating along the b-axis direction.

Related literature

For details of the synthesis, see: Ünver et al. (2011[Ünver, Y., Meydanal, S., Sancak, K., Ünlüer, D., Ustabaş, R. & Düğdü, E. (2011). Turk. J. Chem. 35, 265-277.]). For related structures and bond lengths and angles in triazole rings, see: Fun et al. (1999[Fun, H.-K., Chinnakali, K., Shao, S., Zhu, D. & You, X. Z. (1999). Acta Cryst. C55, 770-772.]); Gurumoorthy et al. (2011[Gurumoorthy, A., Gopalsamy, V., Ramamurthi, K., Ünlüer, D. & Çelik, F. (2011). Acta Cryst. E67, o3188-o3189.], 2010a[Gurumoorthy, A., Gopalsamy, V., Ünlüer, D., Düğdü, E. & Varghesee, B. (2010a). Acta Cryst. E66, o2777-o2778.],b[Gurumoorthy, A., Gopalsamy, V., Ünlüer, D., Kör, G. & Ramamurthi, K. (2010b). Acta Cryst. E66, o3150-o3151.]); Bruno et al. (2003[Bruno, G., Nicoló, F., Puntoriero, F., Giuffrida, G., Ricevuto, V. & Rosace, G. (2003). Acta Cryst. C59, o390-o391.]); Mazur et al. (2008[Mazur, L., Koziol, A. E. & Modzelewska-Banachiewicz, B. (2008). Acta Cryst. C64, o574-o577.]); Sancak et al. (2005[Sancak, K., Çoruh, U., Ünver, Y. & Vázquez-López, E. M. (2005). Acta Cryst. E61, o1785-o1787.]).

[Scheme 1]

Experimental

Crystal data
  • C23H21N3O

  • Mr = 355.43

  • Monoclinic, P 21 /n

  • a = 13.144 (5) Å

  • b = 7.411 (5) Å

  • c = 21.333 (5) Å

  • β = 106.835 (5)°

  • V = 1989.0 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.991

  • 17443 measured reflections

  • 3492 independent reflections

  • 2536 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.126

  • S = 1.03

  • 3492 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯N2i 0.97 2.62 3.542 (3) 160
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The present study is a continuation of our investigations on the structural characterization of 4H-1,2,4-triazole derivatives (Gurumoorthy et al., 2011, 2010a,b). We report herein the crystal structure of the title compound, which was studied to examine the structural activity relationships of a triazole with phenyl substituents.

In the title molecule (Fig. 1) the bond lengths and angles are in agreement with those found for closely related structures, for example, 1-(Benzoylmethyl)-4-(3,5-dimethyl-4H-1,2,4-triazol-4-yl)-3- (2-thienylmethyl)-1H-1,2,4-triazol-5(4H)-one [Sancak et al., 2005], 2-[4-Phenyl-5-(2-pyridyl)-4H- 1,2,4-triazol-3-yl]nicotinic acid: a case of solvent-dependent polymorphism [Mazur et al., 2008], and 4-[4-(Dimethylamino)benzylideneamino]-3,5-bis(2-pyridyl)-4H-1,2,4-triazole (Bruno et al., 2003)

The title molecule contains four planar rings, namely, a triazole ring A = (N1,N2,C8,N3,C7)] and three benzene rings, B = (C1-C6), C = (C9-C14) and D = (C17-C22). None of the aromatic rings are coplanar with the triazole ring, as observed in the related structure 4-(p-Methoxyphenyl)-3,5-bis(2-pyridyl)-4H-1,2,4-triazole [Fun et al., 1999]. In the title compound the three phenyl rings (B, C & D) are inclined to the triazole ring (A) by 51.13 (8), 52.84 (8) and 47.04 (8)°, respectively.

The bond angles C6—C7—N3 = 126.29 (14)° and C7—N3—C15 = 127.83 (12)° deviate significantly from the normal value of 120°, and angle N1—C7—C6 = 123.88 (14)° deviates from the normal value of 120°. Torsion angle C9—C8—N3—C15 = 13.1 (2) ° indicates that rings C and D have a Z-configuration across the C8—N3 bond. The C7—N3—C15—C16 torsion angle of 85.73 (18)° indicates that the triazole ring and the methoxy phenyl ring is substituted equatorially across the bond N3—C15. Torsion angles N2—N1—C7—C6 = 179.89 (14)° and N2—N1—C8—C9 = 179.40 (14)° indicate that the phenyl rings are substituted anti-periplanar to the triazole ring at atoms C7 and C8, respectively.

In the crystal, molecules are linked by a weak C—H···N interaction to form an infinite chain running along the b axis direction (Fig. 2).

Related literature top

For details of the synthesis, see: Ünver et al. (2011). For related structures and bond lengths and angles in triazole rings, see: Fun et al. (1999); Gurumoorthy et al. (2011, 2010a,b); Bruno et al. (2003; Mazur et al. (2008); Sancak et al. (2005).

Experimental top

The compound was synthesized following the published procedure (Ünver et al., 2011)

Refinement top

All the H atoms were positioned in calculated positions and treated as riding on their parent atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the C—H···N interactions as dashed cyan lines [see Table 1 for details].
4-(4-Methoxyphenethyl)-3,5-diphenyl-4H-1,2,4-triazole top
Crystal data top
C23H21N3OF(000) = 752
Mr = 355.43Dx = 1.187 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3242 reflections
a = 13.144 (5) Åθ = 2.5–25.1°
b = 7.411 (5) ŵ = 0.07 mm1
c = 21.333 (5) ÅT = 293 K
β = 106.835 (5)°Block, colourless
V = 1989.0 (16) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3492 independent reflections
Radiation source: fine-focus sealed tube2536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scanθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1515
Tmin = 0.966, Tmax = 0.991k = 88
17443 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.175P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3492 reflectionsΔρmax = 0.15 e Å3
245 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (17)
Crystal data top
C23H21N3OV = 1989.0 (16) Å3
Mr = 355.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.144 (5) ŵ = 0.07 mm1
b = 7.411 (5) ÅT = 293 K
c = 21.333 (5) Å0.30 × 0.20 × 0.20 mm
β = 106.835 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3492 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2536 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.991Rint = 0.037
17443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
3492 reflectionsΔρmin = 0.12 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.12673 (9)0.32890 (16)0.22455 (6)0.0434 (3)
N10.09718 (11)0.05004 (17)0.24966 (7)0.0533 (4)
N20.10253 (11)0.05178 (17)0.18565 (7)0.0529 (4)
C80.11935 (12)0.2195 (2)0.17167 (7)0.0449 (4)
C70.11099 (12)0.2166 (2)0.27187 (7)0.0456 (4)
O10.23477 (10)0.58453 (18)0.37271 (6)0.0733 (4)
C150.12614 (13)0.52730 (19)0.22388 (8)0.0479 (4)
H15A0.17050.56980.19770.058*
H15B0.15640.57140.26820.058*
C160.01528 (13)0.6037 (2)0.19644 (8)0.0520 (4)
H16A0.02110.72940.18530.062*
H16B0.01980.54020.15620.062*
C90.13099 (13)0.2774 (2)0.10790 (7)0.0474 (4)
C170.05381 (13)0.5917 (2)0.24178 (8)0.0472 (4)
C200.17867 (13)0.5789 (2)0.32786 (8)0.0530 (4)
C180.02777 (13)0.6922 (2)0.29958 (8)0.0525 (4)
H180.03240.76510.30960.063*
C60.11037 (13)0.2693 (2)0.33816 (8)0.0497 (4)
C140.21927 (14)0.3726 (2)0.10374 (8)0.0571 (5)
H140.27180.40410.14180.068*
C220.14328 (14)0.4854 (2)0.22919 (8)0.0573 (5)
H220.16230.41660.19110.069*
C190.08864 (14)0.6860 (2)0.34186 (8)0.0555 (4)
H190.06940.75400.38010.067*
C210.20611 (14)0.4773 (2)0.27126 (9)0.0605 (5)
H210.26610.40420.26140.073*
C130.22975 (17)0.4210 (3)0.04357 (9)0.0691 (5)
H130.28920.48540.04110.083*
C100.05400 (15)0.2300 (3)0.05051 (8)0.0636 (5)
H100.00560.16540.05260.076*
C110.06540 (18)0.2783 (3)0.00952 (9)0.0778 (6)
H110.01380.24560.04780.093*
C10.19254 (16)0.3679 (2)0.37906 (9)0.0640 (5)
H10.24970.40340.36450.077*
C50.02664 (15)0.2143 (2)0.36101 (9)0.0631 (5)
H50.02870.14670.33430.076*
C120.15271 (18)0.3745 (3)0.01286 (10)0.0766 (6)
H120.15980.40830.05340.092*
C20.1902 (2)0.4136 (3)0.44110 (10)0.0817 (6)
H20.24520.48140.46810.098*
C40.02563 (19)0.2603 (3)0.42367 (11)0.0817 (6)
H40.03060.22360.43890.098*
C30.1069 (2)0.3595 (3)0.46336 (11)0.0888 (7)
H30.10570.39020.50540.107*
C230.32829 (18)0.4804 (4)0.35991 (12)0.1021 (8)
H23A0.36010.49640.39470.153*
H23B0.31120.35530.35700.153*
H23C0.37730.51840.31930.153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0484 (8)0.0397 (7)0.0433 (7)0.0014 (6)0.0151 (6)0.0002 (6)
N10.0615 (9)0.0468 (8)0.0537 (8)0.0044 (6)0.0198 (7)0.0018 (6)
N20.0626 (9)0.0452 (8)0.0525 (8)0.0046 (6)0.0193 (7)0.0023 (6)
C80.0441 (9)0.0432 (9)0.0466 (9)0.0005 (7)0.0120 (7)0.0027 (7)
C70.0454 (9)0.0445 (9)0.0469 (9)0.0017 (7)0.0136 (7)0.0034 (7)
O10.0639 (8)0.0946 (10)0.0677 (8)0.0174 (7)0.0292 (7)0.0047 (7)
C150.0585 (10)0.0394 (8)0.0501 (9)0.0040 (7)0.0222 (8)0.0015 (7)
C160.0648 (11)0.0426 (9)0.0480 (10)0.0041 (8)0.0157 (8)0.0041 (7)
C90.0542 (10)0.0436 (9)0.0447 (9)0.0013 (7)0.0148 (8)0.0022 (7)
C170.0535 (10)0.0390 (8)0.0473 (9)0.0029 (7)0.0118 (7)0.0026 (7)
C200.0490 (10)0.0554 (10)0.0546 (10)0.0034 (8)0.0149 (8)0.0039 (8)
C180.0522 (10)0.0466 (9)0.0586 (10)0.0092 (7)0.0159 (8)0.0038 (8)
C60.0599 (10)0.0442 (9)0.0468 (9)0.0029 (8)0.0181 (8)0.0055 (7)
C140.0623 (11)0.0607 (10)0.0495 (10)0.0061 (9)0.0183 (8)0.0045 (8)
C220.0621 (11)0.0514 (10)0.0539 (10)0.0074 (8)0.0097 (9)0.0087 (8)
C190.0602 (11)0.0559 (10)0.0502 (10)0.0092 (8)0.0159 (8)0.0068 (8)
C210.0538 (11)0.0607 (11)0.0636 (12)0.0142 (8)0.0118 (9)0.0043 (9)
C130.0838 (14)0.0710 (12)0.0600 (12)0.0132 (10)0.0328 (11)0.0016 (10)
C100.0651 (12)0.0705 (12)0.0527 (11)0.0093 (9)0.0128 (9)0.0059 (9)
C110.0869 (15)0.0935 (15)0.0440 (11)0.0068 (13)0.0049 (10)0.0029 (10)
C10.0781 (13)0.0606 (11)0.0509 (11)0.0097 (10)0.0147 (9)0.0028 (9)
C50.0696 (12)0.0659 (11)0.0586 (11)0.0026 (9)0.0262 (10)0.0088 (9)
C120.1036 (17)0.0800 (14)0.0499 (12)0.0021 (13)0.0283 (11)0.0052 (10)
C20.1120 (18)0.0747 (14)0.0526 (12)0.0107 (12)0.0145 (12)0.0038 (10)
C40.0977 (17)0.0911 (15)0.0706 (14)0.0114 (13)0.0469 (13)0.0118 (13)
C30.136 (2)0.0829 (15)0.0526 (12)0.0136 (15)0.0356 (14)0.0005 (11)
C230.0752 (15)0.143 (2)0.1000 (18)0.0381 (15)0.0436 (13)0.0071 (16)
Geometric parameters (Å, º) top
N3—C81.3696 (19)C14—C131.378 (2)
N3—C71.3697 (19)C14—H140.9300
N3—C151.470 (2)C22—C211.386 (2)
N1—C71.316 (2)C22—H220.9300
N1—N21.3877 (19)C19—H190.9300
N2—C81.312 (2)C21—H210.9300
C8—C91.476 (2)C13—C121.374 (3)
C7—C61.469 (2)C13—H130.9300
O1—C201.3672 (19)C10—C111.379 (3)
O1—C231.410 (2)C10—H100.9300
C15—C161.514 (2)C11—C121.370 (3)
C15—H15A0.9700C11—H110.9300
C15—H15B0.9700C1—C21.375 (3)
C16—C171.509 (2)C1—H10.9300
C16—H16A0.9700C5—C41.383 (3)
C16—H16B0.9700C5—H50.9300
C9—C141.382 (2)C12—H120.9300
C9—C101.389 (2)C2—C31.373 (3)
C17—C221.376 (2)C2—H20.9300
C17—C181.395 (2)C4—C31.369 (3)
C20—C211.379 (2)C4—H40.9300
C20—C191.384 (2)C3—H30.9300
C18—C191.369 (2)C23—H23A0.9600
C18—H180.9300C23—H23B0.9600
C6—C11.384 (2)C23—H23C0.9600
C6—C51.388 (2)
C8—N3—C7104.92 (13)C17—C22—C21122.31 (16)
C8—N3—C15125.81 (12)C17—C22—H22118.8
C7—N3—C15127.83 (12)C21—C22—H22118.8
C7—N1—N2107.74 (12)C18—C19—C20120.23 (16)
C8—N2—N1107.00 (12)C18—C19—H19119.9
N2—C8—N3110.49 (13)C20—C19—H19119.9
N2—C8—C9123.67 (14)C20—C21—C22119.31 (16)
N3—C8—C9125.83 (14)C20—C21—H21120.3
N1—C7—N3109.83 (14)C22—C21—H21120.3
N1—C7—C6123.88 (14)C12—C13—C14120.27 (19)
N3—C7—C6126.29 (14)C12—C13—H13119.9
C20—O1—C23117.67 (15)C14—C13—H13119.9
N3—C15—C16112.31 (13)C11—C10—C9120.37 (18)
N3—C15—H15A109.1C11—C10—H10119.8
C16—C15—H15A109.1C9—C10—H10119.8
N3—C15—H15B109.1C12—C11—C10120.08 (18)
C16—C15—H15B109.1C12—C11—H11120.0
H15A—C15—H15B107.9C10—C11—H11120.0
C17—C16—C15114.86 (13)C2—C1—C6120.38 (19)
C17—C16—H16A108.6C2—C1—H1119.8
C15—C16—H16A108.6C6—C1—H1119.8
C17—C16—H16B108.6C4—C5—C6119.85 (19)
C15—C16—H16B108.6C4—C5—H5120.1
H16A—C16—H16B107.5C6—C5—H5120.1
C14—C9—C10118.91 (15)C11—C12—C13120.04 (18)
C14—C9—C8121.36 (14)C11—C12—H12120.0
C10—C9—C8119.68 (15)C13—C12—H12120.0
C22—C17—C18117.06 (15)C3—C2—C1120.2 (2)
C22—C17—C16123.21 (15)C3—C2—H2119.9
C18—C17—C16119.73 (15)C1—C2—H2119.9
O1—C20—C21124.90 (16)C3—C4—C5120.4 (2)
O1—C20—C19115.60 (15)C3—C4—H4119.8
C21—C20—C19119.50 (16)C5—C4—H4119.8
C19—C18—C17121.58 (15)C4—C3—C2120.0 (2)
C19—C18—H18119.2C4—C3—H3120.0
C17—C18—H18119.2C2—C3—H3120.0
C1—C6—C5119.14 (16)O1—C23—H23A109.5
C1—C6—C7121.75 (15)O1—C23—H23B109.5
C5—C6—C7119.08 (16)H23A—C23—H23B109.5
C13—C14—C9120.32 (17)O1—C23—H23C109.5
C13—C14—H14119.8H23A—C23—H23C109.5
C9—C14—H14119.8H23B—C23—H23C109.5
C7—N1—N2—C80.02 (17)N3—C7—C6—C151.7 (2)
N1—N2—C8—N30.79 (17)N1—C7—C6—C550.6 (2)
N1—N2—C8—C9179.40 (14)N3—C7—C6—C5130.15 (17)
C7—N3—C8—N21.21 (17)C10—C9—C14—C130.7 (3)
C15—N3—C8—N2168.36 (14)C8—C9—C14—C13178.24 (16)
C7—N3—C8—C9179.79 (14)C18—C17—C22—C210.3 (2)
C15—N3—C8—C913.1 (2)C16—C17—C22—C21179.53 (16)
N2—N1—C7—N30.75 (17)C17—C18—C19—C200.2 (3)
N2—N1—C7—C6179.89 (14)O1—C20—C19—C18178.99 (15)
C8—N3—C7—N11.19 (17)C21—C20—C19—C180.5 (3)
C15—N3—C7—N1167.99 (14)O1—C20—C21—C22179.03 (16)
C8—N3—C7—C6179.46 (14)C19—C20—C21—C220.4 (3)
C15—N3—C7—C612.7 (2)C17—C22—C21—C200.0 (3)
C8—N3—C15—C1678.47 (18)C9—C14—C13—C120.3 (3)
C7—N3—C15—C1685.73 (18)C14—C9—C10—C110.4 (3)
N3—C15—C16—C1774.66 (17)C8—C9—C10—C11177.97 (17)
N2—C8—C9—C14125.15 (18)C9—C10—C11—C120.4 (3)
N3—C8—C9—C1453.2 (2)C5—C6—C1—C21.2 (3)
N2—C8—C9—C1052.4 (2)C7—C6—C1—C2179.33 (17)
N3—C8—C9—C10129.25 (18)C1—C6—C5—C40.8 (3)
C15—C16—C17—C22113.57 (18)C7—C6—C5—C4178.96 (17)
C15—C16—C17—C1866.60 (19)C10—C11—C12—C130.8 (3)
C23—O1—C20—C210.7 (3)C14—C13—C12—C110.5 (3)
C23—O1—C20—C19178.77 (18)C6—C1—C2—C31.0 (3)
C22—C17—C18—C190.2 (2)C6—C5—C4—C30.1 (3)
C16—C17—C18—C19179.62 (15)C5—C4—C3—C20.2 (3)
N1—C7—C6—C1127.53 (18)C1—C2—C3—C40.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···N2i0.972.623.542 (3)160
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H21N3O
Mr355.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.144 (5), 7.411 (5), 21.333 (5)
β (°) 106.835 (5)
V3)1989.0 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.966, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
17443, 3492, 2536
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.126, 1.03
No. of reflections3492
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···N2i0.972.623.542 (3)160
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

VG thanks the UGC, India, for financial assistance under the Minor Research Project (2010–2011). The authors thank the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai-36, for the single-crystal X-ray data collection. DÜ and EB thank the Research Fund of Karadeniz Technical University for its support of this work.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, G., Nicoló, F., Puntoriero, F., Giuffrida, G., Ricevuto, V. & Rosace, G. (2003). Acta Cryst. C59, o390–o391.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chinnakali, K., Shao, S., Zhu, D. & You, X. Z. (1999). Acta Cryst. C55, 770–772.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGurumoorthy, A., Gopalsamy, V., Ramamurthi, K., Ünlüer, D. & Çelik, F. (2011). Acta Cryst. E67, o3188–o3189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurumoorthy, A., Gopalsamy, V., Ünlüer, D., Düğdü, E. & Varghesee, B. (2010a). Acta Cryst. E66, o2777–o2778.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurumoorthy, A., Gopalsamy, V., Ünlüer, D., Kör, G. & Ramamurthi, K. (2010b). Acta Cryst. E66, o3150–o3151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMazur, L., Koziol, A. E. & Modzelewska-Banachiewicz, B. (2008). Acta Cryst. C64, o574–o577.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSancak, K., Çoruh, U., Ünver, Y. & Vázquez-López, E. M. (2005). Acta Cryst. E61, o1785–o1787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜnver, Y., Meydanal, S., Sancak, K., Ünlüer, D., Ustabaş, R. & Düğdü, E. (2011). Turk. J. Chem. 35, 265–277.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds