metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(η6-naphthalene)­molybdenum(0)

aInstitute of Organoelement Compounds, 28 Vavilova Str., 117813 Moscow, Russian Federation, and bDepartment of Chemistry, University of Minnesota, Minneapolis, 207 Pleasant Str. SE, MN 55455, USA
*Correspondence e-mail: mminyaev@mail.ru

(Received 22 December 2011; accepted 19 January 2012; online 31 January 2012)

The title compound, [Mo(C10H8)2], was prepared from the naphthalene radical anion and MoCl4(thf)2 (thf is tetra­hydro­furan). In the crystal, the mol­ecule is located on an inversion center. The Mo atom is equally disordered over two positions; the range of Mo—C distances is 2.2244 (19)–2.3400 (17) Å for both components of the disorder.

Related literature

For background to transition metal–arene complexes, see: Seyferth (2002a[Seyferth, D. (2002a). Organometallics, 21, 1520-1530.],b[Seyferth, D. (2002b). Organometallics, 21, 2800-2820.]). For the structures of the isotypic Cr and V complexes, see: Elschenbroich et al. (1982[Elschenbroich, C., Mockel, R., Massa, W., Birkhahn, M. & Zenneck, U. (1982). Chem. Ber. 115, 334-345.]); Pomije et al. (1997[Pomije, M. K., Kurth, C. J., Ellis, J. E. & Barybin, M. V. (1997). Organometallics, 16, 3582-3587.]). For the structures of homoleptic naphthalenate ate-complexes, see: Jang & Ellis (1994[Jang, M. & Ellis, J. E. (1994). Angew. Chem. Int. Ed. Engl. 33, 1973-1975.]); Brennessel et al. (2002[Brennessel, W. W., Ellis, J. E., Pomije, M. K., Sussman, V. J., Urnezius, E. & Young, V. G. (2002). J. Am. Chem. Soc. 124, 10258-10259.], 2006[Brennessel, W. W., Young, V. G. & Ellis, J. E. (2006). Angew. Chem. Int. Ed. 45, 7268-7271.]). For the preparation of the title compound, see: Kündig & Timms (1977[Kündig, E. P. & Timms, P. L. (1977). J. Chem. Soc. Chem. Commun. pp. 912-913.]); Thi et al. (1992[Thi, N. P. D., Spichiger, S., Paglia, P., Bernardinelli, G., Kündig, E. P. & Timms, P. L. (1992). Helv. Chim. Acta, 75, 2593-2607.]); Pomije et al. (1997[Pomije, M. K., Kurth, C. J., Ellis, J. E. & Barybin, M. V. (1997). Organometallics, 16, 3582-3587.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C10H8)2]

  • Mr = 352.27

  • Monoclinic, P 21 /n

  • a = 8.4452 (10) Å

  • b = 8.0716 (10) Å

  • c = 10.9890 (13) Å

  • β = 109.186 (2)°

  • V = 707.47 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 173 K

  • 0.60 × 0.60 × 0.30 mm

Data collection
  • Bruker SMART Platform CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.610, Tmax = 0.771

  • 8208 measured reflections

  • 1674 independent reflections

  • 1420 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.03

  • 1674 reflections

  • 132 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Studies of classical arene complexes of transition elements have had significant impact on understanding metal – organic ligand bonding (Seyferth, 2002a,b). However, only a few molecular structures of d-metal neutral homoleptic naphthalene species, i.e. Cr(η6-C10H8)2 (Elschenbroich et al., 1982), V(η6-C10H8)2 (Pomije et al., 1997) and homoleptic naphthalene ate-complexes [Zr(η4-C10H8)3]2- (Jang et al., 1994), [Ta(η4-C10H8)3]- (Brennessel et al., 2002) and [Co(η4-C10H8)2]- (Brennessel et al., 2006), have been established.

Previous examples of neutral homoleptic naphthalene complexes of transition metals were obtained by metal-atom-ligand-vapor co-condensation synthesis (Kündig et al., 1977). The title compound, Mo(η6-C10H8)2, was later obtained by reduction of MoCl5 or MoCl4(thf)2 with Mg, followed by evaporation of Mo atoms along with free naphthalene under vacuum (Thi et al., 1992), or by reduction of MoCl4(thf)2 or MoCl3(thf)3 with lithium naphthalenide (Pomije et al., 1997).

We prepared Mo(C10H8)2 from LiC10H8 and MoCl4(thf)2 under argon in THF media in 13% yield. The 1H NMR spectrum is identical with previously described by Pomije et al. (1997). The Mo(C10H8)2 crystal structure is isomorphous with previously published structures of Cr(C10H8)2 (Elschenbroich et al., 1982) and V(C10H8)2 (Pomije et al., 1997). The molecule is located on the inversion center, one half of the molecule is unique. The molybdenum atom is disordered equally between two positions with occupancy of 50%. The C–C distances are similar to those found in Cr(C10H8)2 and V(C10H8)2. The Mo–centroid(C6) distances are 1.782 Å (C1—C2—C3—C4—C9—C10) and 1.770 Å (C5—C6—C7—C8—C10—C9) and centroid(C6)–Mo–centroid(C6) angle is 178°. The naphthalene ligand is slightly bent along the C9—C10 bond towards molybdenum atom, the angle between flat rings in the naphthalene ligand is 177°.

Related literature top

For background to transition metal–arene complexes, see: Seyferth (2002a,b). For related d-metal neutral homoleptic naphthalene structures, see: Elschenbroich et al. (1982); Pomije et al. (1997). For the structures of homoleptic naphthalene ate-complexes, see: Jang & Ellis (1994); Brennessel et al. (2002, 2006). For the preparation of the title compound, see: Kündig & Timms (1977); Thi et al. (1992); Pomije et al. (1997). For the structures of the isotypic Cr and V complexes, see: Elschenbroich et al. (1982); Pomije et al. (1997).

Experimental top

All synthetic manipulations were carried out in atmosphere of purified argon or under vacuum, using Schlenk type glassware and dry box techniques. Freshly cut lithium wire (0.34 g, 49 mmol), sublimed naphthalene (9.15 g, 71.4 mmol) and THF (200 ml) were added to a 1 L round-bottomed flask equipped with a glass covered stirbar. The mixture was stirred for 17 h at ambient temperature, then the resulting deep green solution was cooled to -60°C. A cold (-60°C) suspension of MoCl4(thf)2 (4.5 g, 11.8 mmol) and C10H8 (6.10 g, 47.6 mmol) in THF (100 ml) was added dropwise to the cold solution of lithium naphthalenide via large cannula. The reaction mixture was allowed to warm to ambient temperature over 15 h. It was filtered to provide a dark red solution, then THF was removed under vacuum. The resulting solid was stirred in toluene (200 ml), the mixture was filtered, and all toluene was removed from the solution under vacuum. The remaining solid was transferred to a sublimator, and an excess of naphthalene was removed by sublimation under vacuum at 30°C over three days. The remaining purple brown solid was taken up in toluene (100 ml) and the solution was filtered. All but 5 ml of toluene was removed under vacuum, pentane (100 ml) was added. The resulting mixture was cooled to -78°C and stirred. The precipitate was filtered off to give Mo(C10H8)2 (0.539 g, 1.53 mmol, 13.0%) as a dark purple microcrystalline solid. 1H NMR (300 MHz, C6D6, 25°C): δ (p.p.m.) = 4.67 (m, 2H). 5.02 (m, 2H), 6.56 (m, 2H), 6.78 (m, 2H) p.p.m..

X-ray quality single crystals were grown at 0°C over a 2 week period by slow diffusion of pentane (100 ml) into a nearly saturated solution of Mo(C10H8)2 (100 mg) in toluene (c.a. 20 ml).

Refinement top

The C—H atoms were refined freely; range of C—H distances = 0.89 (2) to 0.94 (2) Å. The Mo atom is disordered equally between two positions with occupancy of 50% each.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of Mo(C10H8)2 (50% atomic displacement parameters). The asymmetric unit consists of one half of the molecule. The occupancies of Mo1 and Mo1i sites are 50%. Symmetry code: (i) -x + 1, -y, -z + 2.
Bis(η6-naphthalene)molybdenum(0) top
Crystal data top
[Mo(C10H8)2]F(000) = 356
Mr = 352.27Dx = 1.654 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2191 reflections
a = 8.4452 (10) Åθ = 2.7–28.3°
b = 8.0716 (10) ŵ = 0.92 mm1
c = 10.9890 (13) ÅT = 173 K
β = 109.186 (2)°Block, dark-red
V = 707.47 (15) Å30.60 × 0.60 × 0.30 mm
Z = 2
Data collection top
Bruker SMART Platform CCD
diffractometer
1674 independent reflections
Radiation source: normal-focus sealed tube1420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
area detector, ω and ϕ scansθmax = 27.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1011
Tmin = 0.610, Tmax = 0.771k = 1010
8208 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.251P]
where P = (Fo2 + 2Fc2)/3
1674 reflections(Δ/σ)max = 0.001
132 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mo(C10H8)2]V = 707.47 (15) Å3
Mr = 352.27Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.4452 (10) ŵ = 0.92 mm1
b = 8.0716 (10) ÅT = 173 K
c = 10.9890 (13) Å0.60 × 0.60 × 0.30 mm
β = 109.186 (2)°
Data collection top
Bruker SMART Platform CCD
diffractometer
1674 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1420 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.771Rint = 0.031
8208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.069All H-atom parameters refined
S = 1.03Δρmax = 0.27 e Å3
1674 reflectionsΔρmin = 0.28 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.63424 (3)0.01329 (3)0.97463 (3)0.02253 (11)0.50
C10.4807 (3)0.0582 (3)0.76370 (18)0.0382 (4)
C20.6382 (3)0.1252 (3)0.7895 (2)0.0481 (6)
C30.7005 (3)0.2429 (3)0.8901 (2)0.0452 (5)
C40.6048 (2)0.2901 (2)0.96470 (19)0.0358 (4)
C90.4393 (2)0.22530 (19)0.93978 (16)0.0261 (4)
C50.3393 (2)0.2642 (2)1.01832 (17)0.0318 (4)
C60.1831 (3)0.1938 (2)0.99537 (19)0.0358 (4)
C70.1202 (2)0.0780 (3)0.89365 (19)0.0372 (4)
C80.2145 (2)0.0343 (2)0.81728 (17)0.0330 (4)
C100.3753 (2)0.1064 (2)0.83615 (15)0.0277 (4)
H10.442 (3)0.021 (2)0.702 (2)0.040 (6)*
H20.707 (3)0.091 (3)0.744 (2)0.058 (7)*
H30.806 (3)0.289 (3)0.910 (2)0.058 (7)*
H40.641 (3)0.363 (3)1.032 (2)0.037 (6)*
H50.380 (2)0.337 (2)1.086 (2)0.034 (5)*
H60.118 (3)0.218 (3)1.048 (2)0.047 (6)*
H70.021 (3)0.024 (3)0.881 (2)0.049 (7)*
H80.179 (3)0.044 (3)0.758 (2)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02548 (16)0.02166 (16)0.01930 (16)0.00090 (11)0.00579 (11)0.00237 (10)
C10.0496 (12)0.0428 (11)0.0217 (9)0.0128 (9)0.0111 (8)0.0065 (8)
C20.0527 (13)0.0604 (14)0.0398 (12)0.0210 (11)0.0268 (11)0.0232 (10)
C30.0342 (11)0.0442 (12)0.0579 (14)0.0024 (9)0.0160 (10)0.0263 (10)
C40.0372 (11)0.0238 (9)0.0396 (11)0.0031 (7)0.0036 (9)0.0086 (8)
C90.0314 (9)0.0194 (8)0.0246 (8)0.0017 (6)0.0054 (7)0.0048 (6)
C50.0420 (11)0.0229 (8)0.0276 (9)0.0049 (7)0.0078 (8)0.0004 (7)
C60.0368 (10)0.0364 (10)0.0359 (10)0.0079 (8)0.0143 (9)0.0045 (8)
C70.0286 (10)0.0366 (10)0.0410 (11)0.0017 (8)0.0043 (8)0.0086 (8)
C80.0390 (10)0.0259 (9)0.0245 (9)0.0003 (7)0.0025 (8)0.0005 (7)
C100.0350 (9)0.0248 (8)0.0194 (8)0.0050 (7)0.0038 (7)0.0056 (6)
Geometric parameters (Å, º) top
Mo1—C12.2826 (19)C4—C91.432 (3)
Mo1—C22.236 (2)C9—C51.427 (3)
Mo1—C32.225 (2)C5—C61.381 (3)
Mo1—C42.2466 (19)C6—C71.419 (3)
Mo1—C92.3176 (16)C7—C81.379 (3)
Mo1—C102.3400 (17)C8—C101.429 (3)
Mo1—C5i2.2495 (18)C9—C101.451 (2)
Mo1—C6i2.2244 (19)C1—H10.91 (2)
Mo1—C7i2.2284 (19)C2—H20.93 (2)
Mo1—C8i2.2557 (18)C3—H30.92 (3)
Mo1—C9i2.3158 (16)C4—H40.91 (2)
Mo1—C10i2.3182 (16)C5—H50.92 (2)
C1—C101.429 (3)C6—H60.94 (2)
C1—C21.377 (3)C7—H70.91 (3)
C2—C31.421 (3)C8—H80.89 (2)
C3—C41.380 (3)
C6i—Mo1—C3115.50 (8)C2—C1—Mo170.43 (12)
C6i—Mo1—C7i37.18 (7)C10—C1—Mo174.19 (10)
C3—Mo1—C7i103.80 (8)C1—C2—C3120.6 (2)
C6i—Mo1—C2102.80 (8)C1—C2—Mo174.12 (12)
C3—Mo1—C237.15 (9)C3—C2—Mo171.01 (12)
C7i—Mo1—C2115.83 (8)C4—C3—C2120.5 (2)
C6i—Mo1—C4144.57 (7)C4—C3—Mo172.87 (11)
C3—Mo1—C435.95 (8)C2—C3—Mo171.84 (12)
C7i—Mo1—C4115.15 (7)C3—C4—C9120.73 (19)
C2—Mo1—C465.70 (8)C3—C4—Mo171.18 (12)
C6i—Mo1—C5i35.95 (7)C9—C4—Mo174.44 (10)
C3—Mo1—C5i143.88 (8)C5—C9—C4122.59 (17)
C7i—Mo1—C5i65.64 (7)C5—C9—C10118.58 (16)
C2—Mo1—C5i113.74 (8)C4—C9—C10118.68 (17)
C4—Mo1—C5i179.14 (7)C5—C9—Mo1i69.28 (9)
C6i—Mo1—C8i65.65 (7)C4—C9—Mo1i126.95 (11)
C3—Mo1—C8i115.38 (8)C10—C9—Mo1i71.85 (9)
C7i—Mo1—C8i35.82 (7)C5—C9—Mo1126.30 (11)
C2—Mo1—C8i144.91 (9)C4—C9—Mo169.04 (10)
C4—Mo1—C8i103.61 (7)C10—C9—Mo172.69 (9)
C5i—Mo1—C8i77.22 (7)Mo1i—C9—Mo165.77 (4)
C6i—Mo1—C1113.87 (7)C6—C5—C9121.25 (17)
C3—Mo1—C165.22 (9)C6—C5—Mo1i71.04 (11)
C7i—Mo1—C1144.00 (8)C9—C5—Mo1i74.33 (9)
C2—Mo1—C135.45 (8)C5—C6—C7120.16 (19)
C4—Mo1—C177.05 (7)C5—C6—Mo1i73.01 (11)
C5i—Mo1—C1102.12 (7)C7—C6—Mo1i71.56 (11)
C8i—Mo1—C1179.33 (7)C8—C7—C6120.40 (19)
C6i—Mo1—C9i65.18 (7)C8—C7—Mo1i73.17 (11)
C3—Mo1—C9i179.04 (7)C6—C7—Mo1i71.26 (11)
C7i—Mo1—C9i77.15 (7)C7—C8—C10121.25 (17)
C2—Mo1—C9i142.34 (8)C7—C8—Mo1i71.01 (11)
C4—Mo1—C9i143.76 (7)C10—C8—Mo1i74.20 (10)
C5i—Mo1—C9i36.39 (6)C8—C10—C1122.96 (17)
C8i—Mo1—C9i65.46 (6)C8—C10—C9118.33 (16)
C1—Mo1—C9i113.94 (7)C1—C10—C9118.56 (17)
C6i—Mo1—C9178.65 (7)C8—C10—Mo1i69.43 (10)
C3—Mo1—C965.07 (7)C1—C10—Mo1i126.69 (12)
C7i—Mo1—C9144.14 (7)C9—C10—Mo1i71.66 (9)
C2—Mo1—C976.91 (7)C8—C10—Mo1127.15 (11)
C4—Mo1—C936.52 (6)C1—C10—Mo169.81 (10)
C5i—Mo1—C9142.94 (7)C9—C10—Mo171.02 (9)
C8i—Mo1—C9115.35 (7)Mo1i—C10—Mo165.37 (4)
C1—Mo1—C965.12 (7)C2—C1—H1120.8 (14)
C9i—Mo1—C9114.23 (4)C10—C1—H1118.2 (14)
C6i—Mo1—C10i77.33 (7)Mo1—C1—H1126.2 (13)
C3—Mo1—C10i144.01 (8)C1—C2—H2120.5 (16)
C7i—Mo1—C10i65.09 (7)C3—C2—H2118.9 (16)
C2—Mo1—C10i178.65 (8)Mo1—C2—H2125.0 (15)
C4—Mo1—C10i114.97 (7)C4—C3—H3117.5 (15)
C5i—Mo1—C10i65.57 (6)C2—C3—H3122.1 (15)
C8i—Mo1—C10i36.37 (7)Mo1—C3—H3126.5 (15)
C1—Mo1—C10i143.26 (7)C3—C4—H4123.6 (13)
C9i—Mo1—C10i36.49 (6)C9—C4—H4115.7 (13)
C9—Mo1—C10i102.93 (6)Mo1—C4—H4126.8 (13)
C6i—Mo1—C10142.39 (7)C6—C5—H5119.4 (12)
C3—Mo1—C1076.73 (7)C9—C5—H5119.4 (12)
C7i—Mo1—C10179.42 (7)Mo1i—C5—H5127.2 (12)
C2—Mo1—C1064.45 (7)C5—C6—H6121.2 (14)
C4—Mo1—C1065.41 (6)C7—C6—H6118.6 (14)
C5i—Mo1—C10113.79 (6)Mo1i—C6—H6125.7 (14)
C8i—Mo1—C10144.17 (7)C8—C7—H7118.3 (15)
C1—Mo1—C1035.99 (6)C6—C7—H7121.1 (15)
C9i—Mo1—C10102.32 (6)Mo1i—C7—H7123.6 (14)
C9—Mo1—C1036.29 (6)C7—C8—H8120.6 (13)
C10i—Mo1—C10114.63 (4)C10—C8—H8118.1 (13)
C2—C1—C10121.0 (2)Mo1i—C8—H8124.5 (13)
C6i—Mo1—C1—C278.24 (15)C9i—Mo1—C9—C4151.44 (12)
C3—Mo1—C1—C230.08 (13)C10i—Mo1—C9—C4114.69 (11)
C7i—Mo1—C1—C249.1 (2)C10—Mo1—C9—C4131.12 (15)
C4—Mo1—C1—C266.11 (14)C3—Mo1—C9—C10101.84 (12)
C5i—Mo1—C1—C2114.10 (14)C7i—Mo1—C9—C10179.35 (11)
C9i—Mo1—C1—C2150.44 (13)C2—Mo1—C9—C1064.44 (11)
C9—Mo1—C1—C2102.75 (15)C4—Mo1—C9—C10131.12 (15)
C10i—Mo1—C1—C2179.30 (12)C5i—Mo1—C9—C1047.76 (15)
C10—Mo1—C1—C2131.9 (2)C8i—Mo1—C9—C10150.53 (10)
C6i—Mo1—C1—C10149.85 (11)C1—Mo1—C9—C1028.93 (10)
C3—Mo1—C1—C10101.83 (13)C9i—Mo1—C9—C1077.43 (9)
C7i—Mo1—C1—C10179.02 (11)C10i—Mo1—C9—C10114.18 (8)
C2—Mo1—C1—C10131.9 (2)C3—Mo1—C9—Mo1i179.28 (8)
C4—Mo1—C1—C1065.80 (12)C7i—Mo1—C9—Mo1i101.91 (11)
C5i—Mo1—C1—C10113.99 (12)C2—Mo1—C9—Mo1i141.87 (8)
C9i—Mo1—C1—C1077.65 (12)C4—Mo1—C9—Mo1i151.44 (12)
C9—Mo1—C1—C1029.17 (10)C5i—Mo1—C9—Mo1i29.67 (11)
C10i—Mo1—C1—C1048.78 (19)C8i—Mo1—C9—Mo1i73.10 (7)
C10—C1—C2—C30.7 (3)C1—Mo1—C9—Mo1i106.36 (7)
Mo1—C1—C2—C355.86 (17)C9i—Mo1—C9—Mo1i0.0
C10—C1—C2—Mo156.59 (17)C10i—Mo1—C9—Mo1i36.75 (6)
C6i—Mo1—C2—C1113.35 (13)C10—Mo1—C9—Mo1i77.43 (9)
C3—Mo1—C2—C1131.1 (2)C4—C9—C5—C6177.00 (16)
C7i—Mo1—C2—C1150.43 (12)C10—C9—C5—C61.4 (2)
C4—Mo1—C2—C1102.13 (14)Mo1i—C9—C5—C655.60 (15)
C5i—Mo1—C2—C177.16 (14)Mo1—C9—C5—C690.3 (2)
C8i—Mo1—C2—C1179.02 (12)C4—C9—C5—Mo1i121.39 (15)
C9i—Mo1—C2—C147.56 (19)C10—C9—C5—Mo1i54.17 (13)
C9—Mo1—C2—C165.29 (13)Mo1—C9—C5—Mo1i34.68 (12)
C10—Mo1—C2—C129.00 (12)C9—C5—C6—C71.2 (3)
C6i—Mo1—C2—C3115.54 (13)Mo1i—C5—C6—C755.95 (16)
C7i—Mo1—C2—C378.46 (14)C9—C5—C6—Mo1i57.15 (15)
C4—Mo1—C2—C328.97 (12)C5—C6—C7—C80.3 (3)
C5i—Mo1—C2—C3151.74 (12)Mo1i—C6—C7—C856.39 (16)
C8i—Mo1—C2—C349.88 (19)C5—C6—C7—Mo1i56.64 (16)
C1—Mo1—C2—C3131.10 (19)C6—C7—C8—C101.4 (3)
C9i—Mo1—C2—C3178.66 (11)Mo1i—C7—C8—C1056.93 (15)
C9—Mo1—C2—C365.81 (13)C6—C7—C8—Mo1i55.48 (16)
C10—Mo1—C2—C3102.10 (13)C7—C8—C10—C1176.59 (16)
C1—C2—C3—C40.9 (3)Mo1i—C8—C10—C1121.15 (16)
Mo1—C2—C3—C456.46 (16)C7—C8—C10—C91.2 (2)
C1—C2—C3—Mo157.35 (17)Mo1i—C8—C10—C954.27 (13)
C6i—Mo1—C3—C4151.64 (12)C7—C8—C10—Mo1i55.44 (16)
C7i—Mo1—C3—C4114.00 (13)C7—C8—C10—Mo188.0 (2)
C2—Mo1—C3—C4131.25 (19)Mo1i—C8—C10—Mo132.57 (12)
C5i—Mo1—C3—C4178.57 (12)C2—C1—C10—C8176.75 (16)
C8i—Mo1—C3—C477.86 (14)Mo1—C1—C10—C8121.91 (16)
C1—Mo1—C3—C4102.48 (14)C2—C1—C10—C91.3 (3)
C9—Mo1—C3—C429.72 (11)Mo1—C1—C10—C953.51 (13)
C10i—Mo1—C3—C447.57 (18)C2—C1—C10—Mo1i89.0 (2)
C10—Mo1—C3—C466.25 (12)Mo1—C1—C10—Mo1i34.14 (14)
C6i—Mo1—C3—C277.11 (14)C2—C1—C10—Mo154.85 (17)
C7i—Mo1—C3—C2114.75 (13)C5—C9—C10—C80.3 (2)
C4—Mo1—C3—C2131.25 (19)C4—C9—C10—C8176.00 (15)
C5i—Mo1—C3—C247.32 (19)Mo1i—C9—C10—C853.20 (13)
C8i—Mo1—C3—C2150.89 (12)Mo1—C9—C10—C8122.69 (14)
C1—Mo1—C3—C228.78 (12)C5—C9—C10—C1175.37 (15)
C9—Mo1—C3—C2101.53 (14)C4—C9—C10—C10.4 (2)
C10i—Mo1—C3—C2178.82 (12)Mo1i—C9—C10—C1122.43 (15)
C10—Mo1—C3—C265.01 (13)Mo1—C9—C10—C152.93 (14)
C2—C3—C4—C91.9 (3)C5—C9—C10—Mo1i52.94 (13)
Mo1—C3—C4—C957.84 (15)C4—C9—C10—Mo1i122.80 (14)
C2—C3—C4—Mo155.97 (17)Mo1—C9—C10—Mo1i69.50 (4)
C6i—Mo1—C4—C347.69 (19)C5—C9—C10—Mo1122.43 (14)
C7i—Mo1—C4—C378.55 (14)C4—C9—C10—Mo153.30 (13)
C2—Mo1—C4—C329.87 (13)Mo1i—C9—C10—Mo169.50 (4)
C8i—Mo1—C4—C3114.66 (13)C6i—Mo1—C10—C867.8 (2)
C1—Mo1—C4—C365.46 (13)C3—Mo1—C10—C8177.41 (17)
C9i—Mo1—C4—C3178.45 (12)C2—Mo1—C10—C8145.24 (18)
C9—Mo1—C4—C3130.94 (18)C4—Mo1—C10—C8141.19 (18)
C10i—Mo1—C4—C3151.41 (12)C5i—Mo1—C10—C839.17 (17)
C10—Mo1—C4—C3101.58 (14)C8i—Mo1—C10—C862.2 (2)
C6i—Mo1—C4—C9178.64 (11)C1—Mo1—C10—C8116.7 (2)
C3—Mo1—C4—C9130.94 (18)C9i—Mo1—C10—C82.70 (17)
C7i—Mo1—C4—C9150.51 (11)C9—Mo1—C10—C8111.65 (19)
C2—Mo1—C4—C9101.07 (12)C10i—Mo1—C10—C833.67 (14)
C8i—Mo1—C4—C9114.40 (11)C6i—Mo1—C10—C148.81 (17)
C1—Mo1—C4—C965.49 (11)C3—Mo1—C10—C165.93 (13)
C9i—Mo1—C4—C947.50 (18)C2—Mo1—C10—C128.59 (13)
C10i—Mo1—C4—C977.64 (12)C4—Mo1—C10—C1102.16 (13)
C10—Mo1—C4—C929.36 (10)C5i—Mo1—C10—C177.49 (13)
C3—C4—C9—C5176.78 (16)C8i—Mo1—C10—C1178.89 (12)
Mo1—C4—C9—C5120.50 (15)C9i—Mo1—C10—C1113.95 (12)
C3—C4—C9—C101.2 (2)C9—Mo1—C10—C1131.69 (16)
Mo1—C4—C9—C1055.06 (13)C10i—Mo1—C10—C1150.33 (13)
C3—C4—C9—Mo1i89.3 (2)C6i—Mo1—C10—C9179.49 (11)
Mo1—C4—C9—Mo1i33.05 (13)C3—Mo1—C10—C965.76 (11)
C3—C4—C9—Mo156.28 (16)C2—Mo1—C10—C9103.11 (12)
C3—Mo1—C9—C5145.02 (17)C4—Mo1—C10—C929.54 (10)
C7i—Mo1—C9—C566.2 (2)C5i—Mo1—C10—C9150.82 (10)
C2—Mo1—C9—C5177.57 (17)C8i—Mo1—C10—C949.42 (15)
C4—Mo1—C9—C5115.7 (2)C1—Mo1—C10—C9131.69 (16)
C5i—Mo1—C9—C565.4 (2)C9i—Mo1—C10—C9114.35 (8)
C8i—Mo1—C9—C537.40 (17)C10i—Mo1—C10—C977.98 (9)
C1—Mo1—C9—C5142.06 (17)C6i—Mo1—C10—Mo1i101.52 (11)
C9i—Mo1—C9—C535.70 (13)C3—Mo1—C10—Mo1i143.74 (8)
C10i—Mo1—C9—C51.05 (16)C2—Mo1—C10—Mo1i178.91 (8)
C10—Mo1—C9—C5113.13 (19)C4—Mo1—C10—Mo1i107.52 (7)
C3—Mo1—C9—C429.28 (12)C5i—Mo1—C10—Mo1i72.84 (7)
C7i—Mo1—C9—C449.53 (16)C8i—Mo1—C10—Mo1i28.56 (11)
C2—Mo1—C9—C466.68 (12)C1—Mo1—C10—Mo1i150.33 (13)
C5i—Mo1—C9—C4178.88 (12)C9i—Mo1—C10—Mo1i36.37 (6)
C8i—Mo1—C9—C478.35 (12)C9—Mo1—C10—Mo1i77.98 (9)
C1—Mo1—C9—C4102.19 (13)C10i—Mo1—C10—Mo1i0.0
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Mo(C10H8)2]
Mr352.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.4452 (10), 8.0716 (10), 10.9890 (13)
β (°) 109.186 (2)
V3)707.47 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.60 × 0.60 × 0.30
Data collection
DiffractometerBruker SMART Platform CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.610, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
8208, 1674, 1420
Rint0.031
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.03
No. of reflections1674
No. of parameters132
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the National Science Foundation program (grant CHE–0841014).

References

First citationBrennessel, W. W., Ellis, J. E., Pomije, M. K., Sussman, V. J., Urnezius, E. & Young, V. G. (2002). J. Am. Chem. Soc. 124, 10258–10259.  CrossRef PubMed CAS Google Scholar
First citationBrennessel, W. W., Young, V. G. & Ellis, J. E. (2006). Angew. Chem. Int. Ed. 45, 7268–7271.  CrossRef CAS Google Scholar
First citationBruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElschenbroich, C., Mockel, R., Massa, W., Birkhahn, M. & Zenneck, U. (1982). Chem. Ber. 115, 334–345.  CrossRef CAS Google Scholar
First citationJang, M. & Ellis, J. E. (1994). Angew. Chem. Int. Ed. Engl. 33, 1973–1975.  CrossRef Google Scholar
First citationKündig, E. P. & Timms, P. L. (1977). J. Chem. Soc. Chem. Commun. pp. 912–913.  Google Scholar
First citationPomije, M. K., Kurth, C. J., Ellis, J. E. & Barybin, M. V. (1997). Organometallics, 16, 3582–3587.  CrossRef CAS Google Scholar
First citationSeyferth, D. (2002a). Organometallics, 21, 1520–1530.  CrossRef CAS Google Scholar
First citationSeyferth, D. (2002b). Organometallics, 21, 2800–2820.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThi, N. P. D., Spichiger, S., Paglia, P., Bernardinelli, G., Kündig, E. P. & Timms, P. L. (1992). Helv. Chim. Acta, 75, 2593–2607.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds