organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o371-o372

4,5-Di­hydro­cyclo­penta­[b]thio­phen-6-one

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 23 December 2011; accepted 28 December 2011; online 14 January 2012)

The title compound, C7H6OS, crystallizes with two similar mol­ecules, 1 and 2, in the asymmetric unit. Both mol­ecules are essentially planar with r.m.s. deviations of 0.0193 and 0.0107 Å for the planes through the nine non-H atoms of mol­ecules 1 and 2, respectively. The thio­phene and 4,5-dihydro­cyclo­penta­dienone rings are inclined at 2.40 (13)° in 1 and 0.64 (13)° in 2. In the crystal structure ππ [3.6542 (17) Å] and C—H⋯π contacts stack the mol­ecules into columns in an inverse fashion along the b axis. An extensive series of C—H⋯O hydrogen bonds links the columns, generating an extended network structure.

Related literature

For low band-gap and fluorescent applications of conjugated thio­phene vinyl­ene oligomers, see: Blanchard et al. (1997[Blanchard, P., Brisset, H., Riou, A., Illien, B., Hierle, R., Riou, A. & Roncali, J. (1997). J. Org. Chem. 62, 2401-2408.], 1998a[Blanchard, P., Brisset, H., Riou, A., Hierle, R. & Roncali, J. (1998a). J. Org. Chem. 63, 8310-8319.],b[Blanchard, P., Brisset, H., Riou, A., Hierle, R. & Roncali, J. (1998b). New J. Chem. 22, 547-549.], 2006[Blanchard, P., Verlhac, P., Michaux, L., Frere, P. & Roncali, J. (2006). Chem. Eur. J. 12, 1244-1255.]). For control of the band-gap in the corres­ponding polymers, see: Roncali et al. (1994[Roncali, J., Thobie-Gautier, C., Elandaloussi, E.-H. & Frere, P. (1994). J. Chem. Soc. Chem. Commun. pp. 2249-2250.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Chang et al. (2004[Chang, K.-J., Rayabarapu, D. K. & Cheng, C.-H. (2004). J. Org. Chem. 69, 4781-4787.]); Bonini et al. (2004[Bonini, B. F., Capito, E., Comes-Franchini, M., Ricci, A., Bottoni, A., Bernardi, F., Miscione, G. P., Giordano, L. & Cowley, A. R. (2004). Eur. J. Org. Chem. pp. 4442-4451.]). For the synthetic route to the starting material, methyl 6-oxo-5,6-dihydro-4H-cyclo­penta­[b]thio­phene-5-carboxyl­ate, see: Cai et al. (2002[Cai, J. X., Zhou, Z. H., Zhao, G. F. & Tang, C. C. (2002). Org. Lett. 26, 4723-4725.]); More & Finney (2002[More, J. D. & Finney, N. S. (2002). Org. Lett. 17, 3001-3003.]); Yang (2009[Yang, B. (2009). World patent WO2009158380]).

[Scheme 1]

Experimental

Crystal data
  • C7H6OS

  • Mr = 138.18

  • Triclinic, [P \overline 1]

  • a = 6.6133 (9) Å

  • b = 7.4894 (11) Å

  • c = 13.3213 (16) Å

  • α = 83.247 (8)°

  • β = 86.097 (7)°

  • γ = 71.363 (8)°

  • V = 620.54 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 92 K

  • 0.55 × 0.28 × 0.02 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.617, Tmax = 0.745

  • 5251 measured reflections

  • 1522 independent reflections

  • 1264 reflections with I > 2σ(I)

  • Rint = 0.040

  • θmax = 22.1°

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.11

  • 1522 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the S1,C12,C13,C17,C18 and S2,C22,C23,C27,C28 thio­phene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O1i 0.99 2.52 3.473 (4) 160
C15—H15B⋯O1ii 0.99 2.59 3.489 (3) 151
C12—H12⋯O2iii 0.95 2.43 3.370 (4) 168
C13—H13⋯O2iv 0.95 2.65 3.275 (4) 124
C23—H23⋯O1v 0.95 2.62 3.425 (4) 143
C24—H24A⋯O2vi 0.99 2.52 3.480 (4) 164
C25—H25A⋯O2vii 0.99 2.71 3.704 (3) 180
C25—H25BCg1viii 0.99 2.79 3.561 (3) 135
C15—H15ACg4iii 0.99 2.84 3.571 (3) 131
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+2; (iii) x, y+1, z; (iv) -x+2, -y, -z+1; (v) -x, -y+1, -z+1; (vi) x-1, y, z; (vii) -x+1, -y, -z+1; (viii) x, y-1, z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is a key intermediate in the synthesis of many conjugated thiophene vinylene oligomers for low band-gap and fluorescent applications (Blanchard et al., 1997, 1998a,b, 2006). This is because the ethylene bridge in the resulting vinylene system flattens the ring and increases the conjugation between the neighbouring thiophene groups. This technique can also be used to control the band-gap in the corresponding polymers (Roncali et al., 1994)

The asymmetric unit of the triclinic unit cell of the title compound, I, contains two unique molecules, 1 and 2, Fig 1. These are closely similar and overlay (Macrae et al., 2008) with an r.m.s. deviation of only 0.024 Å. The molecules are approximately planar with r.m.s. deviations of 0.0193 and 0.0107 Å from the best fit planes through the nine non-hydrogen atoms in each of the two molecules, respectively. This is further illustrated by the fact that the thiophene and cyclopentadienone ring planes are inclined at 2.40 (13)° in molecule 1 and 0.64 (13)° in molecule 2. Bond distances in the molecule are normal (Allen et al., 1987) and similar to those observed in related molecules (Chang et al., 2004; Bonini et al., 2004).

In the crystal structure, molecules 1 and 2 are linked by C15–H15A···π and C25–H25B···π contacts into dimers. ππ Contacts of 3.6542 (17) Å, between the centroids of the thiophene rings of molecules 1 and 2, link these dimers, forming columns along the b axis, Fig. 2. An extensive series of C–H···O hydrogen bonds involving the carbonyl O atoms from both molecules join the columns into an extended network, Fig 3. Interestingly the S atoms are not involved in any close intermolecular interactions.

Related literature top

For low band-gap and fluorescent applications of conjugated thiophene vinylene oligomers, see: Blanchard et al. (1997, 1998a,b, 2006). For control of the band-gap in the corresponding polymers, see: Roncali et al. (1994). For standard bond lengths, see: Allen et al. (1987). For related structures, see: Chang et al. (2004); Bonini et al. (2004). For the synthetic route to the starting material, methyl 6-oxo-5,6-dihydro-4H-cyclopenta[b]thiophene-5-carboxylate, see: Cai et al. (2002); More & Finney (2002); Yang (2009).

Experimental top

Methyl 6-oxo-5,6-dihydro-4H-cyclopenta[b]thiophene-5-carboxylate was prepared by literature methods (Cai et al. 2002; More & Finney, 2002; Yang, 2009). Methyl 6-oxo-5,6-dihydro-4H-cyclopenta[b]thiophene-5-carboxylate (124 mg, 0.63 mmol) was dissolved in KOH (0.5 M) solution (H2O/EtOH, v/v=1) and refluxed for 4 h. The solution was cooled to room temperature, extracted with EtOAc (3× 20 ml), then the combined organic layers were washed with water (2× 50 ml) and dried over MgSO4. The solvent was evaporated in vacuo to yield transparent gold crystals (52.3 mg, 0.38 mmol) 60% yield. 1H NMR (δ p.p.m., CDCl3, 300 Hz): 7.890 (1H, d, J=3.6 Hz, C4H2S), 7.045 (1H, d, J=3.6 Hz, C4H2S), 3.049–2.974 (4H, m, CH2CH2).

Refinement top

All H-atoms were refined using a riding model with d(C—H) = 0.95 Å for aromatic–H and 0.99 Å for CH2–H atoms, and with Uiso = 1.2Ueq (C). Crystals were very weakly diffracting and data of reasonable intensity could not be obtained beyond θ = 22°. This also contributes to the relatively poor data/parameter ratio observed for this refinement.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011) and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of I with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ and C–H···π contacts forming columns along b, with contacts shown as dashed lines.
[Figure 3] Fig. 3. A general view of the crystal packing for the title compound with hydrogen bonds drawn as dashed lines.
4,5-Dihydrocyclopenta[b]thiophen-6-one top
Crystal data top
C7H6OSZ = 4
Mr = 138.18F(000) = 288
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6133 (9) ÅCell parameters from 1413 reflections
b = 7.4894 (11) Åθ = 3.1–22.0°
c = 13.3213 (16) ŵ = 0.42 mm1
α = 83.247 (8)°T = 92 K
β = 86.097 (7)°Rectangular plate, yellow
γ = 71.363 (8)°0.55 × 0.28 × 0.02 mm
V = 620.54 (14) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1522 independent reflections
Radiation source: fine-focus sealed tube1264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 22.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 66
Tmin = 0.617, Tmax = 0.745k = 77
5251 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.0126P]
where P = (Fo2 + 2Fc2)/3
1522 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C7H6OSγ = 71.363 (8)°
Mr = 138.18V = 620.54 (14) Å3
Triclinic, P1Z = 4
a = 6.6133 (9) ÅMo Kα radiation
b = 7.4894 (11) ŵ = 0.42 mm1
c = 13.3213 (16) ÅT = 92 K
α = 83.247 (8)°0.55 × 0.28 × 0.02 mm
β = 86.097 (7)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1522 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
1264 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.745Rint = 0.040
5251 measured reflectionsθmax = 22.1°
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.11Δρmax = 0.30 e Å3
1522 reflectionsΔρmin = 0.34 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46716 (12)0.59750 (11)0.65016 (6)0.0210 (3)
C120.6994 (5)0.5881 (4)0.5819 (2)0.0205 (8)
H120.70310.64650.51480.025*
C130.8795 (5)0.4873 (4)0.6343 (2)0.0196 (8)
H131.02130.46680.60780.024*
C140.9491 (5)0.3065 (4)0.8221 (2)0.0193 (8)
H14A1.04530.37050.84470.023*
H14B1.03450.17740.80640.023*
C150.7725 (5)0.2999 (4)0.9031 (2)0.0196 (8)
H15A0.78310.16700.92670.023*
H15B0.78720.36370.96190.023*
C160.5581 (5)0.4015 (4)0.8544 (2)0.0195 (8)
O10.3814 (3)0.4238 (3)0.89458 (15)0.0248 (6)
C170.6113 (5)0.4662 (4)0.7517 (2)0.0176 (8)
C180.8269 (5)0.4181 (4)0.7325 (2)0.0165 (7)
S20.47328 (13)0.09696 (11)0.12918 (6)0.0222 (3)
C220.2153 (5)0.2131 (4)0.0920 (2)0.0228 (8)
H220.18140.27820.02660.027*
C230.0655 (5)0.2020 (4)0.1654 (2)0.0223 (8)
H230.08400.25740.15740.027*
C240.0802 (5)0.0432 (4)0.3591 (2)0.0198 (8)
H24A0.01490.03450.35580.024*
H24B0.00240.15680.39370.024*
C250.2881 (5)0.0727 (4)0.4135 (2)0.0185 (8)
H25A0.30040.01460.47490.022*
H25B0.28770.20400.43390.022*
C260.4739 (5)0.0725 (4)0.3396 (2)0.0170 (8)
O20.6635 (3)0.1458 (3)0.35756 (15)0.0232 (6)
C270.3776 (5)0.0332 (4)0.2462 (2)0.0181 (8)
C280.1598 (5)0.0976 (4)0.2551 (2)0.0181 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0114 (5)0.0241 (6)0.0242 (5)0.0009 (4)0.0045 (4)0.0007 (4)
C120.0189 (19)0.0248 (19)0.0193 (17)0.0099 (15)0.0005 (14)0.0000 (14)
C130.0099 (18)0.0216 (18)0.0250 (19)0.0011 (14)0.0014 (14)0.0048 (14)
C140.0125 (18)0.0215 (19)0.0229 (18)0.0037 (14)0.0018 (14)0.0020 (14)
C150.0166 (19)0.0200 (18)0.0207 (17)0.0040 (14)0.0017 (14)0.0011 (14)
C160.016 (2)0.0171 (19)0.0265 (18)0.0050 (15)0.0030 (16)0.0075 (14)
O10.0106 (14)0.0311 (14)0.0318 (13)0.0052 (10)0.0044 (11)0.0061 (10)
C170.0100 (18)0.0170 (18)0.0236 (17)0.0007 (14)0.0049 (13)0.0014 (14)
C180.0117 (18)0.0167 (17)0.0217 (18)0.0041 (13)0.0000 (13)0.0049 (14)
S20.0177 (6)0.0271 (6)0.0217 (5)0.0079 (4)0.0016 (4)0.0014 (4)
C220.023 (2)0.0224 (19)0.0212 (18)0.0055 (15)0.0037 (15)0.0044 (14)
C230.0154 (19)0.0226 (19)0.0283 (19)0.0038 (15)0.0057 (16)0.0032 (15)
C240.0124 (18)0.0219 (18)0.0239 (18)0.0038 (14)0.0001 (14)0.0025 (14)
C250.0167 (19)0.0197 (18)0.0176 (17)0.0037 (14)0.0044 (14)0.0013 (14)
C260.015 (2)0.0152 (17)0.0217 (18)0.0043 (14)0.0002 (14)0.0057 (13)
O20.0094 (14)0.0281 (14)0.0284 (13)0.0010 (10)0.0032 (10)0.0003 (10)
C270.0125 (19)0.0203 (19)0.0222 (17)0.0049 (14)0.0008 (14)0.0064 (14)
C280.0138 (18)0.0189 (18)0.0221 (18)0.0047 (14)0.0013 (14)0.0052 (14)
Geometric parameters (Å, º) top
S1—C121.716 (3)S2—C271.716 (3)
S1—C171.723 (3)S2—C221.726 (3)
C12—C131.375 (4)C22—C231.359 (4)
C12—H120.9500C22—H220.9500
C13—C181.412 (4)C23—C281.413 (4)
C13—H130.9500C23—H230.9500
C14—C181.497 (4)C24—C281.506 (4)
C14—C151.543 (4)C24—C251.547 (4)
C14—H14A0.9900C24—H24A0.9900
C14—H14B0.9900C24—H24B0.9900
C15—C161.526 (4)C25—C261.522 (4)
C15—H15A0.9900C25—H25A0.9900
C15—H15B0.9900C25—H25B0.9900
C16—O11.221 (4)C26—O21.225 (4)
C16—C171.456 (4)C26—C271.461 (4)
C17—C181.368 (4)C27—C281.366 (4)
C12—S1—C1790.47 (15)C27—S2—C2289.93 (15)
C13—C12—S1113.1 (2)C23—C22—S2113.3 (2)
C13—C12—H12123.5C23—C22—H22123.3
S1—C12—H12123.5S2—C22—H22123.3
C12—C13—C18111.3 (3)C22—C23—C28111.6 (3)
C12—C13—H13124.3C22—C23—H23124.2
C18—C13—H13124.3C28—C23—H23124.2
C18—C14—C15103.4 (2)C28—C24—C25103.1 (2)
C18—C14—H14A111.1C28—C24—H24A111.1
C15—C14—H14A111.1C25—C24—H24A111.1
C18—C14—H14B111.1C28—C24—H24B111.1
C15—C14—H14B111.1C25—C24—H24B111.1
H14A—C14—H14B109.0H24A—C24—H24B109.1
C16—C15—C14107.4 (2)C26—C25—C24107.4 (2)
C16—C15—H15A110.2C26—C25—H25A110.2
C14—C15—H15A110.2C24—C25—H25A110.2
C16—C15—H15B110.2C26—C25—H25B110.2
C14—C15—H15B110.2C24—C25—H25B110.2
H15A—C15—H15B108.5H25A—C25—H25B108.5
O1—C16—C17128.2 (3)O2—C26—C27128.6 (3)
O1—C16—C15126.6 (3)O2—C26—C25125.8 (3)
C17—C16—C15105.1 (3)C27—C26—C25105.6 (3)
C18—C17—C16112.5 (3)C28—C27—C26112.0 (3)
C18—C17—S1112.4 (2)C28—C27—S2112.9 (2)
C16—C17—S1135.1 (2)C26—C27—S2135.1 (2)
C17—C18—C13112.7 (3)C27—C28—C23112.3 (3)
C17—C18—C14111.5 (3)C27—C28—C24111.8 (3)
C13—C18—C14135.8 (3)C23—C28—C24135.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the S1,C12,C13,C17,C18 and S2,C22,C23,C27,C28 thiophene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.992.523.473 (4)160
C15—H15B···O1ii0.992.593.489 (3)151
C12—H12···O2iii0.952.433.370 (4)168
C13—H13···O2iv0.952.653.275 (4)124
C23—H23···O1v0.952.623.425 (4)143
C24—H24A···O2vi0.992.523.480 (4)164
C25—H25A···O2vii0.992.713.704 (3)180
C25—H25B···Cg1viii0.992.793.561 (3)135
C15—H15A···Cg4iii0.992.843.571 (3)131
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x+2, y, z+1; (v) x, y+1, z+1; (vi) x1, y, z; (vii) x+1, y, z+1; (viii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC7H6OS
Mr138.18
Crystal system, space groupTriclinic, P1
Temperature (K)92
a, b, c (Å)6.6133 (9), 7.4894 (11), 13.3213 (16)
α, β, γ (°)83.247 (8), 86.097 (7), 71.363 (8)
V3)620.54 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.55 × 0.28 × 0.02
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.617, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
5251, 1522, 1264
Rint0.040
θmax (°)22.1
(sin θ/λ)max1)0.529
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.11
No. of reflections1522
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: , APEX2 (Bruker, 2011) and SAINT (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the S1,C12,C13,C17,C18 and S2,C22,C23,C27,C28 thiophene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.992.523.473 (4)160.3
C15—H15B···O1ii0.992.593.489 (3)150.6
C12—H12···O2iii0.952.433.370 (4)168.1
C13—H13···O2iv0.952.653.275 (4)124.1
C23—H23···O1v0.952.623.425 (4)143.3
C24—H24A···O2vi0.992.523.480 (4)163.7
C25—H25A···O2vii0.992.713.704 (3)179.5
C25—H25B···Cg1viii0.992.793.561 (3)135
C15—H15A···Cg4iii0.992.843.571 (3)131
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x+2, y, z+1; (v) x, y+1, z+1; (vi) x1, y, z; (vii) x+1, y, z+1; (viii) x, y1, z.
 

Acknowledgements

We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlanchard, P., Brisset, H., Riou, A., Hierle, R. & Roncali, J. (1998a). J. Org. Chem. 63, 8310–8319.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlanchard, P., Brisset, H., Riou, A., Hierle, R. & Roncali, J. (1998b). New J. Chem. 22, 547–549.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlanchard, P., Brisset, H., Riou, A., Illien, B., Hierle, R., Riou, A. & Roncali, J. (1997). J. Org. Chem. 62, 2401–2408.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBlanchard, P., Verlhac, P., Michaux, L., Frere, P. & Roncali, J. (2006). Chem. Eur. J. 12, 1244–1255.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBonini, B. F., Capito, E., Comes-Franchini, M., Ricci, A., Bottoni, A., Bernardi, F., Miscione, G. P., Giordano, L. & Cowley, A. R. (2004). Eur. J. Org. Chem. pp. 4442–4451.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J. X., Zhou, Z. H., Zhao, G. F. & Tang, C. C. (2002). Org. Lett. 26, 4723–4725.  Web of Science CrossRef Google Scholar
First citationChang, K.-J., Rayabarapu, D. K. & Cheng, C.-H. (2004). J. Org. Chem. 69, 4781–4787.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMore, J. D. & Finney, N. S. (2002). Org. Lett. 17, 3001–3003.  Web of Science CrossRef Google Scholar
First citationRoncali, J., Thobie-Gautier, C., Elandaloussi, E.-H. & Frere, P. (1994). J. Chem. Soc. Chem. Commun. pp. 2249–2250.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, B. (2009). World patent WO2009158380  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o371-o372
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds