metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m178-m179

Bis(2-amino-1,3-benzo­thia­zole-κN3)di­chloridozinc(II) ethanol hemisolvate

aDepartment of Chemistry Education, Interdisciplinary Program of Advanced Information and Display Materials, and Center for Plastic Information System, Pusan National University, Busan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 31 December 2011; accepted 13 January 2012; online 21 January 2012)

In the title compound, [ZnCl2(C7H6N2S)2]·0.5CH3CH2OH, the ZnII atom is coordinated by two N atoms of two 2-amino­benzothia­zole ligands and two Cl atoms within a distorted tetra­hedral geometry. The dihedral angle between the N/Zn/N and Cl/Zn/Cl planes is 86.22 (7)°. The benzothia­zole mol­ecules are almost perpendicular to each other, forming a dihedral angle of 80.20 (8)°. The mol­ecular structure is stabilized by intra­molecular N—H⋯Cl hydrogen bonds. In the crystal, inter­molecular N—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional network. The SQUEEZE procedure in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155] was used to model a disordered ethanol solvent mol­ecule; the calculated unit-cell data allow for the presence of half of this mol­ecule in the asymmetric unit.

Related literature

For the synthesis and structures of related ZnII and HgII metal complexes, see: Kim et al. (2007[Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Lee, J.-Y. & Kang, S. K. (2007). Acta Cryst. E63, m2810-m2811.], 2010[Kim, Y.-I., Yun, S.-Y., Lee, T. & Kang, S. K. (2010). Acta Cryst. E66, m940.], 2011[Kim, Y.-I., Song, Y.-K., Yun, S.-J., Kim, I.-C. & Kang, S. K. (2011). Acta Cryst. E67, m52-m53.]); Seo et al. (2009[Seo, H. J., Ryu, J. S., Nam, K. S., Kang, S. K., Park, S. Y. & Kim, Y. I. (2009). Bull. Korean Chem. Soc. 30, 3109-3112.]); Kim & Kang (2010[Kim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251.]). For the biological and photochemical properties of benzothia­zole compounds, see: Khan et al. (2011[Khan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Haq, Z., Mesaik, M. A. & Choudhary, M. I. (2011). Bioorg. Med. Chem. 19, 4286-4294.]); Pavlovic et al. (2007[Pavlovic, G., Soldin, Z., Popovic, Z. & Kulenovic, V. T. (2007). Polyhedron, 26, 5162-5170.]); Raposo et al. (2011[Raposo, M. M. M., Castro, M. C. R., Fonseca, A. M. C., Schellenberg, P. & Belsley, M. (2011). Tetrahedron, 67, 5189-5198.]); Saeed et al. (2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]); Zajac et al. (2008[Zajac, M., Hrobarik, P., Magdolen, P., Foltinova, P. & Zahradnik, P. (2008). Tetrahedron, 64, 10605-10618.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C7H6N2S)2]·0.5C2H6O

  • Mr = 459.72

  • Orthorhombic, P c c a

  • a = 21.0129 (10) Å

  • b = 11.6013 (5) Å

  • c = 16.6025 (8) Å

  • V = 4047.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 296 K

  • 0.13 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 0.881

  • 16706 measured reflections

  • 4956 independent reflections

  • 2612 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.136

  • S = 0.88

  • 4956 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N4 2.026 (3)
Zn1—N14 2.028 (3)
Zn1—Cl2 2.2489 (11)
Zn1—Cl3 2.2726 (11)
N4—Zn1—N14 112.24 (12)
Cl2—Zn1—Cl3 112.11 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13A⋯Cl2 0.86 2.46 3.273 (3) 157
N13—H13B⋯Cl3i 0.86 2.49 3.314 (3) 161
N23—H23A⋯Cl3 0.86 2.54 3.333 (3) 154
N23—H23B⋯Cl2ii 0.86 2.57 3.366 (3) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z]; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we studied Zn(II) and Hg(II) complexes with nitrogen-containing ligands (Kim et al., 2007; Seo et al., 2009; Kim et al., 2010; Kim & Kang, 2010; Kim et al., 2011) with reference to their luminescent properties, as these can be used as fluorescent brighteners. As a part of our continuous interest in the coordination properties of the nitrogen-containing ligands, herein we report the synthesis of a Zn(II) chloride complex with 2-aminobenzothiazole, (I). Compounds with benzothiazole moiety are also of significant interest due to their biological properties such as anti-tumor and anti-viral (Saeed et al., 2010; Khan et al., 2011) as well as photochemical properties (Pavlovic et al., 2007; Zajac et al., 2008; Raposo et al., 2011).

In (I), Fig. 1, the 2-aminobenzothiazole molecules are almost planar, with r.m.s. deviations of 0.022 and 0.009 Å from the corresponding least-squares plane defined by the ten constituent atoms, respectively. The ZnII atom is coordinated by two N atoms of benzothiazole ligands and two Cl atoms in a distorted tetrahedral geometry with the dihedral angle of 86.22 (7)° between the N4/Zn1/N14 and Cl2/Zn1/Cl3 planes. The bond distances of N4—C12 [1.338 (4) Å] and N14—C22 [1.317 (4) Å] in the benzothiazole ligands are shorter than those of N4—C5 [1.404 (5) Å] and N14—C15 [1.395 (5) Å], respectively, which is consistent with double bond character in the former (Table 1). The benzothiazole molecules are almost perpendicular to each other with a dihedral angle of 80.20 (8)°. The molecular structure is stabilized by intramolecular N13—H13A···Cl2 and N23—H23A···Cl3 hydrogen bonds (Fig. 1 and Table 2). In the crystal, intermolecular N—H···Cl hydrogen bonds link the molecules into a three-dimensional network (Fig. 2).

Related literature top

For the synthesis and structures of related ZnII and HgII metal complexes, see: Kim et al. (2007, 2010, 2011); Seo et al. (2009); Kim & Kang (2010). For the biological and photochemical properties of benzothiazole compounds, see: Khan et al. (2011); Pavlovic et al. (2007); Raposo et al. (2011); Saeed et al. (2010); Zajac et al. (2008).

Experimental top

All reagents and solvents were purchased from Aldrich and used without further purification. A mixture of ZnCl2 (0.66 g, 5.0 mmol) and 2-aminobenzothiazole (1.50 g, 10.0 mmol) in ethanol (20 ml) was stirred at room temperature under nitrogen atmosphere. The resulting colourless solution was allowed to stand at room temperature for a week to yield colourless crystals (yield 60.0%) suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C or N). There is a disordered ethanol solvent molecule which was difficult to model. Therefore, the SQUEEZE command of PLATON (Spek, 2009) was used to model the electron density in the void regions. There are two cavities of 378 Å3 per unit cell. Each cavity contains approximately 58 electrons which were assigned to two solvent ethanol molecules. With Z = 8, each Zn complex has 0.5 solvent ethanol equivalent. The reported molecular formula and derived unit cell characteristics take into account the presence of the solvent molecules.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids. Intramolecular N—H···Cl hydrogen bonds are indicated by dashed lines. The ethanol molecule is not shown.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing molecules linked by intermolecular N—H···Cl hydrogen bonds (dashed lines). The ethanol molecule is not shown.
Bis(2-amino-1,3-benzothiazole-κN3)dichloridozinc(II) ethanol hemisolvate top
Crystal data top
[ZnCl2(C7H6N2S)2]·0.5C2H6OF(000) = 1760
Mr = 459.72Dx = 1.509 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 1986 reflections
a = 21.0129 (10) Åθ = 3.0–24.3°
b = 11.6013 (5) ŵ = 1.69 mm1
c = 16.6025 (8) ÅT = 296 K
V = 4047.3 (3) Å3Block, colourless
Z = 80.13 × 0.1 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 278
Tmin = 0.813, Tmax = 0.881k = 1512
16706 measured reflectionsl = 1921
4956 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0724P)2]
where P = (Fo2 + 2Fc2)/3
4956 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[ZnCl2(C7H6N2S)2]·0.5C2H6OV = 4047.3 (3) Å3
Mr = 459.72Z = 8
Orthorhombic, PccaMo Kα radiation
a = 21.0129 (10) ŵ = 1.69 mm1
b = 11.6013 (5) ÅT = 296 K
c = 16.6025 (8) Å0.13 × 0.1 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4956 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2612 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.881Rint = 0.058
16706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.88Δρmax = 0.39 e Å3
4956 reflectionsΔρmin = 0.34 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.387172 (17)0.61071 (4)0.10299 (3)0.04953 (16)
Cl20.33663 (4)0.61006 (11)0.22239 (6)0.0701 (3)
Cl30.42382 (4)0.43298 (9)0.06892 (7)0.0598 (3)
N40.32592 (12)0.6503 (3)0.01289 (18)0.0477 (7)
C50.34802 (15)0.6653 (3)0.0662 (2)0.0462 (8)
C60.41141 (18)0.6731 (4)0.0882 (2)0.0569 (10)
H60.44350.66730.04990.068*
C70.42565 (19)0.6899 (4)0.1684 (3)0.0624 (11)
H70.46810.69450.1840.075*
C80.3791 (2)0.6999 (4)0.2255 (3)0.0766 (13)
H80.38990.71190.27910.092*
C90.3160 (2)0.6922 (4)0.2033 (3)0.0758 (13)
H90.28410.69890.24180.091*
C100.30062 (17)0.6744 (4)0.1237 (3)0.0565 (10)
S110.22578 (4)0.66284 (11)0.07852 (7)0.0681 (3)
C120.26227 (15)0.6488 (3)0.0152 (2)0.0519 (9)
N130.22837 (13)0.6396 (3)0.0822 (2)0.0682 (10)
H13A0.24730.63420.1280.082*
H13B0.18750.63910.07990.082*
N140.45956 (13)0.7257 (3)0.11147 (19)0.0510 (8)
C150.45232 (18)0.8447 (4)0.1039 (2)0.0563 (10)
C160.3996 (2)0.9016 (4)0.0752 (4)0.0839 (15)
H160.36380.86010.05950.101*
C170.3998 (3)1.0218 (5)0.0695 (4)0.1028 (18)
H170.36481.06070.04860.123*
C180.4536 (4)1.0833 (5)0.0957 (4)0.1039 (19)
H180.45361.16350.09360.125*
C190.5060 (3)1.0260 (5)0.1243 (4)0.0920 (16)
H190.5421.06650.14080.11*
C200.5045 (2)0.9079 (4)0.1283 (3)0.0689 (12)
S210.56461 (5)0.81677 (11)0.16229 (8)0.0794 (4)
C220.51607 (16)0.6994 (4)0.1405 (2)0.0526 (9)
N230.53666 (14)0.5938 (3)0.1541 (2)0.0673 (10)
H23A0.51250.53580.14390.081*
H23B0.57420.5830.17320.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0339 (2)0.0592 (3)0.0555 (3)0.00259 (18)0.00195 (16)0.0009 (2)
Cl20.0450 (5)0.1092 (9)0.0562 (6)0.0047 (5)0.0029 (4)0.0017 (6)
Cl30.0395 (4)0.0593 (6)0.0807 (7)0.0003 (4)0.0012 (4)0.0048 (5)
N40.0336 (13)0.0584 (19)0.051 (2)0.0019 (13)0.0030 (12)0.0022 (15)
C50.0385 (17)0.044 (2)0.056 (2)0.0035 (15)0.0026 (15)0.0041 (18)
C60.047 (2)0.063 (3)0.062 (3)0.0010 (18)0.0038 (17)0.002 (2)
C70.056 (2)0.069 (3)0.062 (3)0.0080 (19)0.013 (2)0.010 (2)
C80.078 (3)0.098 (4)0.053 (3)0.019 (3)0.008 (2)0.006 (3)
C90.070 (3)0.103 (4)0.055 (3)0.015 (3)0.015 (2)0.006 (3)
C100.043 (2)0.066 (3)0.060 (3)0.0058 (18)0.0032 (16)0.000 (2)
S110.0404 (5)0.0954 (9)0.0686 (7)0.0065 (5)0.0123 (4)0.0040 (6)
C120.0363 (17)0.057 (2)0.063 (3)0.0000 (15)0.0028 (16)0.003 (2)
N130.0321 (15)0.108 (3)0.064 (2)0.0072 (16)0.0005 (14)0.001 (2)
N140.0403 (15)0.053 (2)0.059 (2)0.0049 (14)0.0028 (13)0.0030 (15)
C150.054 (2)0.056 (3)0.059 (3)0.0036 (19)0.0036 (18)0.002 (2)
C160.080 (3)0.062 (3)0.109 (4)0.001 (2)0.017 (3)0.006 (3)
C170.102 (4)0.070 (4)0.136 (5)0.018 (3)0.015 (4)0.004 (3)
C180.129 (5)0.055 (3)0.128 (5)0.008 (3)0.014 (4)0.007 (3)
C190.083 (4)0.074 (4)0.119 (5)0.018 (3)0.000 (3)0.010 (3)
C200.076 (3)0.054 (3)0.077 (3)0.015 (2)0.008 (2)0.009 (2)
S210.0532 (6)0.0765 (8)0.1084 (10)0.0193 (5)0.0102 (6)0.0122 (7)
C220.0419 (19)0.063 (3)0.053 (2)0.0077 (18)0.0060 (16)0.005 (2)
N230.0423 (16)0.068 (3)0.092 (3)0.0004 (16)0.0166 (17)0.005 (2)
Geometric parameters (Å, º) top
Zn1—N42.026 (3)N13—H13A0.86
Zn1—N142.028 (3)N13—H13B0.86
Zn1—Cl22.2489 (11)N14—C221.317 (4)
Zn1—Cl32.2726 (11)N14—C151.395 (5)
N4—C121.338 (4)C15—C161.374 (6)
N4—C51.404 (5)C15—C201.380 (6)
C5—C101.384 (5)C16—C171.399 (7)
C5—C61.384 (5)C16—H160.93
C6—C71.378 (5)C17—C181.405 (8)
C6—H60.93C17—H170.93
C7—C81.368 (6)C18—C191.373 (8)
C7—H70.93C18—H180.93
C8—C91.379 (6)C19—C201.372 (6)
C8—H80.93C19—H190.93
C9—C101.375 (6)C20—S211.741 (5)
C9—H90.93S21—C221.740 (4)
C10—S111.748 (4)C22—N231.318 (5)
S11—C121.742 (4)N23—H23A0.86
C12—N131.326 (5)N23—H23B0.86
N4—Zn1—N14112.24 (12)C12—N13—H13A120
N4—Zn1—Cl2110.59 (8)C12—N13—H13B120
N14—Zn1—Cl2107.17 (9)H13A—N13—H13B120
N4—Zn1—Cl3103.73 (9)C22—N14—C15111.1 (3)
N14—Zn1—Cl3111.09 (9)C22—N14—Zn1123.3 (3)
Cl2—Zn1—Cl3112.11 (5)C15—N14—Zn1124.3 (2)
C12—N4—C5111.0 (3)C16—C15—C20119.2 (4)
C12—N4—Zn1127.7 (3)C16—C15—N14126.5 (4)
C5—N4—Zn1120.6 (2)C20—C15—N14114.4 (4)
C10—C5—C6120.4 (4)C15—C16—C17120.0 (5)
C10—C5—N4114.7 (3)C15—C16—H16120
C6—C5—N4125.0 (3)C17—C16—H16120
C7—C6—C5118.2 (4)C16—C17—C18119.2 (5)
C7—C6—H6120.9C16—C17—H17120.4
C5—C6—H6120.9C18—C17—H17120.4
C8—C7—C6121.8 (4)C19—C18—C17120.5 (5)
C8—C7—H7119.1C19—C18—H18119.8
C6—C7—H7119.1C17—C18—H18119.8
C7—C8—C9119.8 (4)C20—C19—C18118.8 (5)
C7—C8—H8120.1C20—C19—H19120.6
C9—C8—H8120.1C18—C19—H19120.6
C10—C9—C8119.5 (4)C19—C20—C15122.3 (5)
C10—C9—H9120.2C19—C20—S21127.2 (4)
C8—C9—H9120.2C15—C20—S21110.4 (3)
C9—C10—C5120.3 (3)C22—S21—C2089.0 (2)
C9—C10—S11129.5 (3)N14—C22—N23125.0 (3)
C5—C10—S11110.2 (3)N14—C22—S21115.0 (3)
C12—S11—C1089.70 (17)N23—C22—S21119.9 (3)
N13—C12—N4124.2 (3)C22—N23—H23A120
N13—C12—S11121.4 (3)C22—N23—H23B120
N4—C12—S11114.4 (3)H23A—N23—H23B120
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···Cl20.862.463.273 (3)157
N13—H13B···Cl3i0.862.493.314 (3)161
N23—H23A···Cl30.862.543.333 (3)154
N23—H23B···Cl2ii0.862.573.366 (3)154
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C7H6N2S)2]·0.5C2H6O
Mr459.72
Crystal system, space groupOrthorhombic, Pcca
Temperature (K)296
a, b, c (Å)21.0129 (10), 11.6013 (5), 16.6025 (8)
V3)4047.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.13 × 0.1 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.813, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
16706, 4956, 2612
Rint0.058
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 0.88
No. of reflections4956
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.34

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—N42.026 (3)N4—C121.338 (4)
Zn1—N142.028 (3)N4—C51.404 (5)
Zn1—Cl22.2489 (11)N14—C221.317 (4)
Zn1—Cl32.2726 (11)N14—C151.395 (5)
N4—Zn1—N14112.24 (12)Cl2—Zn1—Cl3112.11 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···Cl20.862.463.273 (3)157
N13—H13B···Cl3i0.862.493.314 (3)161
N23—H23A···Cl30.862.543.333 (3)154
N23—H23B···Cl2ii0.862.573.366 (3)154
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+1, y, z+1/2.
 

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 20110003799).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Haq, Z., Mesaik, M. A. & Choudhary, M. I. (2011). Bioorg. Med. Chem. 19, 4286–4294.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y.-I., Lee, Y.-S., Seo, H.-J., Lee, J.-Y. & Kang, S. K. (2007). Acta Cryst. E63, m2810–m2811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y.-I., Song, Y.-K., Yun, S.-J., Kim, I.-C. & Kang, S. K. (2011). Acta Cryst. E67, m52–m53.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKim, Y.-I., Yun, S.-Y., Lee, T. & Kang, S. K. (2010). Acta Cryst. E66, m940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPavlovic, G., Soldin, Z., Popovic, Z. & Kulenovic, V. T. (2007). Polyhedron, 26, 5162–5170.  CAS Google Scholar
First citationRaposo, M. M. M., Castro, M. C. R., Fonseca, A. M. C., Schellenberg, P. & Belsley, M. (2011). Tetrahedron, 67, 5189–5198.  Web of Science CrossRef CAS Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeo, H. J., Ryu, J. S., Nam, K. S., Kang, S. K., Park, S. Y. & Kim, Y. I. (2009). Bull. Korean Chem. Soc. 30, 3109–3112.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZajac, M., Hrobarik, P., Magdolen, P., Foltinova, P. & Zahradnik, P. (2008). Tetrahedron, 64, 10605–10618.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m178-m179
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds