metal-organic compounds
Bis(2-amino-1,3-benzothiazole-κN3)dichloridozinc(II) ethanol hemisolvate
aDepartment of Chemistry Education, Interdisciplinary Program of Advanced Information and Display Materials, and Center for Plastic Information System, Pusan National University, Busan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr
In the title compound, [ZnCl2(C7H6N2S)2]·0.5CH3CH2OH, the ZnII atom is coordinated by two N atoms of two 2-aminobenzothiazole ligands and two Cl atoms within a distorted tetrahedral geometry. The dihedral angle between the N/Zn/N and Cl/Zn/Cl planes is 86.22 (7)°. The benzothiazole molecules are almost perpendicular to each other, forming a dihedral angle of 80.20 (8)°. The molecular structure is stabilized by intramolecular N—H⋯Cl hydrogen bonds. In the crystal, intermolecular N—H⋯Cl hydrogen bonds link the molecules into a three-dimensional network. The SQUEEZE procedure in PLATON [Spek (2009). Acta Cryst. D65, 148–155] was used to model a disordered ethanol solvent molecule; the calculated unit-cell data allow for the presence of half of this molecule in the asymmetric unit.
Related literature
For the synthesis and structures of related ZnII and HgII metal complexes, see: Kim et al. (2007, 2010, 2011); Seo et al. (2009); Kim & Kang (2010). For the biological and photochemical properties of benzothiazole compounds, see: Khan et al. (2011); Pavlovic et al. (2007); Raposo et al. (2011); Saeed et al. (2010); Zajac et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812001560/tk5044sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812001560/tk5044Isup2.hkl
All reagents and solvents were purchased from Aldrich and used without further purification. A mixture of ZnCl2 (0.66 g, 5.0 mmol) and 2-aminobenzothiazole (1.50 g, 10.0 mmol) in ethanol (20 ml) was stirred at room temperature under nitrogen atmosphere. The resulting colourless solution was allowed to stand at room temperature for a week to yield colourless crystals (yield 60.0%) suitable for X-ray diffraction.
All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C or N). There is a disordered ethanol solvent molecule which was difficult to model. Therefore, the SQUEEZE command of PLATON (Spek, 2009) was used to model the electron density in the void regions. There are two cavities of 378 Å3 per
Each cavity contains approximately 58 electrons which were assigned to two solvent ethanol molecules. With Z = 8, each Zn complex has 0.5 solvent ethanol equivalent. The reported and cell characteristics take into account the presence of the solvent molecules.Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[ZnCl2(C7H6N2S)2]·0.5C2H6O | F(000) = 1760 |
Mr = 459.72 | Dx = 1.509 Mg m−3 |
Orthorhombic, Pcca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2a 2ac | Cell parameters from 1986 reflections |
a = 21.0129 (10) Å | θ = 3.0–24.3° |
b = 11.6013 (5) Å | µ = 1.69 mm−1 |
c = 16.6025 (8) Å | T = 296 K |
V = 4047.3 (3) Å3 | Block, colourless |
Z = 8 | 0.13 × 0.1 × 0.07 mm |
Bruker SMART CCD area-detector diffractometer | 2612 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −27→8 |
Tmin = 0.813, Tmax = 0.881 | k = −15→12 |
16706 measured reflections | l = −19→21 |
4956 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 0.88 | w = 1/[σ2(Fo2) + (0.0724P)2] where P = (Fo2 + 2Fc2)/3 |
4956 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[ZnCl2(C7H6N2S)2]·0.5C2H6O | V = 4047.3 (3) Å3 |
Mr = 459.72 | Z = 8 |
Orthorhombic, Pcca | Mo Kα radiation |
a = 21.0129 (10) Å | µ = 1.69 mm−1 |
b = 11.6013 (5) Å | T = 296 K |
c = 16.6025 (8) Å | 0.13 × 0.1 × 0.07 mm |
Bruker SMART CCD area-detector diffractometer | 4956 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 2612 reflections with I > 2σ(I) |
Tmin = 0.813, Tmax = 0.881 | Rint = 0.058 |
16706 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 0.88 | Δρmax = 0.39 e Å−3 |
4956 reflections | Δρmin = −0.34 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.387172 (17) | 0.61071 (4) | 0.10299 (3) | 0.04953 (16) | |
Cl2 | 0.33663 (4) | 0.61006 (11) | 0.22239 (6) | 0.0701 (3) | |
Cl3 | 0.42382 (4) | 0.43298 (9) | 0.06892 (7) | 0.0598 (3) | |
N4 | 0.32592 (12) | 0.6503 (3) | 0.01289 (18) | 0.0477 (7) | |
C5 | 0.34802 (15) | 0.6653 (3) | −0.0662 (2) | 0.0462 (8) | |
C6 | 0.41141 (18) | 0.6731 (4) | −0.0882 (2) | 0.0569 (10) | |
H6 | 0.4435 | 0.6673 | −0.0499 | 0.068* | |
C7 | 0.42565 (19) | 0.6899 (4) | −0.1684 (3) | 0.0624 (11) | |
H7 | 0.4681 | 0.6945 | −0.184 | 0.075* | |
C8 | 0.3791 (2) | 0.6999 (4) | −0.2255 (3) | 0.0766 (13) | |
H8 | 0.3899 | 0.7119 | −0.2791 | 0.092* | |
C9 | 0.3160 (2) | 0.6922 (4) | −0.2033 (3) | 0.0758 (13) | |
H9 | 0.2841 | 0.6989 | −0.2418 | 0.091* | |
C10 | 0.30062 (17) | 0.6744 (4) | −0.1237 (3) | 0.0565 (10) | |
S11 | 0.22578 (4) | 0.66284 (11) | −0.07852 (7) | 0.0681 (3) | |
C12 | 0.26227 (15) | 0.6488 (3) | 0.0152 (2) | 0.0519 (9) | |
N13 | 0.22837 (13) | 0.6396 (3) | 0.0822 (2) | 0.0682 (10) | |
H13A | 0.2473 | 0.6342 | 0.128 | 0.082* | |
H13B | 0.1875 | 0.6391 | 0.0799 | 0.082* | |
N14 | 0.45956 (13) | 0.7257 (3) | 0.11147 (19) | 0.0510 (8) | |
C15 | 0.45232 (18) | 0.8447 (4) | 0.1039 (2) | 0.0563 (10) | |
C16 | 0.3996 (2) | 0.9016 (4) | 0.0752 (4) | 0.0839 (15) | |
H16 | 0.3638 | 0.8601 | 0.0595 | 0.101* | |
C17 | 0.3998 (3) | 1.0218 (5) | 0.0695 (4) | 0.1028 (18) | |
H17 | 0.3648 | 1.0607 | 0.0486 | 0.123* | |
C18 | 0.4536 (4) | 1.0833 (5) | 0.0957 (4) | 0.1039 (19) | |
H18 | 0.4536 | 1.1635 | 0.0936 | 0.125* | |
C19 | 0.5060 (3) | 1.0260 (5) | 0.1243 (4) | 0.0920 (16) | |
H19 | 0.542 | 1.0665 | 0.1408 | 0.11* | |
C20 | 0.5045 (2) | 0.9079 (4) | 0.1283 (3) | 0.0689 (12) | |
S21 | 0.56461 (5) | 0.81677 (11) | 0.16229 (8) | 0.0794 (4) | |
C22 | 0.51607 (16) | 0.6994 (4) | 0.1405 (2) | 0.0526 (9) | |
N23 | 0.53666 (14) | 0.5938 (3) | 0.1541 (2) | 0.0673 (10) | |
H23A | 0.5125 | 0.5358 | 0.1439 | 0.081* | |
H23B | 0.5742 | 0.583 | 0.1732 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0339 (2) | 0.0592 (3) | 0.0555 (3) | −0.00259 (18) | −0.00195 (16) | −0.0009 (2) |
Cl2 | 0.0450 (5) | 0.1092 (9) | 0.0562 (6) | 0.0047 (5) | 0.0029 (4) | 0.0017 (6) |
Cl3 | 0.0395 (4) | 0.0593 (6) | 0.0807 (7) | 0.0003 (4) | 0.0012 (4) | −0.0048 (5) |
N4 | 0.0336 (13) | 0.0584 (19) | 0.051 (2) | −0.0019 (13) | −0.0030 (12) | −0.0022 (15) |
C5 | 0.0385 (17) | 0.044 (2) | 0.056 (2) | −0.0035 (15) | −0.0026 (15) | −0.0041 (18) |
C6 | 0.047 (2) | 0.063 (3) | 0.062 (3) | 0.0010 (18) | 0.0038 (17) | −0.002 (2) |
C7 | 0.056 (2) | 0.069 (3) | 0.062 (3) | −0.0080 (19) | 0.013 (2) | −0.010 (2) |
C8 | 0.078 (3) | 0.098 (4) | 0.053 (3) | −0.019 (3) | 0.008 (2) | −0.006 (3) |
C9 | 0.070 (3) | 0.103 (4) | 0.055 (3) | −0.015 (3) | −0.015 (2) | −0.006 (3) |
C10 | 0.043 (2) | 0.066 (3) | 0.060 (3) | −0.0058 (18) | −0.0032 (16) | 0.000 (2) |
S11 | 0.0404 (5) | 0.0954 (9) | 0.0686 (7) | −0.0065 (5) | −0.0123 (4) | 0.0040 (6) |
C12 | 0.0363 (17) | 0.057 (2) | 0.063 (3) | 0.0000 (15) | −0.0028 (16) | −0.003 (2) |
N13 | 0.0321 (15) | 0.108 (3) | 0.064 (2) | −0.0072 (16) | 0.0005 (14) | 0.001 (2) |
N14 | 0.0403 (15) | 0.053 (2) | 0.059 (2) | −0.0049 (14) | −0.0028 (13) | −0.0030 (15) |
C15 | 0.054 (2) | 0.056 (3) | 0.059 (3) | −0.0036 (19) | 0.0036 (18) | −0.002 (2) |
C16 | 0.080 (3) | 0.062 (3) | 0.109 (4) | −0.001 (2) | −0.017 (3) | −0.006 (3) |
C17 | 0.102 (4) | 0.070 (4) | 0.136 (5) | 0.018 (3) | −0.015 (4) | −0.004 (3) |
C18 | 0.129 (5) | 0.055 (3) | 0.128 (5) | −0.008 (3) | 0.014 (4) | −0.007 (3) |
C19 | 0.083 (4) | 0.074 (4) | 0.119 (5) | −0.018 (3) | 0.000 (3) | −0.010 (3) |
C20 | 0.076 (3) | 0.054 (3) | 0.077 (3) | −0.015 (2) | 0.008 (2) | −0.009 (2) |
S21 | 0.0532 (6) | 0.0765 (8) | 0.1084 (10) | −0.0193 (5) | −0.0102 (6) | −0.0122 (7) |
C22 | 0.0419 (19) | 0.063 (3) | 0.053 (2) | −0.0077 (18) | 0.0060 (16) | −0.005 (2) |
N23 | 0.0423 (16) | 0.068 (3) | 0.092 (3) | 0.0004 (16) | −0.0166 (17) | −0.005 (2) |
Zn1—N4 | 2.026 (3) | N13—H13A | 0.86 |
Zn1—N14 | 2.028 (3) | N13—H13B | 0.86 |
Zn1—Cl2 | 2.2489 (11) | N14—C22 | 1.317 (4) |
Zn1—Cl3 | 2.2726 (11) | N14—C15 | 1.395 (5) |
N4—C12 | 1.338 (4) | C15—C16 | 1.374 (6) |
N4—C5 | 1.404 (5) | C15—C20 | 1.380 (6) |
C5—C10 | 1.384 (5) | C16—C17 | 1.399 (7) |
C5—C6 | 1.384 (5) | C16—H16 | 0.93 |
C6—C7 | 1.378 (5) | C17—C18 | 1.405 (8) |
C6—H6 | 0.93 | C17—H17 | 0.93 |
C7—C8 | 1.368 (6) | C18—C19 | 1.373 (8) |
C7—H7 | 0.93 | C18—H18 | 0.93 |
C8—C9 | 1.379 (6) | C19—C20 | 1.372 (6) |
C8—H8 | 0.93 | C19—H19 | 0.93 |
C9—C10 | 1.375 (6) | C20—S21 | 1.741 (5) |
C9—H9 | 0.93 | S21—C22 | 1.740 (4) |
C10—S11 | 1.748 (4) | C22—N23 | 1.318 (5) |
S11—C12 | 1.742 (4) | N23—H23A | 0.86 |
C12—N13 | 1.326 (5) | N23—H23B | 0.86 |
N4—Zn1—N14 | 112.24 (12) | C12—N13—H13A | 120 |
N4—Zn1—Cl2 | 110.59 (8) | C12—N13—H13B | 120 |
N14—Zn1—Cl2 | 107.17 (9) | H13A—N13—H13B | 120 |
N4—Zn1—Cl3 | 103.73 (9) | C22—N14—C15 | 111.1 (3) |
N14—Zn1—Cl3 | 111.09 (9) | C22—N14—Zn1 | 123.3 (3) |
Cl2—Zn1—Cl3 | 112.11 (5) | C15—N14—Zn1 | 124.3 (2) |
C12—N4—C5 | 111.0 (3) | C16—C15—C20 | 119.2 (4) |
C12—N4—Zn1 | 127.7 (3) | C16—C15—N14 | 126.5 (4) |
C5—N4—Zn1 | 120.6 (2) | C20—C15—N14 | 114.4 (4) |
C10—C5—C6 | 120.4 (4) | C15—C16—C17 | 120.0 (5) |
C10—C5—N4 | 114.7 (3) | C15—C16—H16 | 120 |
C6—C5—N4 | 125.0 (3) | C17—C16—H16 | 120 |
C7—C6—C5 | 118.2 (4) | C16—C17—C18 | 119.2 (5) |
C7—C6—H6 | 120.9 | C16—C17—H17 | 120.4 |
C5—C6—H6 | 120.9 | C18—C17—H17 | 120.4 |
C8—C7—C6 | 121.8 (4) | C19—C18—C17 | 120.5 (5) |
C8—C7—H7 | 119.1 | C19—C18—H18 | 119.8 |
C6—C7—H7 | 119.1 | C17—C18—H18 | 119.8 |
C7—C8—C9 | 119.8 (4) | C20—C19—C18 | 118.8 (5) |
C7—C8—H8 | 120.1 | C20—C19—H19 | 120.6 |
C9—C8—H8 | 120.1 | C18—C19—H19 | 120.6 |
C10—C9—C8 | 119.5 (4) | C19—C20—C15 | 122.3 (5) |
C10—C9—H9 | 120.2 | C19—C20—S21 | 127.2 (4) |
C8—C9—H9 | 120.2 | C15—C20—S21 | 110.4 (3) |
C9—C10—C5 | 120.3 (3) | C22—S21—C20 | 89.0 (2) |
C9—C10—S11 | 129.5 (3) | N14—C22—N23 | 125.0 (3) |
C5—C10—S11 | 110.2 (3) | N14—C22—S21 | 115.0 (3) |
C12—S11—C10 | 89.70 (17) | N23—C22—S21 | 119.9 (3) |
N13—C12—N4 | 124.2 (3) | C22—N23—H23A | 120 |
N13—C12—S11 | 121.4 (3) | C22—N23—H23B | 120 |
N4—C12—S11 | 114.4 (3) | H23A—N23—H23B | 120 |
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13A···Cl2 | 0.86 | 2.46 | 3.273 (3) | 157 |
N13—H13B···Cl3i | 0.86 | 2.49 | 3.314 (3) | 161 |
N23—H23A···Cl3 | 0.86 | 2.54 | 3.333 (3) | 154 |
N23—H23B···Cl2ii | 0.86 | 2.57 | 3.366 (3) | 154 |
Symmetry codes: (i) −x+1/2, −y+1, z; (ii) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [ZnCl2(C7H6N2S)2]·0.5C2H6O |
Mr | 459.72 |
Crystal system, space group | Orthorhombic, Pcca |
Temperature (K) | 296 |
a, b, c (Å) | 21.0129 (10), 11.6013 (5), 16.6025 (8) |
V (Å3) | 4047.3 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.69 |
Crystal size (mm) | 0.13 × 0.1 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.813, 0.881 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16706, 4956, 2612 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.136, 0.88 |
No. of reflections | 4956 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.34 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Zn1—N4 | 2.026 (3) | N4—C12 | 1.338 (4) |
Zn1—N14 | 2.028 (3) | N4—C5 | 1.404 (5) |
Zn1—Cl2 | 2.2489 (11) | N14—C22 | 1.317 (4) |
Zn1—Cl3 | 2.2726 (11) | N14—C15 | 1.395 (5) |
N4—Zn1—N14 | 112.24 (12) | Cl2—Zn1—Cl3 | 112.11 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13A···Cl2 | 0.86 | 2.46 | 3.273 (3) | 157 |
N13—H13B···Cl3i | 0.86 | 2.49 | 3.314 (3) | 161 |
N23—H23A···Cl3 | 0.86 | 2.54 | 3.333 (3) | 154 |
N23—H23B···Cl2ii | 0.86 | 2.57 | 3.366 (3) | 154 |
Symmetry codes: (i) −x+1/2, −y+1, z; (ii) −x+1, y, −z+1/2. |
Acknowledgements
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 20110003799).
References
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Khan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Haq, Z., Mesaik, M. A. & Choudhary, M. I. (2011). Bioorg. Med. Chem. 19, 4286–4294. Web of Science CrossRef CAS PubMed Google Scholar
Kim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Lee, J.-Y. & Kang, S. K. (2007). Acta Cryst. E63, m2810–m2811. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kim, Y.-I., Song, Y.-K., Yun, S.-J., Kim, I.-C. & Kang, S. K. (2011). Acta Cryst. E67, m52–m53. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kim, Y.-I., Yun, S.-Y., Lee, T. & Kang, S. K. (2010). Acta Cryst. E66, m940. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pavlovic, G., Soldin, Z., Popovic, Z. & Kulenovic, V. T. (2007). Polyhedron, 26, 5162–5170. CAS Google Scholar
Raposo, M. M. M., Castro, M. C. R., Fonseca, A. M. C., Schellenberg, P. & Belsley, M. (2011). Tetrahedron, 67, 5189–5198. Web of Science CrossRef CAS Google Scholar
Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seo, H. J., Ryu, J. S., Nam, K. S., Kang, S. K., Park, S. Y. & Kim, Y. I. (2009). Bull. Korean Chem. Soc. 30, 3109–3112. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zajac, M., Hrobarik, P., Magdolen, P., Foltinova, P. & Zahradnik, P. (2008). Tetrahedron, 64, 10605–10618. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, we studied Zn(II) and Hg(II) complexes with nitrogen-containing ligands (Kim et al., 2007; Seo et al., 2009; Kim et al., 2010; Kim & Kang, 2010; Kim et al., 2011) with reference to their luminescent properties, as these can be used as fluorescent brighteners. As a part of our continuous interest in the coordination properties of the nitrogen-containing ligands, herein we report the synthesis of a Zn(II) chloride complex with 2-aminobenzothiazole, (I). Compounds with benzothiazole moiety are also of significant interest due to their biological properties such as anti-tumor and anti-viral (Saeed et al., 2010; Khan et al., 2011) as well as photochemical properties (Pavlovic et al., 2007; Zajac et al., 2008; Raposo et al., 2011).
In (I), Fig. 1, the 2-aminobenzothiazole molecules are almost planar, with r.m.s. deviations of 0.022 and 0.009 Å from the corresponding least-squares plane defined by the ten constituent atoms, respectively. The ZnII atom is coordinated by two N atoms of benzothiazole ligands and two Cl atoms in a distorted tetrahedral geometry with the dihedral angle of 86.22 (7)° between the N4/Zn1/N14 and Cl2/Zn1/Cl3 planes. The bond distances of N4—C12 [1.338 (4) Å] and N14—C22 [1.317 (4) Å] in the benzothiazole ligands are shorter than those of N4—C5 [1.404 (5) Å] and N14—C15 [1.395 (5) Å], respectively, which is consistent with double bond character in the former (Table 1). The benzothiazole molecules are almost perpendicular to each other with a dihedral angle of 80.20 (8)°. The molecular structure is stabilized by intramolecular N13—H13A···Cl2 and N23—H23A···Cl3 hydrogen bonds (Fig. 1 and Table 2). In the crystal, intermolecular N—H···Cl hydrogen bonds link the molecules into a three-dimensional network (Fig. 2).