metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m125-m126

Poly[[μ2-1,3-bis­­(imidazol-1-ylmeth­yl)benzene][μ2-2,2′-dihy­dr­oxy-1,1′-methyl­enebis(naphthalene-3-carboxyl­ato)]zinc]

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: wangsuna@lcu.edu.cn

(Received 22 November 2011; accepted 19 December 2011; online 7 January 2012)

In the title compound, [Zn(C23H14O6)(C14H14N4)]n, the ZnII ion is four-coordinated in a distorted tetra­hedral geometry. The 1,3-bis­(imidazol-1-ylmeth­yl)benzene and 2,2′-dihy­droxy-1,1′-methyl­enebis(naphthalene-3-carboxy­l­ate) ligands con­nect the ZnII ions alternately in different directions, forming a layered structure parallel to the ac plane. Topological analysis reveals that the whole structure is a (4,4) network. The layers are further assembled into a three-dimensional supra­molecular structure via C—H⋯O and C—H⋯π inter­actions.

Related literature

For background to metal-organic frameworks, see: Luo et al. (2009[Luo, F., Che, Y. X. & Zheng, J. M. (2009). CrystEngComm, 11, 1097-1102.]); Wei et al. (2010[Wei, G., Shen, Y. F., Li, Y. R. & Huang, X. C. (2010). Inorg. Chem. 49, 9191-9199.]). For related structures, see: Wang et al. (2011[Wang, S. N., Peng, Y. Q., Wei, X. L., Zhang, Q. F., Wang, D. Q., Dou, J. M., Li, D. C. & Bai, J. F. (2011). CrystEngComm, 13, 5313-5316.]); Fan et al. (2005[Fan, J., Slebodnick, C., Troya, D., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 2719-2727.]); Zhou et al. (2008[Zhou, H., Lin, P., Li, Z. H. & Du, S. W. (2008). J. Mol. Struct. 881, 21-27.]); Li et al. (2010[Li, D. S., Fu, F., Zhao, J., Wu, Y. P., Du, M., Zou, K., Dong, W. W. & Wang, Y. Y. (2010). Dalton Trans. 39, 11522-11525.]); Feng et al. (2009[Feng, R., Jiang, F. L., Chen, L., Yan, C. F., Wu, M. Y. & Hong, M. C. (2009). Chem. Commun. pp. 5296-5298.]); Xu et al. (2009[Xu, J., Bai, Z. S., Chen, M. S., Su, Z., Chen, S. S. & Sun, W. Y. (2009). CrystEngComm, 11, 2728-2733.]); Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C23H14O6)(C14H14N4)]

  • Mr = 690.00

  • Monoclinic, P 21 /c

  • a = 10.8382 (9) Å

  • b = 17.3428 (16) Å

  • c = 17.7939 (17) Å

  • β = 100.781 (1)°

  • V = 3285.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 298 K

  • 0.23 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART-1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.837, Tmax = 0.889

  • 16511 measured reflections

  • 5800 independent reflections

  • 2460 reflections with I > 2σ(I)

  • Rint = 0.111

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.127

  • S = 1.00

  • 5800 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C8–C13, C18–C23 and C4–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.81 2.555 (5) 150
O6—H6⋯O5 0.82 1.76 2.502 (5) 150
C30—H30B⋯O6i 0.97 2.54 3.350 (7) 141
C26—H26⋯Cg1ii 0.93 2.79 3.676 (8) 161
C29—H29⋯Cg2iii 0.93 2.76 3.502 (7) 137
C30—H30ACg3ii 0.97 2.71 3.628 (6) 158
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past several years, the design and construction of metal-organic frameworks (MOFs) have received more attention due to their intriguing architectures and potential applications in ion-exchange, heterogeneous catalysis and gas storage (Luo et al., 2009; Wei et al., 2010). Much interest was focused on the coordination chemistry of semirigid polycarboxylate ligands and flexible exo-bidentate N-heterocycle ligands (Wang et al., 2011; Fan et al., 2005; Zhou et al., 2008; Li et al., 2010; Feng et al., 2009; Xu et al., 2009). Herein, we selected pamoic acid (H2PA, 4,4'-methylenebis(3-hydroxy-2-naphthalenecarboxylic acid)) as building unit. Coexistence of naphthalene rings and the central sp3 carbon atom makes this symmetrical aromatic dicarboxylate ligand possess both rigid and flexible character. Solvothermal reactions of this ligand with m-bix (1,3-bis(imidazol-1-ylmethyl)benzene) and ZnII salt led to the title compound, [Zn(PA)(m-bix)]n.

The title compound crystallizes in the space group P21/c and exhibits a two-dimensional layered structure. The asymmetric unit is composed of one crystallographically independent ZnII ion, one PA2- anion ligand as well as one m-bix ligand. The ZnII ion is four-coordinated by two carboxylate oxygen atoms from two different PA2- ligands and two nitrogen atoms from two m-bix ligands. The Zn-O and Zn-N bond lengths lie in the normal range of 1.957 (4)-2.009 (5)Å, while the O···Zn···N and O···Zn···O angles are in the range of 98.40 (16)-128.6 (2)°, indicating a much distorted tetrahedral coordination geometry around the metal center. As shown in Fig.1, m-bix ligand in this case adopts a bis(monodentate) bridging coordination mode, linking ZnII ions to form one-dimensional chains along the a axis with a dihedral angle between the two terminal imidazole rings of 49.5 (7)°. These chains are connected further by the deprotonated PA2- ligand in trans conformation bis(monodentate) bridging coordination mode with the dihedral angle between two naphthyl rings of 97.1 (9)°. As a result, a two-dimensional corrugated layer structure is generated along the ac plane (Fig. 2). The metal···metal distances separated by m-bix and PA2- ligands are 15.27 (5) and 10.83 (8)Å, respectively. From a topological viewpoint, the whole structure is a (4, 4) network (Batten et al., 1998) considering the ZnII ions as four-connected nodes (Fig. 4). The carboxyl groups and adjacent hydroxyl groups are linked by intramolecular O-H···O hydrogen bonds. Adjacent layers are further stacked through C-H···O and C-H···π weak interactions, resulting in the present three-dimensional supramolecular structure (Fig. 3 and Table 1).

Related literature top

For background to metal-organic frameworks, see: Luo et al. (2009); Wei et al. (2010). For related structures, see: Wang et al. (2011); Fan et al. (2005); Zhou et al. (2008); Li et al. (2010); Feng et al. (2009); Xu et al. (2009); Batten & Robson (1998).

Experimental top

A mixture of Zn(NO3)2.6H2O(0.1mmol), H2PA(0.1mmol), m-bix(0.1mmol), DMF(6ml) and H2O(4ml) was placed in a teflon reactor and heated at 80°C for 48h. After cooling to room temperature, colorless crystals suitable for X-ray diffraction were obtained with 42% yield based on Zn(NO3)2.6H2O.

Refinement top

All H atoms were placed in geometrically idealized positions (O—H 0.82, C—H 0.97(methylene), C—H 0.93(imidazolyl) C—H 0.93(naphthyl)Å) and treated as riding on their parent atoms, with Uiso(H) = 1.5Ueq(O), Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the asymmetric unit of the title compound with 30% probability displacement ellipsoids. Symmetry codes: (i) x - 1, y, z. (ii) x - 1, -y + 3/2, z - 1/2.
[Figure 2] Fig. 2. View of the two-dimensional layer of the title compound along the ac plane. PA2- and m-bix ligands are shown in red and blue, respectively.
[Figure 3] Fig. 3. View of the three-dimensional supramolecular network, showing the weak interactions between adjacent layers. C-H···O and C-H···π interactions are represented by green and pink dashed lines, respectively.
[Figure 4] Fig. 4. View of the (4, 4) network of the title compound, considering the ZnII ions as four-connected nodes.
Poly[[µ2-1,3-bis(imidazol-1-ylmethyl)benzene][µ2-2,2'-dihydroxy-1,1'- methylenebis(naphthalene-3-carboxylato)]zinc] top
Crystal data top
[Zn(C23H14O6)(C14H14N4)]F(000) = 1424
Mr = 690.00Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1774 reflections
a = 10.8382 (9) Åθ = 2.3–26.1°
b = 17.3428 (16) ŵ = 0.80 mm1
c = 17.7939 (17) ÅT = 298 K
β = 100.781 (1)°Block, colorless
V = 3285.6 (5) Å30.23 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART-1000 CCD
diffractometer
5800 independent reflections
Radiation source: fine-focus sealed tube2460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 712
Tmin = 0.837, Tmax = 0.889k = 2018
16511 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0236P)2]
where P = (Fo2 + 2Fc2)/3
5800 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Zn(C23H14O6)(C14H14N4)]V = 3285.6 (5) Å3
Mr = 690.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8382 (9) ŵ = 0.80 mm1
b = 17.3428 (16) ÅT = 298 K
c = 17.7939 (17) Å0.23 × 0.17 × 0.15 mm
β = 100.781 (1)°
Data collection top
Bruker SMART-1000 CCD
diffractometer
5800 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2460 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.889Rint = 0.111
16511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 0.67 e Å3
5800 reflectionsΔρmin = 0.68 e Å3
433 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.39449 (6)0.50406 (4)0.24221 (4)0.0467 (2)
O10.3107 (4)0.5943 (2)0.2949 (2)0.0604 (12)
O20.1690 (4)0.5185 (2)0.3671 (2)0.0699 (12)
O30.0023 (4)0.57744 (19)0.4719 (2)0.0619 (12)
H30.04090.54480.44340.093*
O40.5308 (4)0.9456 (2)0.6440 (2)0.0611 (12)
O50.3738 (4)0.9219 (2)0.7034 (2)0.0763 (14)
O60.2189 (4)0.8163 (2)0.6615 (2)0.0700 (13)
H60.25530.85130.68760.105*
N10.1407 (4)0.3384 (3)0.1945 (3)0.0495 (13)
N20.2782 (4)0.4302 (3)0.2033 (3)0.0495 (13)
N30.3730 (5)0.4304 (3)0.3875 (3)0.0554 (13)
N40.5190 (5)0.4570 (3)0.3194 (3)0.0532 (13)
C10.2182 (6)0.5840 (4)0.3479 (3)0.0505 (16)
C20.4305 (7)0.9104 (3)0.6495 (4)0.0503 (16)
C30.1095 (5)0.7031 (3)0.5576 (3)0.0495 (15)
H3A0.13000.64870.56260.059*
H3B0.08650.71950.60520.059*
C40.0044 (6)0.7121 (3)0.4946 (3)0.0386 (12)
C50.0545 (5)0.6475 (3)0.4542 (3)0.0446 (15)
C60.1615 (5)0.6530 (3)0.3926 (3)0.0424 (14)
C70.2144 (5)0.7256 (3)0.3752 (3)0.0503 (16)
H70.28150.73050.33440.060*
C80.1694 (6)0.7915 (3)0.4174 (3)0.0525 (16)
C90.0664 (5)0.7846 (3)0.4788 (3)0.0445 (15)
C100.0301 (6)0.8524 (3)0.5231 (3)0.0536 (17)
H100.03750.84930.56380.064*
C110.0892 (7)0.9204 (4)0.5084 (4)0.070 (2)
H110.06490.96250.54020.084*
C120.1880 (8)0.9278 (4)0.4450 (5)0.080 (2)
H120.22630.97550.43380.096*
C130.2281 (6)0.8654 (4)0.3996 (4)0.0688 (19)
H130.29290.87080.35760.083*
C140.2276 (5)0.7466 (3)0.5483 (3)0.0448 (15)
C150.2754 (6)0.8037 (3)0.5997 (3)0.0468 (15)
C160.3828 (5)0.8488 (3)0.5920 (3)0.0443 (15)
C170.4395 (5)0.8354 (3)0.5311 (3)0.0511 (16)
H170.50630.86660.52410.061*
C180.3996 (5)0.7754 (3)0.4782 (3)0.0486 (15)
C190.2920 (5)0.7298 (3)0.4877 (3)0.0431 (14)
C200.2585 (6)0.6664 (3)0.4362 (3)0.0530 (16)
H200.19030.63530.44070.064*
C210.3278 (6)0.6513 (3)0.3798 (3)0.0605 (18)
H210.30520.60970.34720.073*
C220.4289 (7)0.6959 (4)0.3705 (4)0.074 (2)
H220.47270.68490.33160.088*
C230.4644 (6)0.7565 (4)0.4189 (4)0.0646 (18)
H230.53320.78620.41250.077*
C240.2301 (6)0.3633 (3)0.2317 (3)0.0512 (16)
H240.25510.33720.27200.061*
C250.2178 (7)0.4463 (4)0.1459 (4)0.082 (2)
H250.23200.48980.11500.098*
C260.1329 (7)0.3902 (4)0.1392 (4)0.081 (2)
H260.08020.38800.10360.098*
C270.3969 (6)0.4536 (3)0.3211 (3)0.0494 (15)
H270.33450.46640.27960.059*
C280.5744 (6)0.4335 (4)0.3922 (4)0.071 (2)
H280.66060.42930.40960.085*
C290.4875 (7)0.4179 (4)0.4341 (4)0.079 (2)
H290.50150.40170.48480.095*
C300.0691 (6)0.2657 (3)0.2106 (3)0.0576 (17)
H30A0.04370.24860.16390.069*
H30B0.12460.22670.22490.069*
C310.2486 (6)0.4144 (3)0.4057 (3)0.0644 (18)
H31A0.19190.45680.38840.077*
H31B0.25540.40940.46070.077*
C320.0448 (6)0.2705 (3)0.2720 (3)0.0489 (16)
C330.0892 (6)0.3386 (3)0.3090 (3)0.0545 (16)
H330.04640.38450.29530.065*
C340.1966 (6)0.3394 (4)0.3661 (4)0.0567 (17)
C350.2594 (6)0.2702 (4)0.3865 (4)0.0680 (19)
H350.33040.26910.42500.082*
C360.2149 (7)0.2026 (4)0.3485 (4)0.070 (2)
H360.25800.15660.36100.084*
C370.1091 (6)0.2030 (4)0.2934 (4)0.0598 (18)
H370.07970.15690.26990.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0379 (4)0.0440 (4)0.0570 (4)0.0013 (4)0.0059 (3)0.0023 (4)
O10.053 (3)0.063 (3)0.060 (3)0.009 (2)0.002 (2)0.000 (2)
O20.064 (3)0.047 (3)0.089 (3)0.008 (2)0.012 (2)0.006 (2)
O30.056 (3)0.029 (2)0.091 (3)0.004 (2)0.012 (2)0.001 (2)
O40.057 (3)0.054 (3)0.068 (3)0.011 (2)0.001 (2)0.001 (2)
O50.086 (4)0.079 (3)0.064 (3)0.025 (3)0.014 (3)0.026 (3)
O60.075 (3)0.084 (3)0.055 (3)0.031 (3)0.022 (3)0.019 (2)
N10.041 (3)0.049 (3)0.060 (3)0.011 (3)0.013 (3)0.004 (3)
N20.045 (3)0.051 (3)0.053 (3)0.009 (3)0.010 (3)0.008 (3)
N30.044 (4)0.062 (3)0.062 (4)0.005 (3)0.013 (3)0.003 (3)
N40.048 (4)0.059 (3)0.053 (3)0.010 (3)0.008 (3)0.004 (3)
C10.048 (5)0.048 (4)0.057 (4)0.011 (4)0.011 (3)0.002 (3)
C20.050 (5)0.049 (4)0.049 (4)0.002 (4)0.003 (4)0.002 (3)
C30.049 (4)0.055 (4)0.043 (4)0.004 (3)0.003 (3)0.001 (3)
C40.034 (3)0.042 (3)0.041 (3)0.007 (3)0.011 (3)0.005 (3)
C50.036 (4)0.049 (4)0.049 (4)0.007 (3)0.009 (3)0.007 (3)
C60.036 (4)0.045 (3)0.049 (4)0.007 (3)0.016 (3)0.005 (3)
C70.032 (4)0.064 (4)0.056 (4)0.007 (3)0.009 (3)0.006 (3)
C80.045 (4)0.046 (4)0.072 (5)0.006 (3)0.024 (4)0.001 (3)
C90.032 (4)0.044 (4)0.060 (4)0.010 (3)0.018 (3)0.000 (3)
C100.048 (4)0.053 (4)0.063 (4)0.008 (4)0.018 (3)0.009 (3)
C110.077 (6)0.042 (4)0.096 (6)0.012 (4)0.031 (5)0.012 (4)
C120.077 (6)0.039 (4)0.129 (7)0.005 (4)0.036 (5)0.002 (4)
C130.052 (5)0.060 (4)0.096 (5)0.011 (4)0.018 (4)0.019 (4)
C140.041 (4)0.049 (4)0.046 (4)0.005 (3)0.013 (3)0.001 (3)
C150.048 (4)0.053 (4)0.040 (4)0.012 (3)0.012 (3)0.004 (3)
C160.043 (4)0.043 (3)0.044 (4)0.001 (3)0.000 (3)0.002 (3)
C170.037 (4)0.052 (4)0.061 (4)0.008 (3)0.003 (3)0.004 (3)
C180.039 (4)0.055 (4)0.050 (4)0.001 (3)0.006 (3)0.010 (3)
C190.033 (4)0.042 (3)0.052 (4)0.001 (3)0.001 (3)0.002 (3)
C200.051 (4)0.051 (4)0.054 (4)0.003 (3)0.000 (3)0.009 (3)
C210.054 (5)0.065 (4)0.059 (4)0.000 (4)0.003 (4)0.018 (4)
C220.059 (5)0.100 (6)0.065 (5)0.000 (5)0.021 (4)0.014 (4)
C230.052 (5)0.074 (5)0.070 (5)0.006 (4)0.015 (4)0.005 (4)
C240.045 (4)0.054 (4)0.057 (4)0.004 (3)0.016 (3)0.007 (3)
C250.104 (7)0.070 (5)0.083 (5)0.026 (5)0.047 (5)0.028 (4)
C260.091 (6)0.082 (5)0.086 (5)0.027 (5)0.056 (5)0.023 (4)
C270.043 (4)0.056 (4)0.049 (4)0.002 (3)0.006 (3)0.010 (3)
C280.033 (4)0.091 (5)0.088 (5)0.007 (4)0.010 (4)0.027 (4)
C290.060 (5)0.105 (6)0.066 (5)0.004 (5)0.005 (4)0.025 (4)
C300.054 (5)0.049 (4)0.071 (4)0.010 (3)0.014 (4)0.003 (3)
C310.048 (5)0.070 (5)0.077 (5)0.003 (4)0.015 (4)0.006 (4)
C320.042 (4)0.052 (4)0.054 (4)0.006 (3)0.014 (3)0.005 (3)
C330.040 (4)0.048 (4)0.079 (5)0.003 (3)0.019 (4)0.002 (4)
C340.049 (5)0.055 (4)0.071 (5)0.001 (4)0.025 (4)0.001 (4)
C350.055 (5)0.074 (5)0.073 (5)0.005 (4)0.009 (4)0.018 (4)
C360.061 (5)0.051 (4)0.101 (6)0.016 (4)0.021 (5)0.016 (4)
C370.058 (5)0.051 (4)0.072 (5)0.005 (4)0.018 (4)0.006 (4)
Geometric parameters (Å, º) top
Zn1—O11.957 (4)C12—C131.371 (8)
Zn1—N4i1.979 (5)C12—H120.9300
Zn1—O4ii1.985 (4)C13—H130.9300
Zn1—N22.009 (5)C14—C151.382 (7)
O1—C11.255 (7)C14—C191.418 (7)
O2—C11.274 (6)C15—C161.430 (7)
O3—C51.352 (6)C16—C171.362 (7)
O3—H30.8200C17—C181.415 (7)
O4—C21.267 (6)C17—H170.9300
O4—Zn1iii1.985 (4)C18—C231.412 (7)
O5—C21.248 (6)C18—C191.445 (7)
O6—C151.372 (5)C19—C201.435 (7)
O6—H60.8200C20—C211.386 (7)
N1—C241.342 (6)C20—H200.9300
N1—C261.346 (6)C21—C221.376 (8)
N1—C301.480 (6)C21—H210.9300
N2—C241.332 (6)C22—C231.368 (8)
N2—C251.342 (6)C22—H220.9300
N3—C271.318 (6)C23—H230.9300
N3—C291.374 (7)C24—H240.9300
N3—C311.471 (7)C25—C261.359 (8)
N4—C271.331 (6)C25—H250.9300
N4—C281.383 (7)C26—H260.9300
N4—Zn1iv1.979 (5)C27—H270.9300
C1—C61.503 (7)C28—C291.335 (8)
C2—C161.502 (7)C28—H280.9300
C3—C41.512 (7)C29—H290.9300
C3—C141.521 (7)C30—C321.490 (7)
C3—H3A0.9700C30—H30A0.9700
C3—H3B0.9700C30—H30B0.9700
C4—C51.387 (7)C31—C341.535 (8)
C4—C91.429 (7)C31—H31A0.9700
C5—C61.442 (7)C31—H31B0.9700
C6—C71.393 (7)C32—C371.379 (7)
C7—C81.405 (7)C32—C331.394 (7)
C7—H70.9300C33—C341.395 (8)
C8—C91.414 (7)C33—H330.9300
C8—C131.440 (7)C34—C351.395 (8)
C9—C101.428 (7)C35—C361.393 (8)
C10—C111.344 (8)C35—H350.9300
C10—H100.9300C36—C371.362 (8)
C11—C121.409 (9)C36—H360.9300
C11—H110.9300C37—H370.9300
O1—Zn1—N4i103.57 (17)C17—C16—C2120.9 (6)
O1—Zn1—O4ii98.40 (16)C15—C16—C2120.4 (5)
N4i—Zn1—O4ii128.6 (2)C16—C17—C18121.8 (5)
O1—Zn1—N2114.19 (19)C16—C17—H17119.1
N4i—Zn1—N2112.68 (19)C18—C17—H17119.1
O4ii—Zn1—N299.00 (18)C23—C18—C17122.3 (6)
C1—O1—Zn1118.7 (4)C23—C18—C19119.1 (5)
C5—O3—H3109.5C17—C18—C19118.5 (5)
C2—O4—Zn1iii111.1 (4)C14—C19—C20122.7 (5)
C15—O6—H6109.5C14—C19—C18119.9 (5)
C24—N1—C26107.2 (5)C20—C19—C18117.3 (5)
C24—N1—C30125.3 (5)C21—C20—C19120.0 (6)
C26—N1—C30127.4 (5)C21—C20—H20120.0
C24—N2—C25104.9 (5)C19—C20—H20120.0
C24—N2—Zn1130.7 (4)C22—C21—C20122.2 (6)
C25—N2—Zn1123.8 (4)C22—C21—H21118.9
C27—N3—C29106.4 (5)C20—C21—H21118.9
C27—N3—C31126.6 (6)C23—C22—C21119.5 (6)
C29—N3—C31126.7 (6)C23—C22—H22120.2
C27—N4—C28103.0 (5)C21—C22—H22120.2
C27—N4—Zn1iv129.5 (4)C22—C23—C18121.9 (6)
C28—N4—Zn1iv126.3 (4)C22—C23—H23119.1
O1—C1—O2124.3 (6)C18—C23—H23119.1
O1—C1—C6118.3 (6)N2—C24—N1111.1 (5)
O2—C1—C6117.3 (6)N2—C24—H24124.4
O5—C2—O4122.3 (6)N1—C24—H24124.4
O5—C2—C16118.8 (6)N2—C25—C26110.6 (6)
O4—C2—C16118.8 (6)N2—C25—H25124.7
C4—C3—C14117.1 (4)C26—C25—H25124.7
C4—C3—H3A108.0N1—C26—C25106.1 (5)
C14—C3—H3A108.0N1—C26—H26127.0
C4—C3—H3B108.0C25—C26—H26127.0
C14—C3—H3B108.0N3—C27—N4113.3 (5)
H3A—C3—H3B107.3N3—C27—H27123.3
C5—C4—C9119.0 (6)N4—C27—H27123.3
C5—C4—C3119.2 (5)C29—C28—N4110.8 (6)
C9—C4—C3121.7 (5)C29—C28—H28124.6
O3—C5—C4119.9 (5)N4—C28—H28124.6
O3—C5—C6118.6 (5)C28—C29—N3106.4 (6)
C4—C5—C6121.4 (5)C28—C29—H29126.8
C7—C6—C5117.9 (5)N3—C29—H29126.8
C7—C6—C1119.4 (5)N1—C30—C32115.3 (5)
C5—C6—C1122.7 (5)N1—C30—H30A108.4
C6—C7—C8121.9 (6)C32—C30—H30A108.4
C6—C7—H7119.0N1—C30—H30B108.4
C8—C7—H7119.0C32—C30—H30B108.4
C7—C8—C9119.3 (5)H30A—C30—H30B107.5
C7—C8—C13120.8 (6)N3—C31—C34109.3 (5)
C9—C8—C13119.9 (6)N3—C31—H31A109.8
C8—C9—C10116.9 (5)C34—C31—H31A109.8
C8—C9—C4120.1 (5)N3—C31—H31B109.8
C10—C9—C4123.0 (6)C34—C31—H31B109.8
C11—C10—C9122.9 (6)H31A—C31—H31B108.3
C11—C10—H10118.6C37—C32—C33118.5 (6)
C9—C10—H10118.6C37—C32—C30117.5 (6)
C10—C11—C12119.9 (6)C33—C32—C30124.0 (6)
C10—C11—H11120.0C32—C33—C34121.3 (6)
C12—C11—H11120.0C32—C33—H33119.3
C13—C12—C11120.6 (7)C34—C33—H33119.3
C13—C12—H12119.7C35—C34—C33118.7 (6)
C11—C12—H12119.7C35—C34—C31119.4 (6)
C12—C13—C8119.7 (7)C33—C34—C31121.8 (6)
C12—C13—H13120.2C36—C35—C34119.4 (6)
C8—C13—H13120.2C36—C35—H35120.3
C15—C14—C19118.3 (5)C34—C35—H35120.3
C15—C14—C3120.1 (5)C37—C36—C35120.9 (6)
C19—C14—C3121.6 (5)C37—C36—H36119.5
O6—C15—C14118.5 (5)C35—C36—H36119.5
O6—C15—C16118.9 (5)C36—C37—C32121.1 (6)
C14—C15—C16122.6 (5)C36—C37—H37119.5
C17—C16—C15118.7 (5)C32—C37—H37119.5
N4i—Zn1—O1—C171.0 (5)O5—C2—C16—C150.8 (8)
O4ii—Zn1—O1—C1155.8 (4)O4—C2—C16—C15175.1 (5)
N2—Zn1—O1—C151.9 (5)C15—C16—C17—C183.8 (8)
O1—Zn1—N2—C24101.2 (5)C2—C16—C17—C18177.1 (5)
N4i—Zn1—N2—C2416.6 (6)C16—C17—C18—C23174.2 (5)
O4ii—Zn1—N2—C24155.3 (5)C16—C17—C18—C193.0 (8)
O1—Zn1—N2—C2568.4 (5)C15—C14—C19—C20173.1 (5)
N4i—Zn1—N2—C25173.8 (5)C3—C14—C19—C206.5 (8)
O4ii—Zn1—N2—C2535.1 (5)C15—C14—C19—C184.0 (8)
Zn1—O1—C1—O24.7 (8)C3—C14—C19—C18176.4 (5)
Zn1—O1—C1—C6174.7 (3)C23—C18—C19—C14178.3 (5)
Zn1iii—O4—C2—O515.3 (7)C17—C18—C19—C141.0 (8)
Zn1iii—O4—C2—C16160.4 (4)C23—C18—C19—C201.1 (8)
C14—C3—C4—C5119.1 (6)C17—C18—C19—C20176.2 (5)
C14—C3—C4—C964.8 (7)C14—C19—C20—C21177.7 (5)
C9—C4—C5—O3175.4 (5)C18—C19—C20—C210.6 (8)
C3—C4—C5—O30.8 (8)C19—C20—C21—C220.5 (9)
C9—C4—C5—C65.0 (8)C20—C21—C22—C231.1 (10)
C3—C4—C5—C6178.8 (5)C21—C22—C23—C180.5 (10)
O3—C5—C6—C7179.8 (5)C17—C18—C23—C22176.6 (6)
C4—C5—C6—C70.6 (8)C19—C18—C23—C220.6 (9)
O3—C5—C6—C10.6 (8)C25—N2—C24—N11.1 (7)
C4—C5—C6—C1179.8 (5)Zn1—N2—C24—N1170.0 (4)
O1—C1—C6—C71.3 (8)C26—N1—C24—N21.4 (7)
O2—C1—C6—C7178.1 (5)C30—N1—C24—N2179.2 (5)
O1—C1—C6—C5179.5 (5)C24—N2—C25—C260.3 (8)
O2—C1—C6—C51.1 (8)Zn1—N2—C25—C26171.5 (5)
C5—C6—C7—C82.4 (8)C24—N1—C26—C251.1 (8)
C1—C6—C7—C8176.8 (5)C30—N1—C26—C25178.9 (6)
C6—C7—C8—C90.8 (8)N2—C25—C26—N10.5 (9)
C6—C7—C8—C13178.1 (5)C29—N3—C27—N40.6 (7)
C7—C8—C9—C10175.8 (5)C31—N3—C27—N4174.6 (5)
C13—C8—C9—C103.1 (8)C28—N4—C27—N30.1 (7)
C7—C8—C9—C43.8 (8)Zn1iv—N4—C27—N3168.4 (4)
C13—C8—C9—C4177.3 (5)C27—N4—C28—C290.5 (7)
C5—C4—C9—C86.6 (8)Zn1iv—N4—C28—C29168.4 (4)
C3—C4—C9—C8177.3 (5)N4—C28—C29—N30.8 (8)
C5—C4—C9—C10172.9 (5)C27—N3—C29—C280.8 (7)
C3—C4—C9—C103.2 (8)C31—N3—C29—C28174.3 (6)
C8—C9—C10—C110.1 (8)C24—N1—C30—C3286.1 (7)
C4—C9—C10—C11179.5 (5)C26—N1—C30—C3296.6 (7)
C9—C10—C11—C123.0 (9)C27—N3—C31—C3472.1 (7)
C10—C11—C12—C132.7 (10)C29—N3—C31—C34102.1 (7)
C11—C12—C13—C80.5 (10)N1—C30—C32—C37174.9 (5)
C7—C8—C13—C12175.5 (6)N1—C30—C32—C334.6 (8)
C9—C8—C13—C123.4 (9)C37—C32—C33—C340.4 (8)
C4—C3—C14—C15116.3 (6)C30—C32—C33—C34180.0 (5)
C4—C3—C14—C1964.1 (7)C32—C33—C34—C350.5 (9)
C19—C14—C15—O6175.4 (5)C32—C33—C34—C31178.2 (5)
C3—C14—C15—O64.2 (8)N3—C31—C34—C3563.5 (7)
C19—C14—C15—C163.2 (9)N3—C31—C34—C33115.1 (6)
C3—C14—C15—C16177.2 (5)C33—C34—C35—C361.1 (9)
O6—C15—C16—C17179.3 (5)C31—C34—C35—C36177.6 (5)
C14—C15—C16—C170.6 (9)C34—C35—C36—C371.8 (10)
O6—C15—C16—C21.6 (8)C35—C36—C37—C321.8 (10)
C14—C15—C16—C2179.7 (5)C33—C32—C37—C361.1 (9)
O5—C2—C16—C17178.3 (5)C30—C32—C37—C36179.3 (5)
O4—C2—C16—C175.8 (8)
Symmetry codes: (i) x1, y, z; (ii) x1, y+3/2, z1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C8–C13, C18–C23 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.812.555 (5)150
O6—H6···O50.821.762.502 (5)150
C30—H30B···O6v0.972.543.350 (7)141
C26—H26···Cg1vi0.932.793.676 (8)161
C29—H29···Cg2vii0.932.763.502 (7)137
C30—H30A···Cg3vi0.972.713.628 (6)158
Symmetry codes: (v) x, y+1, z+1; (vi) x, y1/2, z+1/2; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C23H14O6)(C14H14N4)]
Mr690.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.8382 (9), 17.3428 (16), 17.7939 (17)
β (°) 100.781 (1)
V3)3285.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.23 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.837, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
16511, 5800, 2460
Rint0.111
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.127, 1.00
No. of reflections5800
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.68

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C8–C13, C18–C23 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.812.555 (5)150.0
O6—H6···O50.821.762.502 (5)150.0
C30—H30B···O6i0.972.543.350 (7)141.0
C26—H26···Cg1ii0.932.793.676 (8)161
C29—H29···Cg2iii0.932.763.502 (7)137
C30—H30A···Cg3ii0.972.713.628 (6)158
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of PR China (grant No. 20801025) and the Shandong Tai-Shan Scholar Research Fund.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, J., Slebodnick, C., Troya, D., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 2719–2727.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFeng, R., Jiang, F. L., Chen, L., Yan, C. F., Wu, M. Y. & Hong, M. C. (2009). Chem. Commun. pp. 5296–5298.  Web of Science CSD CrossRef Google Scholar
First citationLi, D. S., Fu, F., Zhao, J., Wu, Y. P., Du, M., Zou, K., Dong, W. W. & Wang, Y. Y. (2010). Dalton Trans. 39, 11522–11525.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLuo, F., Che, Y. X. & Zheng, J. M. (2009). CrystEngComm, 11, 1097–1102.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. N., Peng, Y. Q., Wei, X. L., Zhang, Q. F., Wang, D. Q., Dou, J. M., Li, D. C. & Bai, J. F. (2011). CrystEngComm, 13, 5313–5316.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, G., Shen, Y. F., Li, Y. R. & Huang, X. C. (2010). Inorg. Chem. 49, 9191–9199.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXu, J., Bai, Z. S., Chen, M. S., Su, Z., Chen, S. S. & Sun, W. Y. (2009). CrystEngComm, 11, 2728–2733.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, H., Lin, P., Li, Z. H. & Du, S. W. (2008). J. Mol. Struct. 881, 21–27.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m125-m126
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds