organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o261-o262

C-Methyl­calix[4]resorcinarene–1,4-bis­­(pyridin-3-yl)-2,3-di­aza-1,3-butadiene (1/2)

aSteacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex, Ottawa, Ontario, Canada K1A 0R6, and bCenter of Excellence for Research in Engineering Materials, Faculty of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
*Correspondence e-mail: kostia.oudatchin@nrc-cnrc.gc.ca

(Received 7 December 2011; accepted 19 December 2011; online 7 January 2012)

In the title compound, 2C12H10N4·C32H32O8, the calixarene adopts a rctt conformation with dihedral angles of 138.40 (1) and 9.10 (1)° between the opposite rings. The dihedral angles between the rings of the pyridine derivative are 8.80 (1) and 9.20 (1)°. In the crystal, adjacent C-methylcalix[4]resorcinarene molecules are connected into columns parallel to [010] by O—H⋯O hydrogen bonds. O—H⋯N hydrogen bonds between the axial phenoxyl groups and bipyridine molecules link the columns into sheets parallel to (011), which are connected by O—H⋯N hydrogen bonds. Further O—H⋯N hydrogen bonds link the bipyridine and C-methylcalix[4]resorcinarene molecules, giving rise to a three-dimensional network.

Related literature

For the synthesis and structure of the 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene ligand, see: Ciurtin et al. (2001[Ciurtin, D. M., Dong, Y.-B., Smith, M. D., Barclay, T. & zur Loye, H.-C. (2001). Inorg. Chem. 40, 2825-2834.]). For coordination polymers of 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene structures, see: Dong et al. (2004[Dong, Y.-B., Zhao, X., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2004). Inorg. Chem. 43, 5603-5612.]). For the structure of C-methyl­calix[4]resorcinarene, see: Kuzmicz et al. (2010[Kuzmicz, R., Kowalska, V., Domagała, S., Stachowicz, M., Woźniak, K. & Kolodziejski, W. (2010). J. Phys. Chem. B, 114, 10311-10320.]). For C-methyl­calix[4]resorcinarene co-crystal structures, see: MacGillivray et al. (2001[MacGillivray, L. R., Papaefstathiou, G. S., Reid, J. L. & Ripmeester, J. A. (2001). Cryst. Growth Des. 1, 373-375.]); Ma & Coppens (2004[Ma, B.-Q. & Coppens, P. (2004). Cryst. Growth Des. 4, 1377-1385.]); Momose & Bosch (2010[Momose, A. A. & Bosch, E. (2010). Cryst. Growth Des. 10, 4043-4049.]). For the stereochemistry of C-methyl­calix[4]resorcinarene, see: Moore & Matthews (2009[Moore, D. & Matthews, S. E. (2009). J. Inclusion Phenom. Macrocycl. Chem. 65, 137-155.]).

[Scheme 1]

Experimental

Crystal data
  • 2C12H10N4·C32H32O8

  • Mr = 965.06

  • Monoclinic, P 21 /c

  • a = 12.2998 (10) Å

  • b = 26.232 (2) Å

  • c = 16.1097 (13) Å

  • β = 109.324 (2)°

  • V = 4904.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.987

  • 58266 measured reflections

  • 12755 independent reflections

  • 7952 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.131

  • S = 1.02

  • 12755 reflections

  • 656 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4B 0.84 1.95 2.765 (2) 162
O2—H2⋯N1A 0.84 1.87 2.6986 (17) 167
O3—H3⋯O2i 0.84 1.99 2.8297 (17) 172
O4—H4⋯O5 0.84 2.15 2.9265 (17) 153
O5—H5⋯N4Aii 0.84 1.90 2.7338 (19) 175
O6—H6⋯N1Bii 0.84 1.95 2.7855 (19) 176
O7—H7⋯O6 0.84 2.14 2.9528 (18) 163
O8—H8⋯N2Biii 0.84 2.11 2.947 (2) 174
Symmetry codes: (i) -x, -y, -z; (ii) x, y-1, z; (iii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 1999[Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

C-Methylcalix[4]resorcinarene is the simplest member of the resorcinarene compounds and assemblies by means of intermolecular hydrogen bonding (Kuzmicz et al., 2010). C-Methylcalix[4]resorcinarene has typically been crystallized with 4,4'-bipyridine type ligands to form solids with large cavities capable of including organic or inorganic guests (MacGillivray et al., 2001; Ma & Coppens, 2004; Momose & Bosch, 2010). We used bidentate Schiff-base ligands 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene (Dong et al., 2004) with C-methylcalix[4]resorcinarene and crystallized single-crystals using ethanol as solvent (Fig. 1).

Nearby C-methylcalix[4]resorcinarene molecules are connected into infinite columns parallel to the crystallographic [010] direction through two, center-of-symmetry-related, phenoxyl O–H···O hydrogen bonds per molecular pair [O3···O2 = 2.8297 (17) Å, O3–H3···O2 = 172.4 °]. As shown in Figure 2, O–H···N hydrogen bonds between the axial phenoxyl groups and bipyridine molecules link the columns into stair-like sheets parallel to the (011) plane [O2···N1A = 2.6986 (17)Å, O2–H2···N1A = 167.3 °; O1···N4B = 2.765 (2) Å, O1–H1···N4B = 162.3 °]. The sheets are connected with each other by a second set of bipyridylmolecules through O–H···N hydrogen bonds [O5···N4A = 2.7338 (19) Å, O5–H5···N4A = 174.9 °; O6···N1B = 2.7855 (19) Å, O6–H6···N1B = 175.9 °]. Additionally, zigzag –CH=N—N=CH– bridge of the bipyridine molecules and axial phenoxyl groups of C-methylcalix[4]resorcinarene molecules are also connected via O–H···N hydrogen bonds [O8···N2B = 2.947 (2) Å, O8–H8···N2B = 173.8 °] giving rise to a three-dimensional network.

Confirmation of calix[4]resorcinarene topology has been classified into four diffrent structures i.e. rccc (cone/crown), rcct (chair), rctt (diamond), rccc (boat) (Moore & Matthews, 2009). In the title compound, a pair of aromatic rings are almost coplanar, whereas the others are orthogonal at an angle of 88.1 and 95.7 ° from the plane facing the side-chains. This constructs an rctt conformation (Fig. 1).

Related literature top

For the synthesis and structure of the 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene ligand, see: Ciurtin et al. (2001). For coordination polymers of 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene structures, see: Dong et al. (2004). For the structure of C-methylcalix[4]resorcinarene, see: Kuzmicz et al. (2010). For C-methylcalix[4]resorcinarene co-crystal structures, see: MacGillivray et al. (2001); Ma & Coppens (2004); Momose & Bosch (2010). For the stereochemistry of C-methylcalix[4]resorcinarene, see: Moore & Matthews (2009).

Experimental top

C-methylcalix[4]resorcinarene (0.05 mmol) and 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene (0.05 mmol) were dissolved in 3 ml and 1.5 ml of ethanol, respectively. After that, the mixture was heated to 100 ° C for 4 h in an oven, cooled to room temperature at a rate of 20 ° C per hour and kept few days at room temperature. Colorless, plate-like crystals were collected after 2/3 days.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H distances 0.95 Å (aryl), 0.98 Å (methyl), 1.00 Å (methine) and O—H distances 0.84 Å. All hydrogen Ueq were fixed at 1.2 times of the Ueq preceding nonhydrogen atom.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom naming scheme for the co-crystals (C-methylcalix[4]resorcinarene).2(1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of co-crystals of (C-methylcalix[4]resorcinarene). 2(1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene) viewed down the b axis showing linear one-dimentional hydrogen-bonding chains associations as dashed lines.
2,9,15,22-tetramethylpentacyclo[21.3.1.110,14.03,8.016,21]octacosa- 1(27),3(8),4,6,10 (28),11,13,16,18,20,23,25-dodecaen- 5,6,11,13,18,19,24,26-octol–1,4-bis(pyridin-3-yl)-2,3-diaza-1,3-butadiene (1/2) top
Crystal data top
2C12H10N4·C32H32O8F(000) = 2032
Mr = 965.06Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 280 reflections
a = 12.2998 (10) Åθ = 5–30°
b = 26.232 (2) ŵ = 0.09 mm1
c = 16.1097 (13) ÅT = 173 K
β = 109.324 (2)°Block, yellow
V = 4904.9 (7) Å30.35 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEX CCD
diffractometer
12755 independent reflections
Radiation source: fine-focus sealed tube7952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 28.8°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.970, Tmax = 0.987k = 3535
58266 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.3967P]
where P = (Fo2 + 2Fc2)/3
12755 reflections(Δ/σ)max < 0.001
656 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
2C12H10N4·C32H32O8V = 4904.9 (7) Å3
Mr = 965.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2998 (10) ŵ = 0.09 mm1
b = 26.232 (2) ÅT = 173 K
c = 16.1097 (13) Å0.35 × 0.20 × 0.15 mm
β = 109.324 (2)°
Data collection top
Bruker Kappa APEX CCD
diffractometer
12755 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7952 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.987Rint = 0.058
58266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
12755 reflectionsΔρmin = 0.24 e Å3
656 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11346 (13)0.10695 (5)0.29351 (8)0.0452 (3)
H10.07850.13390.28980.054*
O20.14016 (10)0.09443 (4)0.01170 (8)0.0317 (3)
H20.13110.12620.00790.038*
O30.06394 (11)0.04247 (5)0.00563 (10)0.0460 (3)
H30.00350.05910.01180.055*
O40.21608 (10)0.21043 (4)0.02754 (8)0.0331 (3)
H40.27860.22650.04670.040*
O50.40391 (11)0.28018 (4)0.03273 (7)0.0354 (3)
H50.38200.31030.01880.042*
O60.33853 (11)0.27263 (4)0.27806 (7)0.0363 (3)
H60.32260.30340.27350.054*
O70.15451 (11)0.19612 (4)0.34688 (9)0.0405 (3)
H70.21450.21400.33300.049*
O80.02134 (10)0.02744 (5)0.33701 (9)0.0409 (3)
H80.02200.03750.30950.049*
C10.24240 (14)0.01166 (6)0.12715 (10)0.0267 (3)
H1A0.28170.01990.12270.032*
C20.20718 (14)0.03655 (6)0.20799 (10)0.0273 (3)
C30.14939 (14)0.08289 (6)0.21349 (11)0.0295 (4)
C40.12804 (14)0.10278 (6)0.14037 (11)0.0299 (4)
H4A0.08860.13430.14470.036*
C50.16409 (13)0.07667 (6)0.06111 (11)0.0257 (3)
C60.22321 (13)0.03049 (6)0.05246 (10)0.0251 (3)
C70.27180 (15)0.00482 (6)0.03648 (10)0.0289 (4)
H7A0.22340.01610.07220.035*
C80.39287 (17)0.02532 (6)0.08243 (12)0.0403 (4)
H8A0.44370.01480.04980.048*
H8B0.42230.01170.14240.048*
H8C0.39050.06260.08460.048*
C90.35759 (14)0.08547 (6)0.04637 (10)0.0258 (3)
H90.43190.07090.05860.031*
C100.26378 (14)0.05285 (6)0.03113 (10)0.0263 (3)
C110.15494 (15)0.07511 (6)0.01108 (11)0.0311 (4)
C120.14228 (15)0.12767 (6)0.01046 (11)0.0319 (4)
H120.06790.14230.00220.038*
C130.23827 (14)0.15883 (6)0.02831 (10)0.0267 (3)
C140.34808 (14)0.13859 (6)0.04461 (10)0.0241 (3)
C150.44978 (13)0.17430 (6)0.05513 (10)0.0254 (3)
H150.44890.20060.09990.031*
C160.56767 (15)0.14822 (7)0.08735 (11)0.0340 (4)
H16A0.62820.17360.09270.041*
H16B0.57920.13250.14480.041*
H16C0.57110.12190.04510.041*
C170.42627 (13)0.17562 (6)0.10809 (10)0.0243 (3)
H170.44260.14010.10340.029*
C180.42989 (13)0.20196 (6)0.03196 (10)0.0241 (3)
C190.40501 (14)0.25408 (6)0.04049 (10)0.0257 (3)
C200.37761 (14)0.27811 (6)0.12184 (10)0.0277 (3)
H200.36200.31370.12650.033*
C210.37305 (14)0.25029 (6)0.19626 (10)0.0276 (3)
C220.40007 (13)0.19834 (6)0.19061 (10)0.0244 (3)
C230.39568 (14)0.16694 (6)0.27175 (10)0.0266 (3)
H230.37750.19110.32250.032*
C240.51371 (15)0.14370 (7)0.26115 (12)0.0332 (4)
H24A0.50910.12390.31380.040*
H24B0.57060.17100.25330.040*
H24C0.53700.12130.20950.040*
C250.31351 (14)0.07589 (6)0.28032 (10)0.0263 (3)
H250.39010.06310.26030.032*
C260.29752 (14)0.12852 (6)0.29279 (10)0.0261 (3)
C270.18376 (15)0.14597 (6)0.32558 (11)0.0298 (4)
C280.09198 (15)0.11258 (7)0.34000 (11)0.0336 (4)
H280.01520.12500.36160.040*
C290.11217 (14)0.06108 (6)0.32294 (11)0.0302 (4)
C300.22337 (14)0.04121 (6)0.29563 (10)0.0259 (3)
C310.23665 (14)0.01636 (6)0.28613 (10)0.0279 (3)
H310.17980.03160.34000.033*
C320.35513 (15)0.03607 (7)0.28153 (11)0.0328 (4)
H32A0.35480.07340.28120.039*
H32B0.37360.02390.33280.039*
H32C0.41310.02360.22760.039*
N1A0.14443 (13)0.19726 (5)0.01693 (10)0.0358 (3)
N2A0.21252 (14)0.38510 (6)0.00459 (11)0.0439 (4)
N3A0.27335 (15)0.43125 (6)0.00072 (11)0.0439 (4)
N4A0.32909 (19)0.62157 (6)0.00347 (11)0.0517 (5)
C1A0.07431 (16)0.23736 (7)0.00830 (13)0.0408 (4)
H1A10.00640.23140.02950.049*
C2A0.11289 (16)0.28689 (7)0.00523 (14)0.0422 (5)
H2A0.05980.31430.02300.051*
C3A0.23069 (16)0.29589 (7)0.02429 (13)0.0380 (4)
C4A0.30385 (17)0.25468 (7)0.05267 (14)0.0468 (5)
H4A10.38490.25940.07510.056*
C5A0.25681 (16)0.20659 (7)0.04773 (14)0.0436 (5)
H5A0.30770.17850.06750.052*
C6A0.27847 (18)0.34750 (7)0.02479 (14)0.0447 (5)
H6A0.35950.35260.04740.054*
C7A0.2177 (2)0.61136 (8)0.02188 (14)0.0559 (6)
H7A10.16530.63910.03250.067*
C8A0.1737 (2)0.56213 (7)0.02647 (13)0.0488 (5)
H8A10.09320.55660.04100.059*
C9A0.24915 (18)0.52175 (7)0.00953 (11)0.0393 (4)
C10A0.36571 (19)0.53196 (7)0.00988 (13)0.0436 (5)
H10A0.42030.50500.02190.052*
C11A0.4010 (2)0.58211 (7)0.01135 (14)0.0500 (5)
H11A0.48070.58870.02360.060*
C12A0.20629 (18)0.46912 (7)0.01125 (11)0.0393 (4)
H12A0.12680.46350.02040.047*
N1B0.27941 (14)0.62678 (6)0.25762 (10)0.0405 (4)
N2B0.14281 (15)0.44397 (6)0.25308 (12)0.0502 (4)
N3B0.15395 (15)0.39050 (6)0.25003 (12)0.0483 (4)
N4B0.03932 (16)0.20584 (6)0.28645 (12)0.0506 (4)
C1B0.17541 (19)0.60616 (8)0.27661 (16)0.0539 (5)
H1B0.11060.62830.29450.065*
C2B0.15533 (18)0.55428 (8)0.27192 (15)0.0501 (5)
H2B0.07900.54150.28700.060*
C3B0.24791 (15)0.52183 (7)0.24516 (11)0.0339 (4)
C4B0.35582 (17)0.54304 (8)0.22410 (14)0.0455 (5)
H4B0.42220.52190.20450.055*
C5B0.36766 (18)0.59495 (8)0.23147 (13)0.0456 (5)
H5B0.44320.60860.21700.055*
C6B0.23676 (17)0.46610 (7)0.24210 (12)0.0395 (4)
H6B0.30410.44590.23130.047*
C7B0.05398 (19)0.23441 (7)0.31747 (13)0.0461 (5)
H7B0.12650.21780.34010.055*
C8B0.05192 (17)0.28715 (7)0.31876 (13)0.0419 (4)
H8B10.12140.30600.34170.050*
C9B0.05244 (17)0.31199 (7)0.28629 (12)0.0390 (4)
C10B0.15124 (19)0.28258 (8)0.25297 (16)0.0556 (6)
H10B0.22480.29810.22930.067*
C11B0.1400 (2)0.23020 (8)0.25510 (17)0.0625 (6)
H11B0.20800.21030.23290.075*
C12B0.05814 (18)0.36805 (7)0.28603 (13)0.0423 (4)
H12B0.00970.38750.31270.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0656 (9)0.0323 (7)0.0369 (7)0.0184 (6)0.0157 (6)0.0106 (5)
O20.0408 (7)0.0189 (5)0.0403 (7)0.0030 (5)0.0202 (6)0.0016 (5)
O30.0388 (7)0.0284 (6)0.0798 (10)0.0093 (6)0.0316 (7)0.0106 (7)
O40.0359 (7)0.0212 (6)0.0434 (7)0.0006 (5)0.0146 (6)0.0036 (5)
O50.0568 (8)0.0202 (6)0.0310 (6)0.0032 (5)0.0169 (6)0.0010 (5)
O60.0541 (8)0.0264 (6)0.0296 (6)0.0084 (5)0.0156 (6)0.0074 (5)
O70.0345 (7)0.0301 (6)0.0522 (8)0.0040 (5)0.0079 (6)0.0088 (6)
O80.0293 (7)0.0399 (7)0.0523 (8)0.0054 (5)0.0117 (6)0.0030 (6)
C10.0295 (8)0.0205 (7)0.0301 (8)0.0030 (6)0.0097 (7)0.0013 (6)
C20.0285 (8)0.0242 (8)0.0294 (8)0.0015 (6)0.0099 (7)0.0012 (6)
C30.0308 (9)0.0238 (8)0.0319 (9)0.0010 (7)0.0078 (7)0.0044 (7)
C40.0302 (9)0.0195 (8)0.0397 (9)0.0042 (6)0.0110 (7)0.0021 (7)
C50.0245 (8)0.0214 (8)0.0323 (8)0.0037 (6)0.0111 (7)0.0028 (6)
C60.0270 (8)0.0204 (8)0.0289 (8)0.0013 (6)0.0104 (7)0.0011 (6)
C70.0416 (10)0.0190 (7)0.0281 (8)0.0031 (7)0.0145 (7)0.0001 (6)
C80.0528 (12)0.0236 (8)0.0350 (9)0.0012 (8)0.0019 (8)0.0025 (7)
C90.0333 (9)0.0231 (8)0.0221 (8)0.0012 (6)0.0106 (7)0.0007 (6)
C100.0379 (9)0.0196 (7)0.0247 (8)0.0026 (6)0.0147 (7)0.0008 (6)
C110.0357 (9)0.0263 (8)0.0368 (9)0.0076 (7)0.0193 (8)0.0058 (7)
C120.0308 (9)0.0268 (8)0.0424 (10)0.0001 (7)0.0178 (8)0.0037 (7)
C130.0356 (9)0.0212 (8)0.0270 (8)0.0010 (7)0.0151 (7)0.0018 (6)
C140.0318 (9)0.0210 (7)0.0205 (7)0.0020 (6)0.0102 (6)0.0006 (6)
C150.0305 (9)0.0211 (7)0.0241 (8)0.0024 (6)0.0081 (7)0.0001 (6)
C160.0317 (9)0.0311 (9)0.0339 (9)0.0021 (7)0.0037 (7)0.0057 (7)
C170.0249 (8)0.0191 (7)0.0301 (8)0.0000 (6)0.0106 (7)0.0015 (6)
C180.0245 (8)0.0210 (7)0.0264 (8)0.0013 (6)0.0078 (6)0.0022 (6)
C190.0281 (8)0.0216 (7)0.0293 (8)0.0009 (6)0.0120 (7)0.0019 (6)
C200.0323 (9)0.0196 (7)0.0328 (9)0.0027 (6)0.0128 (7)0.0036 (6)
C210.0286 (8)0.0261 (8)0.0292 (8)0.0008 (6)0.0113 (7)0.0050 (7)
C220.0255 (8)0.0223 (8)0.0272 (8)0.0008 (6)0.0110 (6)0.0007 (6)
C230.0296 (9)0.0263 (8)0.0250 (8)0.0007 (7)0.0107 (7)0.0015 (6)
C240.0330 (9)0.0336 (9)0.0365 (9)0.0020 (7)0.0162 (8)0.0043 (7)
C250.0268 (8)0.0291 (8)0.0229 (8)0.0032 (7)0.0081 (6)0.0003 (6)
C260.0291 (9)0.0286 (8)0.0218 (7)0.0009 (7)0.0103 (7)0.0000 (6)
C270.0331 (9)0.0277 (8)0.0279 (8)0.0040 (7)0.0091 (7)0.0026 (7)
C280.0268 (9)0.0358 (9)0.0363 (9)0.0059 (7)0.0078 (7)0.0043 (7)
C290.0275 (9)0.0331 (9)0.0286 (8)0.0027 (7)0.0074 (7)0.0008 (7)
C300.0295 (8)0.0283 (8)0.0201 (7)0.0006 (7)0.0083 (6)0.0012 (6)
C310.0299 (9)0.0283 (8)0.0243 (8)0.0017 (7)0.0076 (7)0.0028 (6)
C320.0345 (9)0.0324 (9)0.0324 (9)0.0022 (7)0.0125 (7)0.0007 (7)
N1A0.0351 (8)0.0252 (7)0.0471 (9)0.0007 (6)0.0135 (7)0.0001 (6)
N2A0.0497 (10)0.0269 (8)0.0513 (10)0.0109 (7)0.0114 (8)0.0013 (7)
N3A0.0572 (11)0.0279 (8)0.0475 (9)0.0143 (7)0.0187 (8)0.0026 (7)
N4A0.0927 (15)0.0297 (9)0.0385 (9)0.0161 (9)0.0297 (10)0.0029 (7)
C1A0.0326 (10)0.0284 (9)0.0562 (12)0.0025 (7)0.0077 (9)0.0045 (8)
C2A0.0360 (10)0.0258 (9)0.0596 (12)0.0015 (8)0.0089 (9)0.0086 (8)
C3A0.0380 (10)0.0268 (9)0.0488 (11)0.0049 (8)0.0138 (9)0.0001 (8)
C4A0.0304 (10)0.0352 (10)0.0732 (15)0.0016 (8)0.0149 (10)0.0002 (10)
C5A0.0373 (11)0.0284 (9)0.0651 (13)0.0064 (8)0.0168 (10)0.0014 (9)
C6A0.0413 (11)0.0332 (10)0.0588 (13)0.0107 (9)0.0156 (10)0.0014 (9)
C7A0.0887 (18)0.0316 (10)0.0429 (12)0.0000 (11)0.0156 (12)0.0044 (9)
C8A0.0651 (14)0.0350 (10)0.0392 (11)0.0058 (10)0.0077 (10)0.0035 (8)
C9A0.0636 (13)0.0294 (9)0.0247 (8)0.0105 (9)0.0144 (8)0.0008 (7)
C10A0.0638 (13)0.0319 (10)0.0436 (11)0.0101 (9)0.0293 (10)0.0046 (8)
C11A0.0759 (15)0.0383 (11)0.0483 (12)0.0198 (11)0.0373 (11)0.0082 (9)
C12A0.0524 (12)0.0303 (9)0.0299 (9)0.0108 (8)0.0063 (8)0.0018 (7)
N1B0.0511 (10)0.0342 (8)0.0365 (8)0.0075 (7)0.0148 (7)0.0088 (7)
N2B0.0474 (10)0.0333 (9)0.0703 (12)0.0018 (8)0.0201 (9)0.0022 (8)
N3B0.0518 (11)0.0337 (9)0.0628 (11)0.0028 (8)0.0234 (9)0.0024 (8)
N4B0.0536 (11)0.0340 (9)0.0602 (11)0.0045 (8)0.0133 (9)0.0084 (8)
C1B0.0445 (12)0.0370 (11)0.0728 (15)0.0027 (9)0.0093 (11)0.0009 (10)
C2B0.0384 (11)0.0377 (11)0.0697 (14)0.0058 (9)0.0117 (10)0.0001 (10)
C3B0.0405 (10)0.0341 (9)0.0314 (9)0.0019 (8)0.0176 (8)0.0022 (7)
C4B0.0386 (11)0.0406 (11)0.0603 (13)0.0010 (9)0.0206 (10)0.0000 (9)
C5B0.0434 (11)0.0440 (11)0.0528 (12)0.0108 (9)0.0202 (10)0.0107 (9)
C6B0.0422 (11)0.0371 (10)0.0442 (11)0.0017 (8)0.0212 (9)0.0031 (8)
C7B0.0489 (12)0.0363 (10)0.0510 (12)0.0029 (9)0.0138 (10)0.0022 (9)
C8B0.0429 (11)0.0376 (10)0.0424 (11)0.0058 (8)0.0104 (9)0.0031 (8)
C9B0.0490 (12)0.0321 (9)0.0384 (10)0.0009 (8)0.0176 (9)0.0052 (8)
C10B0.0423 (12)0.0409 (12)0.0794 (16)0.0018 (9)0.0145 (11)0.0071 (11)
C11B0.0483 (13)0.0414 (12)0.0886 (18)0.0086 (10)0.0102 (12)0.0146 (12)
C12B0.0489 (12)0.0350 (10)0.0452 (11)0.0029 (9)0.0184 (9)0.0032 (8)
Geometric parameters (Å, º) top
O1—C31.3705 (19)C26—C271.399 (2)
O1—H10.8400C27—C281.386 (2)
O2—C51.3813 (19)C28—C291.385 (2)
O2—H20.8400C28—H280.9500
O3—C111.3636 (19)C29—C301.392 (2)
O3—H30.8400C30—C311.521 (2)
O4—C131.3800 (18)C31—C321.525 (2)
O4—H40.8400C31—H311.0000
O5—C191.3678 (18)C32—H32A0.9800
O5—H50.8400C32—H32B0.9800
O6—C211.3748 (18)C32—H32C0.9800
O6—H60.8400N1A—C5A1.328 (2)
O7—C271.3769 (19)N1A—C1A1.335 (2)
O7—H70.8400N2A—C6A1.265 (2)
O8—C291.382 (2)N2A—N3A1.414 (2)
O8—H80.8400N3A—C12A1.266 (2)
C1—C61.391 (2)N4A—C7A1.329 (3)
C1—C21.392 (2)N4A—C11A1.331 (3)
C1—H1A0.9500C1A—C2A1.378 (2)
C2—C31.396 (2)C1A—H1A10.9500
C2—C311.516 (2)C2A—C3A1.388 (3)
C3—C41.390 (2)C2A—H2A0.9500
C4—C51.386 (2)C3A—C4A1.384 (3)
C4—H4A0.9500C3A—C6A1.475 (2)
C5—C61.396 (2)C4A—C5A1.379 (3)
C6—C71.516 (2)C4A—H4A10.9500
C7—C101.517 (2)C5A—H5A0.9500
C7—C81.525 (2)C6A—H6A0.9500
C7—H7A1.0000C7A—C8A1.393 (3)
C8—H8A0.9800C7A—H7A10.9500
C8—H8B0.9800C8A—C9A1.375 (3)
C8—H8C0.9800C8A—H8A10.9500
C9—C101.391 (2)C9A—C10A1.389 (3)
C9—C141.398 (2)C9A—C12A1.475 (2)
C9—H90.9500C10A—C11A1.383 (2)
C10—C111.397 (2)C10A—H10A0.9500
C11—C121.387 (2)C11A—H11A0.9500
C12—C131.386 (2)C12A—H12A0.9500
C12—H120.9500N1B—C5B1.323 (3)
C13—C141.393 (2)N1B—C1B1.328 (3)
C14—C151.527 (2)N2B—C6B1.252 (2)
C15—C181.526 (2)N2B—N3B1.408 (2)
C15—C161.530 (2)N3B—C12B1.273 (3)
C15—H151.0000N4B—C7B1.322 (3)
C16—H16A0.9800N4B—C11B1.335 (3)
C16—H16B0.9800C1B—C2B1.390 (3)
C16—H16C0.9800C1B—H1B0.9500
C17—C221.394 (2)C2B—C3B1.372 (3)
C17—C181.395 (2)C2B—H2B0.9500
C17—H170.9500C3B—C4B1.374 (3)
C18—C191.398 (2)C3B—C6B1.471 (2)
C19—C201.391 (2)C4B—C5B1.379 (3)
C20—C211.389 (2)C4B—H4B0.9500
C20—H200.9500C5B—H5B0.9500
C21—C221.398 (2)C6B—H6B0.9500
C22—C231.531 (2)C7B—C8B1.384 (3)
C23—C261.522 (2)C7B—H7B0.9500
C23—C241.531 (2)C8B—C9B1.379 (3)
C23—H231.0000C8B—H8B10.9500
C24—H24A0.9800C9B—C10B1.389 (3)
C24—H24B0.9800C9B—C12B1.472 (3)
C24—H24C0.9800C10B—C11B1.380 (3)
C25—C301.392 (2)C10B—H10B0.9500
C25—C261.400 (2)C11B—H11B0.9500
C25—H250.9500C12B—H12B0.9500
C3—O1—H1109.5O7—C27—C28115.51 (15)
C5—O2—H2109.5O7—C27—C26123.57 (15)
C11—O3—H3109.5C28—C27—C26120.91 (15)
C13—O4—H4109.5C29—C28—C27120.04 (15)
C19—O5—H5109.5C29—C28—H28120.0
C21—O6—H6109.5C27—C28—H28120.0
C27—O7—H7109.5O8—C29—C28120.55 (15)
C29—O8—H8109.5O8—C29—C30117.98 (15)
C6—C1—C2123.60 (14)C28—C29—C30121.40 (15)
C6—C1—H1A118.2C25—C30—C29116.94 (15)
C2—C1—H1A118.2C25—C30—C31125.33 (14)
C1—C2—C3117.53 (14)C29—C30—C31117.72 (14)
C1—C2—C31121.81 (14)C2—C31—C30112.53 (13)
C3—C2—C31120.54 (14)C2—C31—C32109.18 (13)
O1—C3—C4122.11 (14)C30—C31—C32114.24 (13)
O1—C3—C2117.35 (14)C2—C31—H31106.8
C4—C3—C2120.52 (15)C30—C31—H31106.8
C5—C4—C3120.16 (14)C32—C31—H31106.8
C5—C4—H4A119.9C31—C32—H32A109.5
C3—C4—H4A119.9C31—C32—H32B109.5
O2—C5—C4121.49 (14)H32A—C32—H32B109.5
O2—C5—C6117.28 (14)C31—C32—H32C109.5
C4—C5—C6121.20 (14)H32A—C32—H32C109.5
C1—C6—C5116.98 (14)H32B—C32—H32C109.5
C1—C6—C7122.22 (14)C5A—N1A—C1A117.15 (15)
C5—C6—C7120.62 (14)C6A—N2A—N3A112.75 (16)
C6—C7—C10113.06 (13)C12A—N3A—N2A110.74 (16)
C6—C7—C8108.58 (13)C7A—N4A—C11A117.26 (17)
C10—C7—C8114.46 (14)N1A—C1A—C2A123.46 (17)
C6—C7—H7A106.8N1A—C1A—H1A1118.3
C10—C7—H7A106.8C2A—C1A—H1A1118.3
C8—C7—H7A106.8C1A—C2A—C3A118.73 (17)
C7—C8—H8A109.5C1A—C2A—H2A120.6
C7—C8—H8B109.5C3A—C2A—H2A120.6
H8A—C8—H8B109.5C4A—C3A—C2A118.13 (16)
C7—C8—H8C109.5C4A—C3A—C6A120.06 (17)
H8A—C8—H8C109.5C2A—C3A—C6A121.80 (17)
H8B—C8—H8C109.5C5A—C4A—C3A118.74 (18)
C10—C9—C14123.40 (15)C5A—C4A—H4A1120.6
C10—C9—H9118.3C3A—C4A—H4A1120.6
C14—C9—H9118.3N1A—C5A—C4A123.72 (17)
C9—C10—C11117.32 (14)N1A—C5A—H5A118.1
C9—C10—C7124.67 (15)C4A—C5A—H5A118.1
C11—C10—C7118.00 (14)N2A—C6A—C3A120.58 (18)
O3—C11—C12122.67 (15)N2A—C6A—H6A119.7
O3—C11—C10116.38 (14)C3A—C6A—H6A119.7
C12—C11—C10120.93 (15)N4A—C7A—C8A123.6 (2)
C13—C12—C11119.92 (16)N4A—C7A—H7A1118.2
C13—C12—H12120.0C8A—C7A—H7A1118.2
C11—C12—H12120.0C9A—C8A—C7A118.6 (2)
O4—C13—C12115.10 (14)C9A—C8A—H8A1120.7
O4—C13—C14123.51 (14)C7A—C8A—H8A1120.7
C12—C13—C14121.38 (14)C8A—C9A—C10A118.37 (17)
C13—C14—C9116.94 (14)C8A—C9A—C12A120.24 (19)
C13—C14—C15119.66 (13)C10A—C9A—C12A121.39 (18)
C9—C14—C15123.33 (14)C11A—C10A—C9A118.8 (2)
C18—C15—C14108.28 (12)C11A—C10A—H10A120.6
C18—C15—C16111.73 (13)C9A—C10A—H10A120.6
C14—C15—C16114.39 (13)N4A—C11A—C10A123.4 (2)
C18—C15—H15107.4N4A—C11A—H11A118.3
C14—C15—H15107.4C10A—C11A—H11A118.3
C16—C15—H15107.4N3A—C12A—C9A121.26 (19)
C15—C16—H16A109.5N3A—C12A—H12A119.4
C15—C16—H16B109.5C9A—C12A—H12A119.4
H16A—C16—H16B109.5C5B—N1B—C1B116.28 (17)
C15—C16—H16C109.5C6B—N2B—N3B112.47 (17)
H16A—C16—H16C109.5C12B—N3B—N2B112.35 (17)
H16B—C16—H16C109.5C7B—N4B—C11B116.87 (18)
C22—C17—C18123.82 (14)N1B—C1B—C2B124.14 (19)
C22—C17—H17118.1N1B—C1B—H1B117.9
C18—C17—H17118.1C2B—C1B—H1B117.9
C17—C18—C19117.11 (14)C3B—C2B—C1B118.73 (19)
C17—C18—C15121.42 (13)C3B—C2B—H2B120.6
C19—C18—C15121.26 (14)C1B—C2B—H2B120.6
O5—C19—C20121.14 (13)C2B—C3B—C4B117.38 (17)
O5—C19—C18117.98 (13)C2B—C3B—C6B123.39 (17)
C20—C19—C18120.83 (14)C4B—C3B—C6B119.17 (17)
C21—C20—C19120.21 (14)C3B—C4B—C5B119.97 (19)
C21—C20—H20119.9C3B—C4B—H4B120.0
C19—C20—H20119.9C5B—C4B—H4B120.0
O6—C21—C20121.00 (14)N1B—C5B—C4B123.49 (19)
O6—C21—C22117.97 (14)N1B—C5B—H5B118.3
C20—C21—C22121.00 (14)C4B—C5B—H5B118.3
C17—C22—C21116.97 (14)N2B—C6B—C3B123.24 (18)
C17—C22—C23121.08 (13)N2B—C6B—H6B118.4
C21—C22—C23121.89 (14)C3B—C6B—H6B118.4
C26—C23—C22110.34 (12)N4B—C7B—C8B123.66 (19)
C26—C23—C24114.45 (13)N4B—C7B—H7B118.2
C22—C23—C24110.78 (13)C8B—C7B—H7B118.2
C26—C23—H23107.0C9B—C8B—C7B119.09 (18)
C22—C23—H23107.0C9B—C8B—H8B1120.5
C24—C23—H23107.0C7B—C8B—H8B1120.5
C23—C24—H24A109.5C8B—C9B—C10B118.01 (18)
C23—C24—H24B109.5C8B—C9B—C12B120.71 (18)
H24A—C24—H24B109.5C10B—C9B—C12B121.27 (18)
C23—C24—H24C109.5C11B—C10B—C9B118.4 (2)
H24A—C24—H24C109.5C11B—C10B—H10B120.8
H24B—C24—H24C109.5C9B—C10B—H10B120.8
C30—C25—C26123.61 (15)N4B—C11B—C10B123.9 (2)
C30—C25—H25118.2N4B—C11B—H11B118.0
C26—C25—H25118.2C10B—C11B—H11B118.0
C27—C26—C25116.90 (14)N3B—C12B—C9B119.98 (18)
C27—C26—C23119.19 (14)N3B—C12B—H12B120.0
C25—C26—C23123.90 (14)C9B—C12B—H12B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4B0.841.952.765 (2)162
O2—H2···N1A0.841.872.6986 (17)167
O3—H3···O2i0.841.992.8297 (17)172
O4—H4···O50.842.152.9265 (17)153
O5—H5···N4Aii0.841.902.7338 (19)175
O6—H6···N1Bii0.841.952.7855 (19)176
O7—H7···O60.842.142.9528 (18)163
O8—H8···N2Biii0.842.112.947 (2)174
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula2C12H10N4·C32H32O8
Mr965.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.2998 (10), 26.232 (2), 16.1097 (13)
β (°) 109.324 (2)
V3)4904.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
58266, 12755, 7952
Rint0.058
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.131, 1.02
No. of reflections12755
No. of parameters656
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4B0.841.952.765 (2)162.3
O2—H2···N1A0.841.872.6986 (17)167.3
O3—H3···O2i0.841.992.8297 (17)172.4
O4—H4···O50.842.152.9265 (17)152.7
O5—H5···N4Aii0.841.902.7338 (19)174.9
O6—H6···N1Bii0.841.952.7855 (19)175.9
O7—H7···O60.842.142.9528 (18)162.6
O8—H8···N2Biii0.842.112.947 (2)173.8
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x, y1/2, z1/2.
 

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiurtin, D. M., Dong, Y.-B., Smith, M. D., Barclay, T. & zur Loye, H.-C. (2001). Inorg. Chem. 40, 2825–2834.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, Y.-B., Zhao, X., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2004). Inorg. Chem. 43, 5603–5612.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationKuzmicz, R., Kowalska, V., Domagała, S., Stachowicz, M., Woźniak, K. & Kolodziejski, W. (2010). J. Phys. Chem. B, 114, 10311–10320.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMa, B.-Q. & Coppens, P. (2004). Cryst. Growth Des. 4, 1377–1385.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacGillivray, L. R., Papaefstathiou, G. S., Reid, J. L. & Ripmeester, J. A. (2001). Cryst. Growth Des. 1, 373–375.  Web of Science CSD CrossRef CAS Google Scholar
First citationMomose, A. A. & Bosch, E. (2010). Cryst. Growth Des. 10, 4043–4049.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoore, D. & Matthews, S. E. (2009). J. Inclusion Phenom. Macrocycl. Chem. 65, 137–155.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o261-o262
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds