organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Evodi­amide

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 14 December 2011; accepted 24 December 2011; online 7 January 2012)

The title compound, C19H21N3O, was isolated from the fruits of Evodia rutaecarpa. The indole and benzene rings are both essentially planar with mean derivations of 0.0094 (4) Å and 0.0077 (3) Å, respectively. The dihedral angle between these two planes is 78.24 (9)°. The amide carbonyl plane is roughly parallel to the indole ring with a dihedral angle of 7.0 (2)°, but makes a dihedral angle of 82.9 (3)° with the benzene ring. Inter­molecular N—H⋯O hydrogen-bonding inter­actions involving the amino and carbonyl groups give rise to a three-dimensional network.

Related literature

For previous isolation of evodiamide, see: Shoji et al. (1988[Shoji, N., Umeyama, A., Iuchi, A., Saito, N., Takemoto, T., Nomoto, K. & Ohizumi, Y. (1988). J. Nat. Prod. 51, 791-792.]); Tang et al. (1997[Tang, Y., Feng, X. & Huang, L. (1997). J. Chin. Pharm. Sci. 6, 65-69.]); Zuo et al. (2003[Zuo, G., He, H., Wang, B., Hong, X. & Hao, X. (2003). Acta Bot. Yunnanica, 25, 103-106.]). For the LC–MS analysis, see: Zhou et al. (2006[Zhou, Y., Li, S. H., Jiang, R. W., Cai, M., Liu, X., Ding, L. S., Xu, H. X., But, P. P. H. & Shaw, P. C. (2006). Rapid Commun. Mass Spectrosc. 20, 3111-3118.]). For the crystal structure of evodiamine, see: Fujii et al. (2000[Fujii, I., Kobayashi, Y. & Hirayama, N. (2000). Z. Kristallogr. 215, 762-765.]). For the biological activity of Evodia rutaecarpa and related alkaloids, see: Liao et al. (2011[Liao, J. F., Chiou, W. F., Shen, Y. C., Wang, G. J. & Chen, C. F. (2011). Chin. Med. 6, 1-8.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21N3O

  • Mr = 307.39

  • Triclinic, [P \overline 1]

  • a = 8.958 (2) Å

  • b = 9.886 (2) Å

  • c = 10.616 (2) Å

  • α = 84.076 (4)°

  • β = 76.276 (4)°

  • γ = 66.746 (3)°

  • V = 839.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.45 × 0.36 × 0.30 mm

Data collection
  • Bruker SMART CCD 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.661, Tmax = 1.000

  • 4931 measured reflections

  • 3424 independent reflections

  • 2149 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.146

  • S = 1.04

  • 3424 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.99 2.824 (3) 164
N3—H3A⋯O1ii 0.86 2.39 2.991 (4) 128
Symmetry codes: (i) x+1, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: XPREP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was isolated from Evodia rutaecarpa which was purchased in Japan three decades ago and its structure was determined by chemical and spectral means (Shoji et al., 1988). Since then, it was also isolated from the same herb collected in different locations of China (Tang et al., 1997; Zuo et al., 2003). Rapid detection of evodiamide and related alkaloids by LC–MS was reported (Zhou et al., 2006). It was considered a precursor of evodiamine whose crystal structure was reported (Fujii et al., 2000); however, the crystal structure of the title compound was not reported yet.

During the course of investigation of the bioactive compounds from Traditional Chinese Medicine, the title compound was isolated from Evodia rutaecarpa collected in Guangdong province of China. The colorless prisms of crystals were obtained from a methanol solution. It contains an indole ring, an amide functional group and a benzene ring (Fig. 1). Both the indole and benzene rings are planar with a mean derivation of 0.0094 (4) Å and 0.0077 (3) Å, respectively. The dihedral angle between these two planes is 78.24 (9)°. The amide carbonyl plane is roughly parallel to the indole ring with a dihedral angle of 7.0 (2)°, but makes a dihedral angle of 82.9 (3)° with the benzene ring C13-C18. Intermolecular N—H···O hydrogen-bonding interactions (Table 1) involving the amine and carbonyl groups give a three-dimensional network (Fig. 2).

Related literature top

For previous isolation of evodiamide, see: Shoji et al. (1988); Tang et al. (1997); Zuo et al. (2003). For the LC–MS analysis, see: Zhou et al. (2006). For the crystal structure of evodiamine, see: Fujii et al. (2000). For the biological activity of Evodia rutaecarpa and related alkaloids, see: Liao et al. (2011).

Experimental top

Dried fruits (2.3 kg) of Evodia rutaecarpa (A. juss.) Benth. were milled and extracted with alcohol under reflux condition for 3 h. The alcohol extracts were filtered and concentrated to a syrup, which was suspended with water and sequentially partitioned with petroleum ether and ethyl acetate. The ethyl acetate extract (206 g) was chromatographied on silica gel with gradient elution dichloromethane-methanol to give 30 fractions. Fraction 8 eluted by dichloromethane-methanol (19:1) was further chromatographied on silica gel with chloroform-acetone (4:1) as the mobile phase to give title compound (15 mg). Colorless crystals were obtained by recrystallization from a methanol solution.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.93 Å (aryl H) and Uiso(H)= 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: XPREP in SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram viewed down the a axis. The dashed lines represent intermolecular N—H···O hydrogen bonds. Selected H-atoms highlighting the hydrogen bonding are shown.
N-[2-(1H-Indol-3-yl)ethyl]-N-methyl- 2-(methylamino)benzamide top
Crystal data top
C19H21N3OZ = 2
Mr = 307.39F(000) = 328
Triclinic, P1Dx = 1.217 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.958 (2) ÅCell parameters from 4931 reflections
b = 9.886 (2) Åθ = 2.2–26.5°
c = 10.616 (2) ŵ = 0.08 mm1
α = 84.076 (4)°T = 291 K
β = 76.276 (4)°Prism, colorless
γ = 66.746 (3)°0.45 × 0.36 × 0.30 mm
V = 839.0 (3) Å3
Data collection top
Bruker SMART CCD 1000
diffractometer
3424 independent reflections
Radiation source: fine-focus sealed tube2149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scanθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1011
Tmin = 0.661, Tmax = 1.000k = 1012
4931 measured reflectionsl = 139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.1581P]
where P = (Fo2 + 2Fc2)/3
3424 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H21N3Oγ = 66.746 (3)°
Mr = 307.39V = 839.0 (3) Å3
Triclinic, P1Z = 2
a = 8.958 (2) ÅMo Kα radiation
b = 9.886 (2) ŵ = 0.08 mm1
c = 10.616 (2) ÅT = 291 K
α = 84.076 (4)°0.45 × 0.36 × 0.30 mm
β = 76.276 (4)°
Data collection top
Bruker SMART CCD 1000
diffractometer
3424 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2149 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 1.000Rint = 0.017
4931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
3424 reflectionsΔρmin = 0.22 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7904 (2)0.28425 (19)0.26473 (18)0.0509 (5)
H1A0.87470.35530.28530.069 (8)*
N20.2948 (2)0.31488 (17)0.37369 (17)0.0437 (4)
N30.0454 (2)0.23860 (19)0.48132 (17)0.0485 (5)
H3A0.01260.26860.51690.135 (14)*
O10.08389 (18)0.52561 (15)0.34402 (16)0.0558 (4)
C10.7523 (3)0.1380 (2)0.2787 (2)0.0490 (5)
H10.81430.10030.31270.059*
C20.6114 (2)0.0550 (2)0.2362 (2)0.0438 (5)
C30.5579 (2)0.1564 (2)0.19235 (18)0.0431 (5)
C40.6720 (3)0.2988 (2)0.21239 (19)0.0459 (5)
C50.6557 (3)0.4248 (3)0.1821 (2)0.0579 (6)
H50.73220.51800.19660.070*
C60.5236 (4)0.4069 (3)0.1305 (2)0.0703 (7)
H60.50890.48950.11040.084*
C70.4092 (3)0.2662 (3)0.1069 (2)0.0686 (7)
H70.32130.25740.07010.082*
C80.4249 (3)0.1416 (3)0.1372 (2)0.0570 (6)
H80.34850.04880.12130.068*
C90.5227 (3)0.1091 (2)0.2416 (2)0.0494 (5)
H9A0.47770.14410.16440.059*
H9B0.60120.15370.24290.059*
C100.3823 (2)0.1555 (2)0.3612 (2)0.0452 (5)
H10A0.30300.11240.35800.054*
H10B0.42760.11650.43770.054*
C110.3714 (3)0.3946 (2)0.4276 (2)0.0586 (6)
H11A0.30250.49770.43070.088*
H11B0.47910.38000.37400.088*
H11C0.38310.35850.51370.088*
C120.1543 (2)0.3898 (2)0.33301 (19)0.0396 (5)
C130.0829 (2)0.3066 (2)0.27095 (19)0.0405 (5)
C140.0184 (2)0.2372 (2)0.34723 (19)0.0405 (5)
C150.0836 (3)0.1641 (2)0.2837 (2)0.0500 (6)
H150.15130.11770.33210.060*
C160.0495 (3)0.1595 (3)0.1507 (2)0.0603 (6)
H160.09280.10850.11050.072*
C170.0476 (3)0.2289 (3)0.0761 (2)0.0629 (7)
H170.06890.22680.01400.076*
C180.1131 (3)0.3022 (2)0.1380 (2)0.0530 (6)
H180.17910.34950.08850.064*
C190.1698 (3)0.1902 (2)0.5620 (2)0.0609 (6)
H19A0.27510.24380.53860.091*
H19B0.17910.20770.65140.091*
H19C0.13790.08690.54970.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0455 (10)0.0397 (10)0.0620 (12)0.0070 (8)0.0185 (9)0.0013 (8)
N20.0400 (9)0.0362 (9)0.0556 (11)0.0119 (8)0.0160 (8)0.0015 (8)
N30.0515 (11)0.0527 (11)0.0452 (11)0.0260 (9)0.0070 (9)0.0000 (8)
O10.0516 (9)0.0349 (8)0.0805 (11)0.0076 (7)0.0265 (8)0.0077 (7)
C10.0446 (12)0.0448 (13)0.0562 (14)0.0154 (10)0.0101 (10)0.0029 (10)
C20.0380 (11)0.0406 (11)0.0451 (12)0.0100 (9)0.0035 (9)0.0006 (9)
C30.0413 (11)0.0475 (12)0.0349 (11)0.0142 (10)0.0030 (9)0.0002 (9)
C40.0501 (12)0.0459 (12)0.0375 (11)0.0165 (10)0.0048 (9)0.0015 (9)
C50.0734 (17)0.0495 (14)0.0505 (14)0.0234 (12)0.0122 (12)0.0025 (10)
C60.100 (2)0.0733 (18)0.0512 (15)0.0477 (17)0.0130 (15)0.0067 (13)
C70.0757 (18)0.095 (2)0.0520 (15)0.0456 (17)0.0221 (13)0.0012 (14)
C80.0538 (14)0.0681 (16)0.0477 (13)0.0217 (12)0.0136 (11)0.0051 (11)
C90.0430 (12)0.0409 (12)0.0588 (14)0.0131 (9)0.0083 (10)0.0043 (10)
C100.0406 (11)0.0371 (11)0.0534 (13)0.0097 (9)0.0128 (10)0.0043 (9)
C110.0540 (14)0.0532 (14)0.0775 (17)0.0210 (11)0.0279 (12)0.0047 (12)
C120.0385 (11)0.0364 (11)0.0428 (12)0.0135 (9)0.0083 (9)0.0009 (9)
C130.0375 (11)0.0355 (11)0.0448 (12)0.0097 (9)0.0076 (9)0.0049 (9)
C140.0381 (11)0.0312 (10)0.0483 (12)0.0086 (9)0.0093 (9)0.0028 (9)
C150.0497 (13)0.0454 (12)0.0596 (15)0.0228 (10)0.0095 (11)0.0078 (10)
C160.0615 (15)0.0617 (15)0.0640 (16)0.0237 (13)0.0178 (13)0.0171 (12)
C170.0641 (16)0.0791 (17)0.0457 (14)0.0256 (14)0.0105 (12)0.0124 (12)
C180.0523 (13)0.0624 (14)0.0456 (13)0.0253 (12)0.0060 (10)0.0029 (11)
C190.0628 (15)0.0583 (15)0.0599 (15)0.0287 (12)0.0008 (12)0.0001 (11)
Geometric parameters (Å, º) top
N1—C11.363 (3)C8—H80.9300
N1—C41.368 (3)C9—C101.521 (3)
N1—H1A0.8600C9—H9A0.9700
N2—C121.332 (2)C9—H9B0.9700
N2—C111.458 (3)C10—H10A0.9700
N2—C101.461 (2)C10—H10B0.9700
N3—C141.387 (3)C11—H11A0.9600
N3—C191.445 (3)C11—H11B0.9600
N3—H3A0.8600C11—H11C0.9600
O1—C121.242 (2)C12—C131.500 (3)
C1—C21.359 (3)C13—C181.374 (3)
C1—H10.9300C13—C141.406 (3)
C2—C31.425 (3)C14—C151.392 (3)
C2—C91.499 (3)C15—C161.373 (3)
C3—C81.400 (3)C15—H150.9300
C3—C41.406 (3)C16—C171.374 (3)
C4—C51.386 (3)C16—H160.9300
C5—C61.362 (3)C17—C181.385 (3)
C5—H50.9300C17—H170.9300
C6—C71.404 (4)C18—H180.9300
C6—H60.9300C19—H19A0.9600
C7—C81.372 (3)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C1—N1—C4108.52 (18)N2—C10—C9113.61 (17)
C1—N1—H1A125.7N2—C10—H10A108.8
C4—N1—H1A125.7C9—C10—H10A108.8
C12—N2—C11119.29 (17)N2—C10—H10B108.8
C12—N2—C10123.18 (17)C9—C10—H10B108.8
C11—N2—C10117.46 (16)H10A—C10—H10B107.7
C14—N3—C19120.82 (18)N2—C11—H11A109.5
C14—N3—H3A119.6N2—C11—H11B109.5
C19—N3—H3A119.6H11A—C11—H11B109.5
C2—C1—N1110.75 (19)N2—C11—H11C109.5
C2—C1—H1124.6H11A—C11—H11C109.5
N1—C1—H1124.6H11B—C11—H11C109.5
C1—C2—C3106.02 (18)O1—C12—N2121.55 (18)
C1—C2—C9127.5 (2)O1—C12—C13120.06 (17)
C3—C2—C9126.38 (19)N2—C12—C13118.39 (17)
C8—C3—C4118.6 (2)C18—C13—C14119.92 (19)
C8—C3—C2134.2 (2)C18—C13—C12119.34 (18)
C4—C3—C2107.22 (18)C14—C13—C12120.70 (17)
N1—C4—C5130.0 (2)N3—C14—C15122.18 (19)
N1—C4—C3107.49 (18)N3—C14—C13119.84 (18)
C5—C4—C3122.5 (2)C15—C14—C13117.93 (19)
C6—C5—C4117.5 (2)C16—C15—C14121.0 (2)
C6—C5—H5121.2C16—C15—H15119.5
C4—C5—H5121.2C14—C15—H15119.5
C5—C6—C7121.4 (2)C15—C16—C17121.1 (2)
C5—C6—H6119.3C15—C16—H16119.4
C7—C6—H6119.3C17—C16—H16119.4
C8—C7—C6121.1 (2)C16—C17—C18118.4 (2)
C8—C7—H7119.4C16—C17—H17120.8
C6—C7—H7119.4C18—C17—H17120.8
C7—C8—C3118.9 (2)C13—C18—C17121.6 (2)
C7—C8—H8120.6C13—C18—H18119.2
C3—C8—H8120.6C17—C18—H18119.2
C2—C9—C10111.22 (17)N3—C19—H19A109.5
C2—C9—H9A109.4N3—C19—H19B109.5
C10—C9—H9A109.4H19A—C19—H19B109.5
C2—C9—H9B109.4N3—C19—H19C109.5
C10—C9—H9B109.4H19A—C19—H19C109.5
H9A—C9—H9B108.0H19B—C19—H19C109.5
C4—N1—C1—C20.3 (2)C11—N2—C10—C980.9 (2)
N1—C1—C2—C30.1 (2)C2—C9—C10—N2178.10 (17)
N1—C1—C2—C9176.33 (19)C11—N2—C12—O12.5 (3)
C1—C2—C3—C8179.1 (2)C10—N2—C12—O1179.33 (18)
C9—C2—C3—C84.4 (4)C11—N2—C12—C13176.58 (18)
C1—C2—C3—C40.5 (2)C10—N2—C12—C130.2 (3)
C9—C2—C3—C4176.03 (19)O1—C12—C13—C1881.0 (2)
C1—N1—C4—C5179.0 (2)N2—C12—C13—C1898.1 (2)
C1—N1—C4—C30.6 (2)O1—C12—C13—C1497.0 (2)
C8—C3—C4—N1179.03 (18)N2—C12—C13—C1483.9 (2)
C2—C3—C4—N10.7 (2)C19—N3—C14—C1512.8 (3)
C8—C3—C4—C51.4 (3)C19—N3—C14—C13169.64 (18)
C2—C3—C4—C5178.93 (19)C18—C13—C14—N3178.39 (18)
N1—C4—C5—C6179.8 (2)C12—C13—C14—N33.6 (3)
C3—C4—C5—C60.4 (3)C18—C13—C14—C150.8 (3)
C4—C5—C6—C70.9 (4)C12—C13—C14—C15178.76 (17)
C5—C6—C7—C81.1 (4)N3—C14—C15—C16177.4 (2)
C6—C7—C8—C30.1 (3)C13—C14—C15—C160.2 (3)
C4—C3—C8—C71.1 (3)C14—C15—C16—C171.1 (4)
C2—C3—C8—C7179.3 (2)C15—C16—C17—C181.1 (4)
C1—C2—C9—C1095.3 (3)C14—C13—C18—C170.9 (3)
C3—C2—C9—C1080.5 (3)C12—C13—C18—C17178.9 (2)
C12—N2—C10—C995.9 (2)C16—C17—C18—C130.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.992.824 (3)164
N3—H3A···O1ii0.862.392.991 (4)128
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H21N3O
Mr307.39
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.958 (2), 9.886 (2), 10.616 (2)
α, β, γ (°)84.076 (4), 76.276 (4), 66.746 (3)
V3)839.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.36 × 0.30
Data collection
DiffractometerBruker SMART CCD 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.661, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4931, 3424, 2149
Rint0.017
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.146, 1.04
No. of reflections3424
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: SMART (Bruker, 1998), SMART and SAINT (Bruker, 1998), XPREP in SHELXTL (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.8601.9862.824 (3)164.3
N3—H3A···O1ii0.8602.3852.991 (4)127.8
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by grants from the New Century Excellent Talents Scheme of the Ministry of Education (NCET-08–0612), the National Science Foundation of China (30801433), the Guangdong High Level Talent Scheme and the Fundamental Research Funds for the Central Universities (21609202).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujii, I., Kobayashi, Y. & Hirayama, N. (2000). Z. Kristallogr. 215, 762–765.  CAS Google Scholar
First citationLiao, J. F., Chiou, W. F., Shen, Y. C., Wang, G. J. & Chen, C. F. (2011). Chin. Med. 6, 1–8.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoji, N., Umeyama, A., Iuchi, A., Saito, N., Takemoto, T., Nomoto, K. & Ohizumi, Y. (1988). J. Nat. Prod. 51, 791–792.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTang, Y., Feng, X. & Huang, L. (1997). J. Chin. Pharm. Sci. 6, 65–69.  CAS Google Scholar
First citationZhou, Y., Li, S. H., Jiang, R. W., Cai, M., Liu, X., Ding, L. S., Xu, H. X., But, P. P. H. & Shaw, P. C. (2006). Rapid Commun. Mass Spectrosc. 20, 3111–3118.  Web of Science CrossRef CAS Google Scholar
First citationZuo, G., He, H., Wang, B., Hong, X. & Hao, X. (2003). Acta Bot. Yunnanica, 25, 103–106.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds