organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(3,4-Di­chloro­phen­yl)-3-(2-hy­dr­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 28 December 2011; accepted 5 January 2012; online 11 January 2012)

In the title compound, C15H10Cl2O2, the dihedral angle between the mean planes of the two benzene rings is 7.7 (6)°. The crystal packing is influenced by O—H⋯O hydrogen bonds, which form chains along [010]. Weak ππ stacking inter­actions [centroid–centroid distance = 3.6697 (13) Å] are observed, which may contribute to the crystal packing stability.

Related literature

For the pharmacological activity of chalcones, see: Bandgar et al. (2010[Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364-1370.]); Cheng et al. (2008[Cheng, J. H., Hung, C. F., Yang, S. C., Wang, J., Wond, S. J. & Lin, C. N. (2008). Bioorg. Med. Chem. 16, 7270-7276.]); Dhar (1981[Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]); Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]). For the synthesis of chalcone derivatives, see: Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]; 2011[Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharma Chem., 3, 232-240.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948-o1949.]); Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1262-o1263.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o1313-o1314.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Sarojini, B. K. & Musthafa Khaleel, V. (2011). Acta Cryst. E67, o756.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Cl2O2

  • Mr = 293.13

  • Triclinic, [P \overline 1]

  • a = 7.2551 (6) Å

  • b = 7.8351 (7) Å

  • c = 12.8049 (11) Å

  • α = 92.367 (7)°

  • β = 102.946 (8)°

  • γ = 109.011 (8)°

  • V = 665.51 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 173 K

  • 0.34 × 0.15 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.854, Tmax = 0.972

  • 5430 measured reflections

  • 3174 independent reflections

  • 2417 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.01

  • 3174 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.84 (2) 1.88 (2) 2.7168 (17) 176 (2)
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones are abundant in edible plants and considered as the precursors of flavonoids and isoflavonoids. They have also been shown to display a diverse array of pharmacological activities (Dhar, 1981; Nowakowska, 2007) including anti-infective, anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor, anticancer and mutagenic properties (Dimmock et al., 1999; Cheng et al., 2008; Bandgar et al., 2010). The basic skeleton of chalcones which possess an α,β-unsaturated carbonyl group is a useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, isoxazoline, 2,4,6-triaryl pyridine, benzodiazepine and cyclohexenone derivatives (Samshuddin et al., 2010; 2011; Fun et al., 2010; Jasinski et al., 2010; Baktır et al., 2011). The crystal structures of some chalcones, viz., (2E)-3-[3-(benzyloxy)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one (Fun et al., 2011), (2E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl) prop-2-en-1-one (Jasinski et al., 2011), have been reported. In continuation of our studies on chalcones and their derivatives, the title compound (I) was prepared and its crystal structure is reported.

In the title compound, C15H10Cl2O2, the dihedral angle between the mean planes of the two benzene rings is 7.7 (6)° (Fig. 1). O—H···O hydrogen bonds (Table 1) are observed between the hydroxyl hydrogen and propene oxygen atoms forming 1-D polymeric chains along [010]. In addition, weak ππ stacking interactions (Cg1···Cg2 distance of 3.6697 (13) Å; Cg1 and Cg2 are the centroids of the C1–C5 ring and C10–C15 ring, respectively) are observed which may contribute to crystal packing stability.

Related literature top

For the pharmacological activity of chalcones, see: Bandgar et al. (2010); Cheng et al. (2008); Dhar (1981); Dimmock et al. (1999); Nowakowska (2007). For the synthesis of chalcone derivatives, see: Samshuddin et al. (2010; 2011); Fun et al. (2010); Jasinski et al. (2010); Baktır et al. (2011). For related structures, see: Fun et al. (2011); Jasinski et al. (2011).

Experimental top

To a mixture of 2-hydroxybenzaldehyde (1.22 g, 0.01 mol) and 3,4-dichloroacetophenone (1.89 g, 0.01 mol) in ethanol (40 ml), 10 ml of 10% sodium hydroxide solution was added and stirred at 278–288 K for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by the slow evaporation method. The yield of the compound was 86%. (M.P.: 392 K).

Refinement top

The H2O atom was located by a difference map and refined isotropically with DFIX = 0.85 (2) Å. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å. Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate O—H···O hydrogen bonding. The remaining hydrogen atoms have been omitted for clarity.
(2E)-1-(3,4-Dichlorophenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C15H10Cl2O2Z = 2
Mr = 293.13F(000) = 300
Triclinic, P1Dx = 1.463 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2551 (6) ÅCell parameters from 1666 reflections
b = 7.8351 (7) Åθ = 3.1–30.0°
c = 12.8049 (11) ŵ = 0.48 mm1
α = 92.367 (7)°T = 173 K
β = 102.946 (8)°Plate, pale yellow
γ = 109.011 (8)°0.34 × 0.15 × 0.06 mm
V = 665.51 (10) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3174 independent reflections
Radiation source: Enhance (Mo) X-ray Source2417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.1500 pixels mm-1θmax = 27.9°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 910
Tmin = 0.854, Tmax = 0.972l = 1616
5430 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.1793P]
where P = (Fo2 + 2Fc2)/3
3174 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C15H10Cl2O2γ = 109.011 (8)°
Mr = 293.13V = 665.51 (10) Å3
Triclinic, P1Z = 2
a = 7.2551 (6) ÅMo Kα radiation
b = 7.8351 (7) ŵ = 0.48 mm1
c = 12.8049 (11) ÅT = 173 K
α = 92.367 (7)°0.34 × 0.15 × 0.06 mm
β = 102.946 (8)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3174 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2417 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.972Rint = 0.018
5430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.30 e Å3
3174 reflectionsΔρmin = 0.26 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23632 (10)1.23387 (8)0.22164 (5)0.0692 (2)
Cl20.34479 (10)0.94069 (9)0.09406 (4)0.0681 (2)
O10.2056 (2)0.98170 (17)0.58884 (10)0.0528 (4)
O20.2367 (2)0.33480 (17)0.62755 (10)0.0467 (3)
H2O0.232 (3)0.227 (2)0.6153 (17)0.056*
C10.2381 (3)1.0221 (2)0.38083 (14)0.0390 (4)
H1A0.21071.11060.41900.047*
C20.2633 (3)1.0443 (2)0.27863 (15)0.0419 (4)
C30.3060 (3)0.9139 (3)0.22129 (14)0.0432 (4)
C40.3205 (3)0.7606 (3)0.26707 (15)0.0459 (4)
H4A0.34890.67290.22880.055*
C50.2930 (3)0.7374 (2)0.36929 (14)0.0410 (4)
H5A0.30120.63320.39920.049*
C60.2531 (3)0.8688 (2)0.42820 (13)0.0344 (3)
C70.2250 (3)0.8537 (2)0.53956 (14)0.0363 (4)
C80.2227 (3)0.6882 (2)0.58971 (13)0.0374 (4)
H8A0.22930.58890.55030.045*
C90.2112 (3)0.6809 (2)0.69169 (14)0.0386 (4)
H9A0.19970.78420.72400.046*
C100.2133 (3)0.5400 (2)0.76114 (13)0.0368 (4)
C110.2267 (3)0.3713 (2)0.73036 (13)0.0360 (4)
C120.2295 (3)0.2466 (3)0.80426 (15)0.0465 (4)
H12A0.23810.13490.78330.056*
C130.2196 (4)0.2864 (3)0.90771 (16)0.0578 (5)
H13A0.22200.20190.95650.069*
C140.2061 (4)0.4516 (3)0.93985 (16)0.0593 (6)
H14A0.19960.47871.01000.071*
C150.2024 (3)0.5748 (3)0.86740 (15)0.0506 (5)
H15A0.19230.68530.88940.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1015 (5)0.0632 (4)0.0687 (4)0.0485 (3)0.0365 (3)0.0383 (3)
Cl20.0983 (5)0.0790 (4)0.0432 (3)0.0402 (4)0.0328 (3)0.0210 (3)
O10.0915 (11)0.0354 (7)0.0465 (7)0.0342 (7)0.0276 (7)0.0082 (6)
O20.0787 (9)0.0325 (6)0.0424 (7)0.0290 (7)0.0265 (7)0.0083 (5)
C10.0470 (10)0.0319 (8)0.0425 (9)0.0168 (7)0.0144 (8)0.0071 (7)
C20.0458 (10)0.0374 (9)0.0463 (10)0.0174 (8)0.0124 (8)0.0157 (8)
C30.0481 (10)0.0473 (10)0.0360 (9)0.0161 (9)0.0139 (8)0.0095 (8)
C40.0577 (11)0.0426 (10)0.0434 (10)0.0216 (9)0.0186 (9)0.0037 (8)
C50.0536 (11)0.0330 (8)0.0415 (9)0.0189 (8)0.0153 (8)0.0072 (7)
C60.0388 (9)0.0281 (8)0.0370 (8)0.0121 (7)0.0098 (7)0.0048 (6)
C70.0440 (9)0.0277 (8)0.0390 (9)0.0139 (7)0.0118 (7)0.0038 (7)
C80.0511 (10)0.0261 (8)0.0384 (9)0.0158 (7)0.0142 (8)0.0037 (7)
C90.0514 (10)0.0286 (8)0.0380 (9)0.0162 (7)0.0123 (8)0.0010 (7)
C100.0446 (9)0.0329 (8)0.0338 (8)0.0143 (7)0.0102 (7)0.0039 (7)
C110.0423 (9)0.0323 (8)0.0359 (8)0.0145 (7)0.0121 (7)0.0050 (7)
C120.0612 (12)0.0397 (9)0.0470 (10)0.0247 (9)0.0177 (9)0.0135 (8)
C130.0765 (14)0.0579 (12)0.0472 (11)0.0302 (11)0.0180 (10)0.0249 (10)
C140.0867 (16)0.0629 (13)0.0332 (9)0.0297 (12)0.0182 (10)0.0101 (9)
C150.0771 (14)0.0440 (10)0.0370 (9)0.0270 (10)0.0180 (9)0.0025 (8)
Geometric parameters (Å, º) top
Cl1—C21.7294 (17)C7—C81.467 (2)
Cl2—C31.7241 (18)C8—C91.330 (2)
O1—C71.226 (2)C8—H8A0.9300
O2—C111.358 (2)C9—C101.448 (2)
O2—H2O0.842 (16)C9—H9A0.9300
C1—C21.372 (2)C10—C151.401 (2)
C1—C61.392 (2)C10—C111.404 (2)
C1—H1A0.9300C11—C121.390 (2)
C2—C31.388 (3)C12—C131.371 (3)
C3—C41.382 (3)C12—H12A0.9300
C4—C51.378 (2)C13—C141.382 (3)
C4—H4A0.9300C13—H13A0.9300
C5—C61.393 (2)C14—C151.369 (3)
C5—H5A0.9300C14—H14A0.9300
C6—C71.489 (2)C15—H15A0.9300
C11—O2—H2O110.9 (15)C9—C8—H8A120.1
C2—C1—C6120.90 (16)C7—C8—H8A120.1
C2—C1—H1A119.6C8—C9—C10131.19 (15)
C6—C1—H1A119.6C8—C9—H9A114.4
C1—C2—C3120.06 (16)C10—C9—H9A114.4
C1—C2—Cl1119.25 (14)C15—C10—C11117.39 (16)
C3—C2—Cl1120.68 (14)C15—C10—C9117.66 (15)
C4—C3—C2119.71 (16)C11—C10—C9124.96 (15)
C4—C3—Cl2119.09 (14)O2—C11—C12121.68 (15)
C2—C3—Cl2121.19 (14)O2—C11—C10118.26 (14)
C5—C4—C3120.17 (16)C12—C11—C10120.06 (15)
C5—C4—H4A119.9C13—C12—C11120.70 (17)
C3—C4—H4A119.9C13—C12—H12A119.7
C4—C5—C6120.58 (16)C11—C12—H12A119.7
C4—C5—H5A119.7C12—C13—C14120.29 (18)
C6—C5—H5A119.7C12—C13—H13A119.9
C1—C6—C5118.56 (15)C14—C13—H13A119.9
C1—C6—C7118.09 (14)C15—C14—C13119.36 (18)
C5—C6—C7123.35 (14)C15—C14—H14A120.3
O1—C7—C8120.65 (15)C13—C14—H14A120.3
O1—C7—C6119.13 (14)C14—C15—C10122.21 (18)
C8—C7—C6120.22 (14)C14—C15—H15A118.9
C9—C8—C7119.71 (15)C10—C15—H15A118.9
C6—C1—C2—C30.6 (3)O1—C7—C8—C93.9 (3)
C6—C1—C2—Cl1178.20 (14)C6—C7—C8—C9175.47 (17)
C1—C2—C3—C40.8 (3)C7—C8—C9—C10177.56 (18)
Cl1—C2—C3—C4177.92 (15)C8—C9—C10—C15178.7 (2)
C1—C2—C3—Cl2178.34 (14)C8—C9—C10—C110.9 (3)
Cl1—C2—C3—Cl22.9 (2)C15—C10—C11—O2179.76 (17)
C2—C3—C4—C50.1 (3)C9—C10—C11—O20.6 (3)
Cl2—C3—C4—C5179.07 (15)C15—C10—C11—C120.2 (3)
C3—C4—C5—C60.9 (3)C9—C10—C11—C12179.39 (18)
C2—C1—C6—C50.4 (3)O2—C11—C12—C13179.89 (18)
C2—C1—C6—C7179.74 (17)C10—C11—C12—C130.1 (3)
C4—C5—C6—C11.1 (3)C11—C12—C13—C140.2 (3)
C4—C5—C6—C7179.04 (17)C12—C13—C14—C150.1 (4)
C1—C6—C7—O15.7 (3)C13—C14—C15—C100.5 (4)
C5—C6—C7—O1174.48 (18)C11—C10—C15—C140.5 (3)
C1—C6—C7—C8174.96 (16)C9—C10—C15—C14179.1 (2)
C5—C6—C7—C84.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.84 (2)1.88 (2)2.7168 (17)176 (2)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H10Cl2O2
Mr293.13
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.2551 (6), 7.8351 (7), 12.8049 (11)
α, β, γ (°)92.367 (7), 102.946 (8), 109.011 (8)
V3)665.51 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.34 × 0.15 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.854, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
5430, 3174, 2417
Rint0.018
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.01
No. of reflections3174
No. of parameters175
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.842 (16)1.876 (16)2.7168 (17)176 (2)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

PSN thanks Mangalore University for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364–1370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCheng, J. H., Hung, C. F., Yang, S. C., Wang, J., Wond, S. J. & Lin, C. N. (2008). Bioorg. Med. Chem. 16, 7270–7276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Sarojini, B. K. & Musthafa Khaleel, V. (2011). Acta Cryst. E67, o756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSamshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharma Chem., 3, 232–240.  CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds