metal-organic compounds
Diaquabis[5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazol-1-ido-κN1]zinc
aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: hxxychj@mail.tjnu.edu.cn
The title mononuclear complex, [Zn(C11H7N6)2(H2O)2], is composed of one ZnII ion, two deprotonated ppt ligands [Hppt = 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole] and two coordinating water molecules. The consists of one half-molecule that is completed by application of a centre of symmetry. The ZnII atom is six-coordinated in an octahedral environment, surrounded by two O atoms in the axial positions and four N atoms in the equatorial plane. Adjacent mononuclear units are further linked via O—H⋯N hydrogen-bonding interactions, forming a two-dimensional network along (100).
Related literature
For the use of multidentate ligands containing N-donor heterocyclic groups in the preparation of metal complexes, see: Du et al. (2006); Li et al. (2010, 2011); Wang et al. (2012). For crystal structures based on the 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole ligand, see: Liu et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536812002061/vm2152sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812002061/vm2152Isup2.hkl
A CH3OH solution (3 ml) of Hppt (11.2 mg, 0.05 mmol) was carefully layered onto an aqueous solution of Zn(OAc)2.2H2O (21.9 mg, 0.1 mmol) in a straight glass tube. After evaporating the solvents slowly for ca 1 week, colorless block single crystals suitable for X-ray analysis were produced. Analysis, calculated for C22H18ZnN12O2: C, 48.23; H, 3.31; N, 30.68%; found: C, 49.05; H, 3.38; N, 30.59%.
All H atoms were initially located in a difference Fourier map, which were then constrained to an ideal geometry, and refined as riding atoms: C—H = 0.93 Å (CHaromatic) and O—H = 0.85 Å (OH), with Uiso(H) = 1.2Ueq (C) and Uiso(H) = 1.5Ueq (O).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C11H7N6)2(H2O)2] | F(000) = 560 |
Mr = 547.85 | Dx = 1.605 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2124 reflections |
a = 10.568 (10) Å | θ = 2.1–27.2° |
b = 12.574 (11) Å | µ = 1.13 mm−1 |
c = 9.373 (8) Å | T = 296 K |
β = 114.483 (14)° | Block, colourless |
V = 1133.5 (17) Å3 | 0.28 × 0.22 × 0.20 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 1995 independent reflections |
Radiation source: fine-focus sealed tube | 1476 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
phi and ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 1996) | h = −9→12 |
Tmin = 0.742, Tmax = 0.805 | k = −12→14 |
5516 measured reflections | l = −11→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0319P)2 + 1.4706P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
1995 reflections | Δρmax = 0.78 e Å−3 |
170 parameters | Δρmin = −1.16 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0049 (8) |
[Zn(C11H7N6)2(H2O)2] | V = 1133.5 (17) Å3 |
Mr = 547.85 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.568 (10) Å | µ = 1.13 mm−1 |
b = 12.574 (11) Å | T = 296 K |
c = 9.373 (8) Å | 0.28 × 0.22 × 0.20 mm |
β = 114.483 (14)° |
Bruker SMART CCD area-detector diffractometer | 1995 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1996) | 1476 reflections with I > 2σ(I) |
Tmin = 0.742, Tmax = 0.805 | Rint = 0.032 |
5516 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.78 e Å−3 |
1995 reflections | Δρmin = −1.16 e Å−3 |
170 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 1.0000 | 0.0000 | 1.0000 | 0.0345 (2) | |
O1 | 0.8507 (3) | 0.03619 (18) | 1.1088 (3) | 0.0401 (7) | |
H1A | 0.8598 | −0.0073 | 1.1819 | 0.060* | |
H1B | 0.8382 | 0.1011 | 1.1252 | 0.060* | |
N1 | 1.0865 (3) | 0.1612 (2) | 1.0734 (3) | 0.0289 (7) | |
N2 | 1.1330 (4) | 0.3772 (2) | 1.1491 (3) | 0.0373 (8) | |
N3 | 0.8842 (3) | 0.0902 (2) | 0.8093 (3) | 0.0315 (7) | |
N4 | 0.7855 (3) | 0.0703 (2) | 0.6615 (3) | 0.0339 (8) | |
N5 | 0.8335 (3) | 0.2478 (2) | 0.6850 (3) | 0.0279 (7) | |
N6 | 0.4516 (4) | 0.1950 (3) | 0.1161 (4) | 0.0556 (10) | |
C1 | 1.1805 (4) | 0.1930 (3) | 1.2132 (4) | 0.0335 (9) | |
H1 | 1.2312 | 0.1424 | 1.2872 | 0.040* | |
C2 | 1.2040 (4) | 0.3003 (3) | 1.2501 (4) | 0.0370 (9) | |
H2 | 1.2712 | 0.3196 | 1.3481 | 0.044* | |
C3 | 1.0395 (4) | 0.3452 (3) | 1.0079 (4) | 0.0346 (10) | |
H3 | 0.9898 | 0.3963 | 0.9342 | 0.042* | |
C4 | 1.0145 (4) | 0.2375 (3) | 0.9682 (3) | 0.0270 (8) | |
C5 | 0.9116 (4) | 0.1956 (2) | 0.8199 (3) | 0.0269 (8) | |
C6 | 0.7575 (4) | 0.1661 (2) | 0.5912 (4) | 0.0286 (8) | |
C7 | 0.6541 (4) | 0.1783 (3) | 0.4281 (4) | 0.0325 (9) | |
C8 | 0.6080 (4) | 0.2768 (3) | 0.3576 (4) | 0.0385 (10) | |
H8 | 0.6421 | 0.3394 | 0.4131 | 0.046* | |
C9 | 0.5105 (5) | 0.2796 (3) | 0.2035 (4) | 0.0462 (11) | |
H9 | 0.4840 | 0.3461 | 0.1573 | 0.055* | |
C10 | 0.4974 (6) | 0.1014 (4) | 0.1848 (5) | 0.0703 (16) | |
H10 | 0.4603 | 0.0403 | 0.1264 | 0.084* | |
C11 | 0.5966 (5) | 0.0888 (3) | 0.3376 (4) | 0.0611 (14) | |
H11 | 0.6241 | 0.0212 | 0.3788 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0508 (4) | 0.0163 (3) | 0.0241 (3) | 0.0012 (3) | 0.0031 (3) | 0.0024 (2) |
O1 | 0.064 (2) | 0.0205 (12) | 0.0351 (13) | 0.0068 (12) | 0.0202 (13) | 0.0035 (10) |
N1 | 0.037 (2) | 0.0235 (15) | 0.0227 (14) | 0.0021 (13) | 0.0087 (13) | −0.0003 (11) |
N2 | 0.048 (2) | 0.0283 (16) | 0.0275 (15) | −0.0072 (14) | 0.0081 (14) | −0.0059 (12) |
N3 | 0.044 (2) | 0.0180 (15) | 0.0244 (14) | −0.0005 (13) | 0.0063 (13) | 0.0009 (11) |
N4 | 0.046 (2) | 0.0230 (15) | 0.0229 (14) | −0.0020 (14) | 0.0039 (13) | 0.0004 (11) |
N5 | 0.0378 (19) | 0.0204 (14) | 0.0219 (13) | 0.0003 (13) | 0.0089 (13) | 0.0017 (11) |
N6 | 0.058 (3) | 0.067 (3) | 0.0285 (17) | −0.003 (2) | 0.0046 (16) | 0.0041 (17) |
C1 | 0.037 (2) | 0.033 (2) | 0.0236 (17) | 0.0025 (17) | 0.0055 (16) | 0.0005 (14) |
C2 | 0.044 (3) | 0.036 (2) | 0.0243 (16) | −0.0060 (18) | 0.0069 (16) | −0.0065 (15) |
C3 | 0.050 (3) | 0.0229 (18) | 0.0250 (16) | −0.0016 (16) | 0.0094 (18) | 0.0020 (14) |
C4 | 0.039 (2) | 0.0207 (17) | 0.0214 (16) | 0.0010 (15) | 0.0123 (15) | 0.0009 (12) |
C5 | 0.039 (2) | 0.0180 (16) | 0.0228 (16) | 0.0014 (15) | 0.0116 (15) | 0.0009 (13) |
C6 | 0.037 (2) | 0.0223 (17) | 0.0244 (16) | −0.0002 (15) | 0.0103 (15) | 0.0013 (13) |
C7 | 0.042 (2) | 0.0292 (19) | 0.0235 (16) | −0.0015 (17) | 0.0115 (16) | 0.0006 (14) |
C8 | 0.047 (3) | 0.033 (2) | 0.0306 (18) | 0.0029 (18) | 0.0116 (18) | 0.0024 (15) |
C9 | 0.047 (3) | 0.052 (3) | 0.034 (2) | 0.009 (2) | 0.0109 (19) | 0.0141 (18) |
C10 | 0.090 (4) | 0.054 (3) | 0.036 (2) | −0.018 (3) | −0.005 (2) | −0.008 (2) |
C11 | 0.088 (4) | 0.034 (2) | 0.037 (2) | −0.009 (2) | 0.001 (2) | 0.0009 (18) |
Zn1—N3 | 2.040 (3) | N6—C9 | 1.329 (5) |
Zn1—N3i | 2.040 (3) | N6—C10 | 1.332 (6) |
Zn1—N1i | 2.212 (3) | C1—C2 | 1.390 (5) |
Zn1—N1 | 2.212 (3) | C1—H1 | 0.9300 |
Zn1—O1 | 2.252 (3) | C2—H2 | 0.9300 |
Zn1—O1i | 2.252 (3) | C3—C4 | 1.401 (5) |
O1—H1A | 0.8501 | C3—H3 | 0.9300 |
O1—H1B | 0.8502 | C4—C5 | 1.463 (5) |
N1—C1 | 1.336 (4) | C6—C7 | 1.474 (5) |
N1—C4 | 1.361 (4) | C7—C11 | 1.388 (5) |
N2—C2 | 1.343 (5) | C7—C8 | 1.393 (5) |
N2—C3 | 1.343 (4) | C8—C9 | 1.385 (5) |
N3—C5 | 1.352 (4) | C8—H8 | 0.9300 |
N3—N4 | 1.368 (4) | C9—H9 | 0.9300 |
N4—C6 | 1.346 (4) | C10—C11 | 1.390 (6) |
N5—C5 | 1.359 (4) | C10—H10 | 0.9300 |
N5—C6 | 1.375 (4) | C11—H11 | 0.9300 |
N3—Zn1—N3i | 180.00 (12) | N2—C2—C1 | 122.2 (3) |
N3—Zn1—N1i | 102.48 (11) | N2—C2—H2 | 118.9 |
N3i—Zn1—N1i | 77.52 (11) | C1—C2—H2 | 118.9 |
N3—Zn1—N1 | 77.52 (11) | N2—C3—C4 | 122.1 (3) |
N3i—Zn1—N1 | 102.48 (11) | N2—C3—H3 | 118.9 |
N1i—Zn1—N1 | 180.0 | C4—C3—H3 | 118.9 |
N3—Zn1—O1 | 90.35 (12) | N1—C4—C3 | 120.1 (3) |
N3i—Zn1—O1 | 89.65 (12) | N1—C4—C5 | 114.0 (3) |
N1i—Zn1—O1 | 92.83 (11) | C3—C4—C5 | 125.8 (3) |
N1—Zn1—O1 | 87.17 (11) | N3—C5—N5 | 112.2 (3) |
N3—Zn1—O1i | 89.65 (12) | N3—C5—C4 | 118.4 (3) |
N3i—Zn1—O1i | 90.35 (12) | N5—C5—C4 | 129.5 (3) |
N1i—Zn1—O1i | 87.17 (11) | N4—C6—N5 | 113.9 (3) |
N1—Zn1—O1i | 92.83 (11) | N4—C6—C7 | 121.3 (3) |
O1—Zn1—O1i | 180.0 | N5—C6—C7 | 124.8 (3) |
Zn1—O1—H1A | 111.6 | C11—C7—C8 | 116.9 (3) |
Zn1—O1—H1B | 117.7 | C11—C7—C6 | 119.9 (3) |
H1A—O1—H1B | 116.5 | C8—C7—C6 | 123.2 (3) |
C1—N1—C4 | 117.7 (3) | C9—C8—C7 | 118.7 (3) |
C1—N1—Zn1 | 128.5 (2) | C9—C8—H8 | 120.7 |
C4—N1—Zn1 | 112.7 (2) | C7—C8—H8 | 120.7 |
C2—N2—C3 | 116.6 (3) | N6—C9—C8 | 125.4 (4) |
C5—N3—N4 | 107.7 (3) | N6—C9—H9 | 117.3 |
C5—N3—Zn1 | 116.6 (2) | C8—C9—H9 | 117.3 |
N4—N3—Zn1 | 135.6 (2) | N6—C10—C11 | 124.5 (4) |
C6—N4—N3 | 104.6 (3) | N6—C10—H10 | 117.7 |
C5—N5—C6 | 101.6 (3) | C11—C10—H10 | 117.7 |
C9—N6—C10 | 115.2 (3) | C7—C11—C10 | 119.3 (4) |
N1—C1—C2 | 121.3 (3) | C7—C11—H11 | 120.3 |
N1—C1—H1 | 119.4 | C10—C11—H11 | 120.3 |
C2—C1—H1 | 119.4 | ||
N3—Zn1—N1—C1 | 173.8 (3) | N2—C3—C4—C5 | 177.7 (4) |
N3i—Zn1—N1—C1 | −6.2 (3) | N4—N3—C5—N5 | 0.8 (4) |
O1—Zn1—N1—C1 | 82.8 (3) | Zn1—N3—C5—N5 | 177.4 (2) |
O1i—Zn1—N1—C1 | −97.2 (3) | N4—N3—C5—C4 | 179.8 (3) |
N3—Zn1—N1—C4 | 6.1 (2) | Zn1—N3—C5—C4 | −3.6 (4) |
N3i—Zn1—N1—C4 | −173.9 (2) | C6—N5—C5—N3 | −0.5 (4) |
O1—Zn1—N1—C4 | −84.9 (2) | C6—N5—C5—C4 | −179.4 (4) |
O1i—Zn1—N1—C4 | 95.1 (2) | N1—C4—C5—N3 | 9.0 (5) |
N1i—Zn1—N3—C5 | 178.8 (3) | C3—C4—C5—N3 | −169.2 (4) |
N1—Zn1—N3—C5 | −1.2 (3) | N1—C4—C5—N5 | −172.2 (3) |
O1—Zn1—N3—C5 | 85.8 (3) | C3—C4—C5—N5 | 9.6 (6) |
O1i—Zn1—N3—C5 | −94.2 (3) | N3—N4—C6—N5 | 0.4 (4) |
N1i—Zn1—N3—N4 | −5.9 (4) | N3—N4—C6—C7 | −179.8 (3) |
N1—Zn1—N3—N4 | 174.1 (4) | C5—N5—C6—N4 | 0.0 (4) |
O1—Zn1—N3—N4 | −98.8 (4) | C5—N5—C6—C7 | −179.8 (3) |
O1i—Zn1—N3—N4 | 81.2 (4) | N4—C6—C7—C11 | −8.2 (6) |
C5—N3—N4—C6 | −0.7 (4) | N5—C6—C7—C11 | 171.6 (4) |
Zn1—N3—N4—C6 | −176.3 (3) | N4—C6—C7—C8 | 171.0 (4) |
C4—N1—C1—C2 | 0.1 (5) | N5—C6—C7—C8 | −9.2 (6) |
Zn1—N1—C1—C2 | −167.1 (3) | C11—C7—C8—C9 | −0.8 (6) |
C3—N2—C2—C1 | −1.5 (6) | C6—C7—C8—C9 | 180.0 (4) |
N1—C1—C2—N2 | 0.8 (6) | C10—N6—C9—C8 | −2.9 (7) |
C2—N2—C3—C4 | 1.3 (6) | C7—C8—C9—N6 | 2.6 (7) |
C1—N1—C4—C3 | −0.3 (5) | C9—N6—C10—C11 | 1.5 (8) |
Zn1—N1—C4—C3 | 168.9 (3) | C8—C7—C11—C10 | −0.4 (7) |
C1—N1—C4—C5 | −178.6 (3) | C6—C7—C11—C10 | 178.9 (5) |
Zn1—N1—C4—C5 | −9.5 (4) | N6—C10—C11—C7 | 0.0 (9) |
N2—C3—C4—N1 | −0.4 (6) |
Symmetry code: (i) −x+2, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···N5ii | 0.85 | 1.99 | 2.833 (4) | 173 |
O1—H1A···N2iii | 0.85 | 2.13 | 2.975 (4) | 175 |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+2, y−1/2, −z+5/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C11H7N6)2(H2O)2] |
Mr | 547.85 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 10.568 (10), 12.574 (11), 9.373 (8) |
β (°) | 114.483 (14) |
V (Å3) | 1133.5 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.13 |
Crystal size (mm) | 0.28 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1996) |
Tmin, Tmax | 0.742, 0.805 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5516, 1995, 1476 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.100, 1.13 |
No. of reflections | 1995 |
No. of parameters | 170 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.78, −1.16 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···N5i | 0.85 | 1.99 | 2.833 (4) | 172.7 |
O1—H1A···N2ii | 0.85 | 2.13 | 2.975 (4) | 175.1 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+5/2. |
Acknowledgements
This work was supported financially by Tianjin Normal University (No. 52XQ1104).
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Du, M., Zhang, Z.-H., Zhao, X.-J. & Xu, Q. (2006). Inorg. Chem. 45, 5785–5792. Web of Science CSD CrossRef PubMed CAS Google Scholar
Li, C.-P., Wu, J.-M. & Du, M. (2011). Inorg. Chem. 50, 9284–9289. Web of Science CSD CrossRef CAS PubMed Google Scholar
Li, C.-P., Zhao, X.-H., Chen, X.-D., Yu, Q. & Du, M. (2010). Cryst. Growth Des. 10, 5034–5042. Web of Science CSD CrossRef CAS Google Scholar
Liu, D., Li, M. & Li, D. (2009). Chem. Commun. pp. 6943–6945. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, S.-T., Che, G.-B., Liu, C.-B., Wang, X. & Liu, L. (2012). Acta Cryst. E68, o130. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Multidentate ligands containing N-donor heterocyclic groups, such as the pyridyl, pyrazinyl, imidazolyl, oxadiazolyl, and triazolyl (see Du et al., 2006; Li et al., 2010; Li et al., 2011;Wang et al., 2012), have been widely used to prepare diverse metallo supramolecular complexes. In this context, 5-(pyrazin-2-yl)-3-(pyridin-4-yl)-1H-1,2,4-triazole (Hppt), an asymmetric ligand with multiple binding sites, has attracted little attention thus far (see Liu et al., 2009). Herein, we report on the title complex [Zn(ppt)2(H2O)2] crystallizing in the monoclinic space group P21/c, which shows a mononuclear coordination motif and H-bonding supramolecular layers.
The molecular structure of the title complex is centrosymmetric. As illustrated in Fig. 1, the asymmetric unit of this mononuclear complex is provided by a half-occupied ZnII center as well as one deprotonated ppt and one water ligands. The ZnII ion is six-coordinated to four nitrogen atoms from two ppt ligands with the Zn—N distances of 2.040 (3) Å and 2.212 (3) Å, as well as two axial water molecules with the Zn—O distance of 2.252 (3) Å. The deprotonated ppt ligand adopts the chelating coordination mode by using the pyrazinyl and triazolyl groups with the N1—Zn1—N3 angle of 77.52 (11)°.
As shown in Fig. 2, the adjacent mononuclear molecules are further linked to form a two-dimensional network via O1—H1A···N2ii [symmetry operation (ii) = -x+2, y-1/2, -z+5/2] hydrogen bonding between the water ligands and the uncoordinated pyrazinyl nitrogen atoms, as well as O1—H1B···N5i [symmetry operation (i) = x, -y+1/2, z+1/2] between the water ligands and 4-position nitrogen atoms of triazole (Table 1). Furthermore, intralayered π···π stacking interactions are also observed between the triazole (N3, N4, N5, C5, C6) and pyrazine (N1, N2, C1—C4) rings with the center-to-center distance of 3.558 (4) Å and dihedral angle between both best planes of 9.5 (2) °, as well as between the triazole ring (N3, N4, N5, C5, C6) and pyridyl groups (N6, C7—C11) with the center-to-center distance of 3.807 (4) Å and dihedral angle of 8.5 (2) °.