metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetato-κ2O,O′)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)manganese(II) dihydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 23 December 2011; accepted 26 December 2011; online 7 January 2012)

The MnII ion in the title compound, [Mn(CH3CO2)2(C15H11N3)]·2H2O, is seven-coordinated in a considerably distorted penta­gonal–bipyramidal geometry by three N atoms of the tridentate 2,2′:6′,2′′-terpyridine ligand and four O atoms from two acetate anions which chelate the Mn atom via two O atoms. The lateral pyridine rings are slightly inclined to the central pyridine ring, making dihedral angles of 13.6 (2) and 5.7 (2)°. The complex and solvent water mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the crystal structure of 2,2′:6′,2"-terpyridine (terpy), see: Bessel et al. (1992[Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223-3228.]); Bowes et al. (2005[Bowes, K. F., Clark, I. P., Cole, J. M., Gourlay, M., Griffin, A. M. E., Mahon, M. F., Ooi, L., Parker, A. W., Raithby, P. R., Sparkes, H. A. & Towrie, M. (2005). CrystEngComm, 7, 269-275.]). For related Mn(II)–terpy complexes, see: Baffert et al. (2004[Baffert, C., Romero, I., Pécaut, J., Llobet, A., Deronzier, A. & Collomb, M.-N. (2004). Inorg. Chim. Acta, 357, 3430-3436.]); Rich et al. (2010[Rich, J., Castillo, C. E., Romero, I., Rodríguez, M., Duboc, C. & Collomb, M.-N. (2010). Eur. J. Inorg. Chem. pp. 3658-3665.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2H3O2)2(C15H11N3)]·2H2O

  • Mr = 442.33

  • Monoclinic, P 21 /c

  • a = 8.4367 (10) Å

  • b = 22.921 (2) Å

  • c = 11.4952 (11) Å

  • β = 116.532 (7)°

  • V = 1988.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 200 K

  • 0.38 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 14786 measured reflections

  • 4936 independent reflections

  • 2448 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.146

  • S = 0.93

  • 4936 reflections

  • 276 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.199 (2)
Mn1—O2 2.419 (3)
Mn1—O3 2.212 (2)
Mn1—O4 2.365 (3)
Mn1—N1 2.265 (3)
Mn1—N2 2.324 (3)
Mn1—N3 2.337 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6i 0.83 (1) 2.02 (2) 2.840 (4) 168 (5)
O5—H5B⋯O1ii 0.84 (1) 1.99 (2) 2.815 (4) 168 (5)
O6—H6A⋯O3 0.84 (1) 2.00 (1) 2.841 (4) 174 (5)
O6—H6B⋯O2ii 0.85 (1) 2.05 (2) 2.879 (4) 168 (5)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The X-ray crystal structures of 2,2':6',2"-terpyridine (terpy) (Bessel et al., 1992; Bowes et al., 2005) and mononuclear Mn(II)-terpy complexes, such as [Mn(NO3)2(terpy)(H2O)] (Baffert et al., 2004) and [Mn(C2F3O2)2(terpy)(H2O)] (Rich et al., 2010), have been investigated previously.

The title compound consists of the neutral MnII complex [Mn(C2H3O2)2(terpy)] and two solvent water molecules. In the complex, the MnII ion is seven-coordinated in a considerably distorted pentagonal-bipyramidal geometry by three N atoms of the tridentate terpy ligand and four O atoms from two anionic acetato ligands (Fig. 1). The acetate anions chelate the Mn atom via two O atoms. The Mn—O and Mn—N bond lengths are somewhat different, respectively (Table 1). The Mn1—N1 (central pyridyl) bond is slightly longer than the Mn1—N2/3 (lateral pyridyl) bonds, and the Mn1—O2/4 (equatorial) bonds are somewhat longer than the Mn1—O1/3(axial) bonds. The O—Mn—O chelating angles [O1—Mn1—O2 = 56.36 (9)° and O3—Mn1—O4 = 57.04 (9)°] are considerably smaller than the N—Mn—N chelating angles [N1—Mn1—N2 = 70.52 (9)° and N1—Mn1—N3 = 69.98 (9)°] and the apical O1—Mn1—O3 angle is fairly bent with a bond angle of 158.48 (9)°. The carboxylate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths [C—O: 1.234 (4)–1.282 (4) Å]. In the crystal, the two lateral pyridyl rings are slightly inclined to the central pyridyl ring, making dihedral angles of 13.6 (2)° and 5.7 (2)°. The dihedral angle between the lateral pyridyl rings is 19.3 (1)°. The complex and solvent water molecules are linked by intermolecular O—H···O hydrogen bonds into a three-dimensional network (Fig. 2 and Table 2). The complex molecules stack in columns along the a axis and display numerous intermolecular π-π interactions between the pyridyl rings, with a shortest centroid-centroid distance of 3.773 (2) Å.

Related literature top

For the crystal structure of 2,2':6',2"-terpyridine (terpy), see: Bessel et al. (1992); Bowes et al. (2005). For related Mn(II)–terpy complexes, see: Baffert et al. (2004); Rich et al. (2010).

Experimental top

To a solution of Mn(CH3CO2)2.4H2O (0.1239 g, 0.506 mmol) in EtOH (30 ml) was added 2,2':6',2"-terpyridine (0.1184 g, 0.508 mmol) and stirred for 7 h at room temperature. After evaporation of the solvent, the residue was washed with acetone/ether and dried under vacuum, to give a yellow powder (0.1890 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an EtOH solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The H atoms of the water molecules were located from Fourier difference maps and allowed to refine with the restraint instruction DFIX (DFIX 0.84 0.01 O5 H5a O5 H5b O6 H6a O6 H6b) and Uiso(H) = 1.5Ueq(O). The highest peak (0.69 e Å-3) and the deepest hole (-0.52 e Å-3) in the difference Fourier map are located 1.04 Å and 0.85 Å from the atoms O1 and Mn1, respectively.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level; H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Bis(acetato-κ2O,O')(2,2':6',2''- terpyridine-κ3N,N',N'')manganese(II) dihydrate top
Crystal data top
[Mn(C2H3O2)2(C15H11N3)]·2H2OF(000) = 916
Mr = 442.33Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2512 reflections
a = 8.4367 (10) Åθ = 2.7–23.8°
b = 22.921 (2) ŵ = 0.71 mm1
c = 11.4952 (11) ÅT = 200 K
β = 116.532 (7)°Rod, yellow
V = 1988.8 (3) Å30.38 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4936 independent reflections
Radiation source: fine-focus sealed tube2448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.770, Tmax = 1.000k = 3024
14786 measured reflectionsl = 159
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0601P)2]
where P = (Fo2 + 2Fc2)/3
4936 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.69 e Å3
4 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Mn(C2H3O2)2(C15H11N3)]·2H2OV = 1988.8 (3) Å3
Mr = 442.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4367 (10) ŵ = 0.71 mm1
b = 22.921 (2) ÅT = 200 K
c = 11.4952 (11) Å0.38 × 0.21 × 0.20 mm
β = 116.532 (7)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4936 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2448 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.084
14786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0554 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.69 e Å3
4936 reflectionsΔρmin = 0.52 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.26540 (7)0.13751 (2)0.54271 (5)0.03290 (18)
O10.1922 (3)0.14625 (10)0.7030 (2)0.0428 (6)
O20.1033 (4)0.21981 (11)0.5673 (3)0.0560 (8)
O30.3431 (3)0.16451 (10)0.3906 (2)0.0405 (6)
O40.4740 (4)0.21223 (11)0.5744 (3)0.0582 (8)
N10.2398 (3)0.04015 (11)0.5054 (3)0.0312 (7)
N20.5176 (4)0.09085 (12)0.6946 (3)0.0375 (7)
N30.0136 (3)0.11578 (12)0.3744 (3)0.0334 (7)
C10.3713 (4)0.00393 (14)0.5827 (3)0.0345 (8)
C20.3661 (5)0.05520 (15)0.5545 (4)0.0409 (9)
H20.45900.08030.60940.049*
C30.2266 (5)0.07666 (15)0.4475 (4)0.0436 (10)
H30.22250.11700.42750.052*
C40.0912 (5)0.04049 (14)0.3678 (4)0.0411 (9)
H40.00630.05530.29280.049*
C50.1010 (4)0.01863 (13)0.4002 (3)0.0314 (8)
C60.5152 (4)0.03215 (15)0.6959 (3)0.0373 (8)
C70.6426 (5)0.00040 (18)0.7989 (4)0.0507 (10)
H70.63860.04100.79920.061*
C80.7729 (5)0.0299 (2)0.8991 (4)0.0596 (12)
H80.85920.00890.97050.071*
C90.7801 (5)0.0900 (2)0.8973 (4)0.0570 (12)
H90.87170.11090.96580.068*
C100.6486 (5)0.11902 (17)0.7917 (4)0.0448 (9)
H100.65230.16040.78870.054*
C110.0399 (4)0.06118 (14)0.3250 (3)0.0349 (8)
C120.1923 (5)0.04609 (16)0.2149 (3)0.0416 (9)
H120.20710.00750.18150.050*
C130.3217 (5)0.08722 (18)0.1541 (4)0.0466 (10)
H130.42620.07760.07790.056*
C140.2971 (5)0.14280 (17)0.2059 (4)0.0449 (10)
H140.38550.17190.16710.054*
C150.1423 (5)0.15510 (15)0.3145 (3)0.0389 (9)
H150.12560.19350.34900.047*
C160.1112 (5)0.19443 (16)0.6667 (4)0.0429 (9)
C170.0253 (5)0.22051 (16)0.7429 (4)0.0558 (11)
H17A0.08400.24040.68370.084*
H17B0.10610.24870.80530.084*
H17C0.00270.18960.78970.084*
C180.4454 (5)0.20531 (15)0.4602 (4)0.0374 (9)
C190.5335 (5)0.24438 (16)0.4018 (4)0.0528 (11)
H19A0.49090.23470.30960.079*
H19B0.66210.23880.44750.079*
H19C0.50490.28510.41000.079*
O50.2521 (4)0.41065 (12)0.4361 (3)0.0583 (8)
H5A0.236 (6)0.3863 (17)0.484 (4)0.087*
H5B0.246 (6)0.3902 (18)0.374 (3)0.087*
O60.1848 (5)0.15792 (12)0.1149 (3)0.0694 (9)
H6A0.236 (6)0.158 (2)0.1967 (10)0.104*
H6B0.152 (7)0.1923 (9)0.089 (5)0.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0357 (3)0.0292 (3)0.0328 (3)0.0014 (2)0.0145 (2)0.0005 (2)
O10.0457 (15)0.0394 (15)0.0481 (16)0.0013 (12)0.0253 (13)0.0050 (12)
O20.076 (2)0.0411 (16)0.0497 (18)0.0006 (14)0.0275 (16)0.0045 (14)
O30.0393 (14)0.0383 (14)0.0392 (15)0.0004 (11)0.0132 (12)0.0048 (12)
O40.082 (2)0.0508 (17)0.0477 (18)0.0165 (14)0.0338 (16)0.0040 (14)
N10.0332 (16)0.0290 (15)0.0354 (17)0.0015 (12)0.0188 (14)0.0007 (12)
N20.0350 (17)0.0416 (18)0.0352 (18)0.0021 (14)0.0149 (14)0.0031 (14)
N30.0333 (16)0.0337 (16)0.0321 (16)0.0034 (13)0.0136 (14)0.0024 (13)
C10.034 (2)0.0327 (19)0.043 (2)0.0016 (15)0.0230 (18)0.0042 (16)
C20.044 (2)0.031 (2)0.055 (3)0.0070 (17)0.030 (2)0.0075 (17)
C30.055 (2)0.0276 (19)0.064 (3)0.0036 (18)0.041 (2)0.0045 (18)
C40.047 (2)0.035 (2)0.050 (2)0.0080 (17)0.030 (2)0.0063 (18)
C50.0319 (19)0.0326 (19)0.0338 (19)0.0038 (15)0.0182 (16)0.0028 (15)
C60.034 (2)0.043 (2)0.041 (2)0.0073 (16)0.0216 (17)0.0104 (17)
C70.042 (2)0.057 (3)0.051 (3)0.0115 (19)0.019 (2)0.017 (2)
C80.037 (2)0.089 (4)0.050 (3)0.016 (2)0.017 (2)0.019 (2)
C90.034 (2)0.089 (4)0.039 (2)0.000 (2)0.009 (2)0.005 (2)
C100.041 (2)0.053 (2)0.041 (2)0.0021 (18)0.019 (2)0.0100 (19)
C110.035 (2)0.037 (2)0.037 (2)0.0056 (16)0.0196 (17)0.0030 (16)
C120.042 (2)0.048 (2)0.034 (2)0.0098 (18)0.0168 (18)0.0036 (17)
C130.034 (2)0.067 (3)0.032 (2)0.0053 (19)0.0092 (18)0.0051 (19)
C140.036 (2)0.055 (3)0.040 (2)0.0064 (18)0.0139 (18)0.0117 (19)
C150.038 (2)0.038 (2)0.040 (2)0.0003 (16)0.0159 (18)0.0062 (16)
C160.040 (2)0.037 (2)0.044 (2)0.0121 (17)0.0116 (19)0.0141 (19)
C170.054 (3)0.053 (3)0.066 (3)0.003 (2)0.032 (2)0.016 (2)
C180.036 (2)0.032 (2)0.040 (2)0.0096 (16)0.0138 (18)0.0081 (17)
C190.054 (3)0.049 (2)0.056 (3)0.0101 (19)0.025 (2)0.007 (2)
O50.070 (2)0.0457 (18)0.0453 (19)0.0089 (14)0.0137 (16)0.0009 (13)
O60.107 (3)0.0447 (17)0.0449 (18)0.0052 (17)0.024 (2)0.0060 (15)
Geometric parameters (Å, º) top
Mn1—O12.199 (2)C7—C81.364 (6)
Mn1—O22.419 (3)C7—H70.9500
Mn1—O32.212 (2)C8—C91.378 (6)
Mn1—O42.365 (3)C8—H80.9500
Mn1—N12.265 (3)C9—C101.395 (5)
Mn1—N22.324 (3)C9—H90.9500
Mn1—N32.337 (3)C10—H100.9500
O1—C161.267 (4)C11—C121.386 (5)
O2—C161.257 (4)C12—C131.374 (5)
O3—C181.282 (4)C12—H120.9500
O4—C181.234 (4)C13—C141.382 (5)
N1—C51.346 (4)C13—H130.9500
N1—C11.352 (4)C14—C151.374 (5)
N2—C101.335 (4)C14—H140.9500
N2—C61.346 (4)C15—H150.9500
N3—C151.341 (4)C16—C171.488 (5)
N3—C111.351 (4)C17—H17A0.9800
C1—C21.390 (4)C17—H17B0.9800
C1—C61.474 (5)C17—H17C0.9800
C2—C31.358 (5)C18—C191.500 (5)
C2—H20.9500C19—H19A0.9800
C3—C41.377 (5)C19—H19B0.9800
C3—H30.9500C19—H19C0.9800
C4—C51.398 (4)O5—H5A0.833 (10)
C4—H40.9500O5—H5B0.838 (10)
C5—C111.481 (4)O6—H6A0.842 (10)
C6—C71.396 (5)O6—H6B0.845 (10)
O1—Mn1—O3158.48 (9)C4—C5—C11123.1 (3)
O1—Mn1—N1102.11 (9)N2—C6—C7121.4 (3)
O3—Mn1—N199.37 (9)N2—C6—C1116.1 (3)
O1—Mn1—N285.31 (10)C7—C6—C1122.5 (3)
O3—Mn1—N2103.12 (9)C8—C7—C6118.8 (4)
N1—Mn1—N270.52 (9)C8—C7—H7120.6
O1—Mn1—N399.03 (9)C6—C7—H7120.6
O3—Mn1—N387.14 (9)C7—C8—C9120.5 (4)
N1—Mn1—N369.98 (9)C7—C8—H8119.8
N2—Mn1—N3140.29 (10)C9—C8—H8119.8
O1—Mn1—O4105.87 (9)C8—C9—C10117.8 (4)
O3—Mn1—O457.04 (9)C8—C9—H9121.1
N1—Mn1—O4138.10 (10)C10—C9—H9121.1
N2—Mn1—O481.30 (10)N2—C10—C9122.4 (4)
N3—Mn1—O4133.40 (10)N2—C10—H10118.8
O1—Mn1—O256.36 (9)C9—C10—H10118.8
O3—Mn1—O2104.88 (9)N3—C11—C12121.8 (3)
N1—Mn1—O2141.21 (10)N3—C11—C5115.2 (3)
N2—Mn1—O2130.30 (10)C12—C11—C5122.9 (3)
N3—Mn1—O281.37 (9)C13—C12—C11119.7 (3)
O4—Mn1—O280.69 (10)C13—C12—H12120.2
O1—Mn1—C18132.27 (10)C11—C12—H12120.2
O3—Mn1—C1829.11 (10)C12—C13—C14118.8 (3)
N1—Mn1—C18122.40 (10)C12—C13—H13120.6
N2—Mn1—C1893.45 (10)C14—C13—H13120.6
N3—Mn1—C18110.98 (11)C15—C14—C13118.6 (3)
O4—Mn1—C1827.99 (9)C15—C14—H14120.7
O2—Mn1—C1891.67 (10)C13—C14—H14120.7
C16—O1—Mn196.6 (2)N3—C15—C14123.5 (3)
C16—O2—Mn186.7 (2)N3—C15—H15118.2
C18—O3—Mn193.8 (2)C14—C15—H15118.2
C18—O4—Mn188.0 (2)O2—C16—O1120.3 (4)
C5—N1—C1119.6 (3)O2—C16—C17120.4 (4)
C5—N1—Mn1120.2 (2)O1—C16—C17119.2 (4)
C1—N1—Mn1120.0 (2)C16—C17—H17A109.5
C10—N2—C6119.0 (3)C16—C17—H17B109.5
C10—N2—Mn1122.9 (2)H17A—C17—H17B109.5
C6—N2—Mn1117.1 (2)C16—C17—H17C109.5
C15—N3—C11117.6 (3)H17A—C17—H17C109.5
C15—N3—Mn1124.6 (2)H17B—C17—H17C109.5
C11—N3—Mn1117.5 (2)O4—C18—O3121.0 (3)
N1—C1—C2120.9 (3)O4—C18—C19119.9 (3)
N1—C1—C6114.9 (3)O3—C18—C19119.1 (3)
C2—C1—C6124.2 (3)O4—C18—Mn164.0 (2)
C3—C2—C1119.3 (3)O3—C18—Mn157.12 (18)
C3—C2—H2120.4C19—C18—Mn1174.9 (3)
C1—C2—H2120.4C18—C19—H19A109.5
C2—C3—C4120.6 (3)C18—C19—H19B109.5
C2—C3—H3119.7H19A—C19—H19B109.5
C4—C3—H3119.7C18—C19—H19C109.5
C3—C4—C5118.3 (3)H19A—C19—H19C109.5
C3—C4—H4120.9H19B—C19—H19C109.5
C5—C4—H4120.9H5A—O5—H5B103 (5)
N1—C5—C4121.2 (3)H6A—O6—H6B109 (5)
N1—C5—C11115.6 (3)
O3—Mn1—O1—C1633.2 (4)O2—Mn1—N3—C11164.4 (2)
N1—Mn1—O1—C16143.5 (2)C18—Mn1—N3—C11107.1 (2)
N2—Mn1—O1—C16147.6 (2)C5—N1—C1—C20.6 (5)
N3—Mn1—O1—C1672.2 (2)Mn1—N1—C1—C2173.9 (2)
O4—Mn1—O1—C1668.0 (2)C5—N1—C1—C6179.3 (3)
O2—Mn1—O1—C161.07 (19)Mn1—N1—C1—C66.2 (4)
C18—Mn1—O1—C1657.2 (2)N1—C1—C2—C30.0 (5)
O1—Mn1—O2—C161.07 (19)C6—C1—C2—C3179.9 (3)
O3—Mn1—O2—C16169.4 (2)C1—C2—C3—C40.2 (5)
N1—Mn1—O2—C1663.7 (3)C2—C3—C4—C50.2 (5)
N2—Mn1—O2—C1647.2 (3)C1—N1—C5—C41.0 (5)
N3—Mn1—O2—C16105.9 (2)Mn1—N1—C5—C4173.5 (2)
O4—Mn1—O2—C16117.3 (2)C1—N1—C5—C11177.3 (3)
C18—Mn1—O2—C16143.1 (2)Mn1—N1—C5—C118.1 (4)
O1—Mn1—O3—C1838.2 (3)C3—C4—C5—N10.8 (5)
N1—Mn1—O3—C18145.07 (19)C3—C4—C5—C11177.4 (3)
N2—Mn1—O3—C1873.1 (2)C10—N2—C6—C72.5 (5)
N3—Mn1—O3—C18145.76 (19)Mn1—N2—C6—C7166.6 (3)
O4—Mn1—O3—C182.70 (18)C10—N2—C6—C1177.4 (3)
O2—Mn1—O3—C1865.5 (2)Mn1—N2—C6—C113.5 (4)
O1—Mn1—O4—C18162.7 (2)N1—C1—C6—N213.0 (4)
O3—Mn1—O4—C182.80 (19)C2—C1—C6—N2167.1 (3)
N1—Mn1—O4—C1867.2 (3)N1—C1—C6—C7167.1 (3)
N2—Mn1—O4—C18114.7 (2)C2—C1—C6—C712.7 (5)
N3—Mn1—O4—C1843.2 (3)N2—C6—C7—C80.8 (6)
O2—Mn1—O4—C18111.8 (2)C1—C6—C7—C8179.1 (4)
O1—Mn1—N1—C5105.3 (2)C6—C7—C8—C91.1 (6)
O3—Mn1—N1—C573.4 (2)C7—C8—C9—C101.2 (6)
N2—Mn1—N1—C5174.1 (3)C6—N2—C10—C92.3 (5)
N3—Mn1—N1—C510.0 (2)Mn1—N2—C10—C9166.0 (3)
O4—Mn1—N1—C5123.5 (2)C8—C9—C10—N20.5 (6)
O2—Mn1—N1—C554.9 (3)C15—N3—C11—C121.3 (5)
C18—Mn1—N1—C592.7 (3)Mn1—N3—C11—C12171.8 (3)
O1—Mn1—N1—C180.2 (2)C15—N3—C11—C5176.1 (3)
O3—Mn1—N1—C1101.1 (2)Mn1—N3—C11—C510.9 (4)
N2—Mn1—N1—C10.4 (2)N1—C5—C11—N32.1 (4)
N3—Mn1—N1—C1175.5 (3)C4—C5—C11—N3176.2 (3)
O4—Mn1—N1—C151.0 (3)N1—C5—C11—C12179.5 (3)
O2—Mn1—N1—C1130.5 (2)C4—C5—C11—C121.1 (5)
C18—Mn1—N1—C181.8 (3)N3—C11—C12—C130.7 (5)
O1—Mn1—N2—C1071.7 (3)C5—C11—C12—C13176.5 (3)
O3—Mn1—N2—C1088.3 (3)C11—C12—C13—C140.7 (5)
N1—Mn1—N2—C10176.3 (3)C12—C13—C14—C151.4 (5)
N3—Mn1—N2—C10170.2 (2)C11—N3—C15—C140.6 (5)
O4—Mn1—N2—C1035.2 (3)Mn1—N3—C15—C14171.9 (3)
O2—Mn1—N2—C1034.6 (3)C13—C14—C15—N30.8 (6)
C18—Mn1—N2—C1060.5 (3)Mn1—O2—C16—O11.8 (3)
O1—Mn1—N2—C696.9 (2)Mn1—O2—C16—C17178.0 (3)
O3—Mn1—N2—C6103.1 (2)Mn1—O1—C16—O22.0 (4)
N1—Mn1—N2—C67.7 (2)Mn1—O1—C16—C17177.8 (3)
N3—Mn1—N2—C61.5 (3)Mn1—O4—C18—O34.7 (3)
O4—Mn1—N2—C6156.2 (3)Mn1—O4—C18—C19176.3 (3)
O2—Mn1—N2—C6134.0 (2)Mn1—O3—C18—O45.1 (3)
C18—Mn1—N2—C6130.9 (2)Mn1—O3—C18—C19176.0 (3)
O1—Mn1—N3—C1576.8 (3)O1—Mn1—C18—O422.7 (3)
O3—Mn1—N3—C1582.5 (3)O3—Mn1—C18—O4175.2 (3)
N1—Mn1—N3—C15176.5 (3)N1—Mn1—C18—O4133.2 (2)
N2—Mn1—N3—C15170.3 (2)N2—Mn1—C18—O464.1 (2)
O4—Mn1—N3—C1545.3 (3)N3—Mn1—C18—O4147.8 (2)
O2—Mn1—N3—C1523.1 (3)O2—Mn1—C18—O466.4 (2)
C18—Mn1—N3—C1565.4 (3)O1—Mn1—C18—O3162.16 (17)
O1—Mn1—N3—C11110.7 (2)N1—Mn1—C18—O342.0 (2)
O3—Mn1—N3—C1190.1 (2)N2—Mn1—C18—O3111.04 (19)
N1—Mn1—N3—C1111.0 (2)N3—Mn1—C18—O337.0 (2)
N2—Mn1—N3—C1117.1 (3)O4—Mn1—C18—O3175.2 (3)
O4—Mn1—N3—C11127.2 (2)O2—Mn1—C18—O3118.41 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.83 (1)2.02 (2)2.840 (4)168 (5)
O5—H5B···O1ii0.84 (1)1.99 (2)2.815 (4)168 (5)
O6—H6A···O30.84 (1)2.00 (1)2.841 (4)174 (5)
O6—H6B···O2ii0.85 (1)2.05 (2)2.879 (4)168 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C2H3O2)2(C15H11N3)]·2H2O
Mr442.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)8.4367 (10), 22.921 (2), 11.4952 (11)
β (°) 116.532 (7)
V3)1988.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.38 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14786, 4936, 2448
Rint0.084
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.146, 0.93
No. of reflections4936
No. of parameters276
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.52

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mn1—O12.199 (2)Mn1—N12.265 (3)
Mn1—O22.419 (3)Mn1—N22.324 (3)
Mn1—O32.212 (2)Mn1—N32.337 (3)
Mn1—O42.365 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.833 (10)2.019 (15)2.840 (4)168 (5)
O5—H5B···O1ii0.838 (10)1.991 (15)2.815 (4)168 (5)
O6—H6A···O30.842 (10)2.003 (12)2.841 (4)174 (5)
O6—H6B···O2ii0.845 (10)2.048 (15)2.879 (4)168 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBaffert, C., Romero, I., Pécaut, J., Llobet, A., Deronzier, A. & Collomb, M.-N. (2004). Inorg. Chim. Acta, 357, 3430–3436.  Web of Science CrossRef CAS Google Scholar
First citationBessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228.  CSD CrossRef Web of Science Google Scholar
First citationBowes, K. F., Clark, I. P., Cole, J. M., Gourlay, M., Griffin, A. M. E., Mahon, M. F., Ooi, L., Parker, A. W., Raithby, P. R., Sparkes, H. A. & Towrie, M. (2005). CrystEngComm, 7, 269–275.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRich, J., Castillo, C. E., Romero, I., Rodríguez, M., Duboc, C. & Collomb, M.-N. (2010). Eur. J. Inorg. Chem. pp. 3658–3665.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds