metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ2-quinoline-3-carboxyl­ato-κ2N:O)(μ2-quinoline-3-carboxyl­ato-κ3N:O,O′)cadmium]

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: guangbocheujs@yahoo.com.cn

(Received 5 January 2012; accepted 10 January 2012; online 18 January 2012)

In the title compound, [Cd(C10H6NO2)2]n, the CdII atom is coordinated by three O atoms and two N atoms from four quinoline-3-carboxyl­ate (L) ligands, leading to a distorted trigonal–bipyramidal geometry. The L ligands link the CdII atoms into a plane parallel to (100), with one ligand being tridentate, coordinating via the N atom and chelating a second Cd atom, and the other being bidentate, bridging two Cd atoms via the N and one O atom.. This two-dimensional network extends into a double-layer network by ππ inter­actions, with centroid–centroid distances of 3.680 (2) and 3.752 (2) Å. Another type of ππ inter­action between pyridine rings [centroid–centroid distance = 3.527 (2) Å] leads to a three-dimensional supra­molecular architecture.

Related literature

For background to the applications of cadmium coordination polymers and nicotinic acids, see: Niu et al. (2006[Niu, S. Y., Chi, Y. X., Jin, J., Yang, G. D. & Ye, L. (2006). Struct. Chem. 17, 209-216.]); Song et al. (2006[Song, Y. S., Yan, B. & Chen, Z. X. (2006). J. Solid State Chem. 179, 4037-4046.]), Chen (2003)[Chen, H.-J. (2003). Acta Cryst. C59, m371-m372.]; Chi et al. (2007[Chi, Y. X., Niu, S. Y., Jin, J., Sun, L. P., Yang, G. D. & Ye, L. (2007). Z. Anorg. Allg. Chem. 633, 1274-1278.]); Lu et al. (2007[Lu, J. Y., Achten, M. A. & Zhang, A. W. (2007). Inorg. Chem. Commun. 10, 114-116.]). For a closely related structure, see: Hu et al. (2007[Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H6NO2)2]

  • Mr = 456.72

  • Monoclinic, C 2/c

  • a = 28.5458 (19) Å

  • b = 8.2274 (5) Å

  • c = 15.381 (1) Å

  • β = 112.708 (1)°

  • V = 3332.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 153 K

  • 0.13 × 0.11 × 0.10 mm

Data collection
  • Rigaku Saturn 724+ CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.845, Tmax = 0.910

  • 7361 measured reflections

  • 3014 independent reflections

  • 2659 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.051

  • S = 1.10

  • 3014 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1i 2.3410 (16)
Cd1—N2 2.3188 (17)
Cd1—O1 2.1625 (15)
Cd1—O3ii 2.3858 (15)
Cd1—O4ii 2.2770 (15)
Symmetry codes: (i) x, y-1, z; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

To date, much effort has been made on the construction of cadmium coordination polymers with a wide variety of topological structures which may possess promising perspectives toward molecular luminescent materials (Chi et al., 2007; Niu et al., 2006; Song et al., 2006; Lu et al., 2007). It is well known that nicotinic acid has been proved to be effective for constructing coordination polymers due to the versatile coordination fashion (Chen et al., 2003; Song et al., 2006). Compared with nicotinic acid, the structurally similar quinoline-3-carboxylic acid (HL) have been chosen to construct a new coordination polymer. Here, we report on the crystal structure of the title compound.

There is one cadmium (II) atom and two independent L- ligands in the asymmetric unit. The Cd (II) atom is five-coordinated by two N atoms [Cd1—N1ii=2.341 (2) Å, Cd1—N2=2.319 (2) Å] and three O atoms [Cd1—O1=2.163 (2) Å, Cd—O3i=2.386 (2) Å, Cd—O4i=2.277 (2) Å] from four L- ligands, showing a distorted trigonal bipyramidal coordination geometry (Fig. 1). The L- ligand containing the N1 atom, acts as bis-monodentate mode toward cadmium centers with pyridine nitrogen atoms linking the cadmium atom and the carboxylate group linking the cadmium atom in a monodentate fashion, leading to the formation of a 1D chain structure along the the b axis. The 1D chains are linked into a 2D layer network by bis-chelating L- ligand containing the N2 atom, There is in addition a 2D double-layer structure (black bond and green bond) which is connected by ππ interactions with the centroid to centroid distances of 3.680 (2) and 3.752 (2) Å, respectively (Fig. 2). The 2D double-layers are parallel to the (100) plane, and linked to each other by another type of ππ interaction between pyridine rings [centroid-to-centroid 3.527 (2) Å], resulting in a 3D supramolecular architecture.

There is a reported isostructural Zn analogue (Hu et al., 2007) which has a tetrahedral environment with L- in a bis-monodentate mode, while the title compound shows a distorted trigonal bipyramidal coordination geometry with L- in bis-monodentate and bis-chelating modes, respectively (Fig. 3). This comparison reveals the influence of different metal ion on the coordination mode of the ligand.

Related literature top

For background to the applications of cadmium coordination polymers and nicotinic acids, see: Niu et al. (2006); Song et al. (2006), Chen (2003); Chi et al. (2007); Lu et al. (2007). For a closely related structure, see: Hu et al. (2007).

Experimental top

Quinoline-3-carboxylic acid (HL) was purchased commercially and used without further purification. A mixture of CdCl2 (18.400 mg, 0.1 mmol), and HL (17.300 mg, 0.1 mmol) was dissolved in a 10 mL of water with a pH = 6. The resulting mixture was heated in a 15 mL autoclave with Teflon-liner at 438 K for three days. Then the autoclave was slowly cooled to room temperature, and colourless block-shaped crystals were obtained with a yield of 50 %.

Refinement top

All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were positioned geometrically and refined using a riding model with C—H distances of 0.93 Å and Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing displacement ellipsoids (drawn at a 30% probability level) and labeling. H atoms are drawn as a small spheres of arbitrary radius. [symmetry codes: (i) x, - y, z + 1/2; (ii) x, y - 1, z.]
[Figure 2] Fig. 2. 2D double-layer structure and π-π stacking interactions between different 2D layers. All hydrogen atoms were omitted for clarity.
[Figure 3] Fig. 3. The comparision of the metal coordination environment between a reported isostructural Zn analogue and the title compound.
Poly[(µ2-quinoline-3-carboxylato-κ2N:O)(µ2-quinoline- 3-carboxylato-κ3N:O,O')cadmium] top
Crystal data top
[Cd(C10H6NO2)2]F(000) = 1808
Mr = 456.72Dx = 1.821 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6971 reflections
a = 28.5458 (19) Åθ = 2.8–29.2°
b = 8.2274 (5) ŵ = 1.34 mm1
c = 15.381 (1) ÅT = 153 K
β = 112.708 (1)°Prism, colourless
V = 3332.3 (4) Å30.13 × 0.11 × 0.10 mm
Z = 8
Data collection top
Rigaku Saturn 724+ CCD area-detector
diffractometer
3014 independent reflections
Radiation source: fine-focus sealed tube2659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 28.5714 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 3434
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 99
Tmin = 0.845, Tmax = 0.910l = 1218
7361 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.9823P]
where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max = 0.002
244 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cd(C10H6NO2)2]V = 3332.3 (4) Å3
Mr = 456.72Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.5458 (19) ŵ = 1.34 mm1
b = 8.2274 (5) ÅT = 153 K
c = 15.381 (1) Å0.13 × 0.11 × 0.10 mm
β = 112.708 (1)°
Data collection top
Rigaku Saturn 724+ CCD area-detector
diffractometer
3014 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2659 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.910Rint = 0.015
7361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.10Δρmax = 0.33 e Å3
3014 reflectionsΔρmin = 0.25 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34654 (8)0.4503 (3)0.04346 (16)0.0215 (5)
C20.32133 (8)0.6060 (2)0.00212 (15)0.0175 (4)
C30.34221 (7)0.7571 (2)0.03538 (14)0.0179 (4)
H30.37190.75770.08950.021*
C40.27770 (8)0.8986 (2)0.08096 (14)0.0171 (4)
C50.25472 (8)0.7512 (2)0.12288 (15)0.0184 (4)
C60.27767 (8)0.6043 (2)0.08109 (15)0.0196 (5)
H60.26300.50570.10740.023*
C70.25462 (8)1.0467 (3)0.12039 (16)0.0229 (5)
H70.26971.14470.09390.028*
C80.20978 (9)1.0464 (3)0.19802 (16)0.0285 (5)
H80.19401.14440.22270.034*
C90.18757 (9)0.9000 (3)0.24036 (17)0.0305 (6)
H90.15770.90190.29410.037*
C100.20908 (8)0.7552 (3)0.20397 (16)0.0251 (5)
H100.19380.65870.23240.030*
C110.40746 (8)0.0031 (2)0.24972 (14)0.0197 (5)
C120.43039 (8)0.0798 (2)0.15411 (14)0.0176 (4)
C130.40592 (8)0.0688 (2)0.09095 (14)0.0186 (4)
H130.37510.01390.11060.022*
C140.47532 (8)0.1623 (3)0.12613 (15)0.0203 (5)
H140.49210.17280.16710.024*
C150.49631 (8)0.2315 (2)0.03555 (14)0.0191 (5)
C160.46983 (8)0.2114 (2)0.02540 (14)0.0175 (4)
C170.49105 (8)0.2735 (2)0.11748 (15)0.0223 (5)
H170.47410.25990.15790.027*
C180.53653 (9)0.3542 (3)0.14796 (16)0.0273 (5)
H180.55070.39350.20940.033*
C190.56197 (9)0.3778 (3)0.08655 (18)0.0305 (6)
H190.59250.43440.10740.037*
C200.54238 (8)0.3188 (3)0.00257 (17)0.0275 (5)
H200.55950.33610.04240.033*
N10.32245 (6)0.89871 (19)0.00119 (12)0.0168 (4)
N20.42383 (6)0.13141 (19)0.00532 (12)0.0174 (4)
O10.32218 (6)0.32240 (18)0.00681 (12)0.0311 (4)
O20.38802 (6)0.45193 (19)0.11082 (12)0.0291 (4)
O30.36675 (6)0.07521 (18)0.27266 (10)0.0245 (3)
O40.43035 (6)0.02228 (19)0.30471 (10)0.0268 (4)
Cd10.371129 (5)0.122196 (17)0.077597 (10)0.01700 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0258 (12)0.0175 (11)0.0264 (12)0.0042 (10)0.0158 (10)0.0032 (9)
C20.0195 (11)0.0155 (10)0.0209 (11)0.0021 (9)0.0117 (9)0.0024 (8)
C30.0165 (11)0.0186 (11)0.0186 (11)0.0012 (9)0.0068 (9)0.0008 (9)
C40.0174 (10)0.0187 (11)0.0170 (11)0.0003 (9)0.0086 (9)0.0014 (8)
C50.0182 (10)0.0185 (10)0.0200 (11)0.0000 (9)0.0091 (9)0.0000 (9)
C60.0230 (11)0.0142 (10)0.0232 (12)0.0025 (9)0.0108 (10)0.0027 (8)
C70.0253 (12)0.0172 (11)0.0256 (12)0.0001 (10)0.0092 (10)0.0016 (9)
C80.0295 (13)0.0254 (12)0.0281 (13)0.0087 (11)0.0084 (11)0.0100 (10)
C90.0237 (12)0.0371 (14)0.0228 (13)0.0031 (11)0.0003 (10)0.0048 (10)
C100.0222 (12)0.0255 (12)0.0233 (12)0.0031 (10)0.0040 (10)0.0016 (10)
C110.0226 (12)0.0175 (10)0.0163 (11)0.0082 (10)0.0044 (9)0.0018 (8)
C120.0197 (11)0.0166 (10)0.0143 (11)0.0043 (9)0.0042 (9)0.0002 (8)
C130.0194 (11)0.0176 (10)0.0178 (11)0.0007 (9)0.0060 (9)0.0002 (8)
C140.0208 (11)0.0224 (11)0.0188 (11)0.0031 (9)0.0090 (9)0.0018 (9)
C150.0172 (11)0.0183 (10)0.0195 (12)0.0028 (9)0.0046 (9)0.0004 (9)
C160.0201 (11)0.0128 (10)0.0182 (11)0.0026 (9)0.0057 (9)0.0012 (8)
C170.0266 (12)0.0218 (11)0.0176 (11)0.0006 (10)0.0076 (9)0.0023 (9)
C180.0303 (13)0.0255 (12)0.0196 (12)0.0020 (11)0.0024 (10)0.0051 (9)
C190.0218 (12)0.0324 (14)0.0328 (14)0.0109 (11)0.0058 (10)0.0083 (10)
C200.0232 (12)0.0304 (12)0.0309 (14)0.0061 (10)0.0126 (11)0.0029 (10)
N10.0178 (9)0.0149 (9)0.0176 (9)0.0008 (7)0.0067 (7)0.0006 (7)
N20.0206 (9)0.0171 (9)0.0145 (9)0.0007 (7)0.0067 (7)0.0002 (7)
O10.0345 (9)0.0137 (7)0.0371 (10)0.0016 (7)0.0048 (8)0.0015 (7)
O20.0267 (9)0.0256 (9)0.0300 (9)0.0065 (7)0.0054 (7)0.0070 (7)
O30.0273 (9)0.0259 (8)0.0190 (8)0.0054 (7)0.0075 (7)0.0051 (6)
O40.0263 (8)0.0382 (9)0.0167 (8)0.0031 (7)0.0090 (7)0.0073 (7)
Cd10.02126 (10)0.01480 (10)0.01451 (10)0.00057 (6)0.00642 (7)0.00132 (6)
Geometric parameters (Å, º) top
C1—O21.236 (3)C12—C131.401 (3)
C1—O11.267 (3)C13—N21.320 (3)
C1—C21.504 (3)C13—H130.9300
C2—C61.364 (3)C14—C151.407 (3)
C2—C31.403 (3)C14—H140.9300
C3—N11.322 (3)C15—C201.410 (3)
C3—H30.9300C15—C161.423 (3)
C4—N11.388 (3)C16—N21.379 (3)
C4—C71.407 (3)C16—C171.404 (3)
C4—C51.411 (3)C17—C181.370 (3)
C5—C61.406 (3)C17—H170.9300
C5—C101.414 (3)C18—C191.410 (3)
C6—H60.9300C18—H180.9300
C7—C81.373 (3)C19—C201.355 (3)
C7—H70.9300C19—H190.9300
C8—C91.399 (3)C20—H200.9300
C8—H80.9300N1—Cd1ii2.3410 (16)
C9—C101.358 (3)O3—Cd1i2.3858 (15)
C9—H90.9300O4—Cd1i2.2770 (15)
C10—H100.9300Cd1—N1iii2.3410 (16)
C11—O31.255 (3)Cd1—N22.3188 (17)
C11—O41.262 (2)Cd1—O12.1625 (15)
C11—C121.499 (3)Cd1—O3iv2.3858 (15)
C11—Cd1i2.658 (2)Cd1—O4iv2.2770 (15)
C12—C141.366 (3)Cd1—C11iv2.658 (2)
O2—C1—O1124.4 (2)C15—C14—H14119.9
O2—C1—C2120.84 (19)C14—C15—C20123.0 (2)
O1—C1—C2114.72 (19)C14—C15—C16118.29 (19)
C6—C2—C3118.19 (18)C20—C15—C16118.76 (19)
C6—C2—C1120.99 (19)N2—C16—C17120.15 (18)
C3—C2—C1120.81 (19)N2—C16—C15120.50 (18)
N1—C3—C2124.21 (19)C17—C16—C15119.35 (19)
N1—C3—H3117.9C18—C17—C16120.3 (2)
C2—C3—H3117.9C18—C17—H17119.9
N1—C4—C7119.89 (18)C16—C17—H17119.9
N1—C4—C5120.76 (18)C17—C18—C19120.2 (2)
C7—C4—C5119.35 (19)C17—C18—H18119.9
C6—C5—C4118.53 (19)C19—C18—H18119.9
C6—C5—C10122.08 (19)C20—C19—C18120.7 (2)
C4—C5—C10119.38 (19)C20—C19—H19119.6
C2—C6—C5120.16 (19)C18—C19—H19119.6
C2—C6—H6119.9C19—C20—C15120.7 (2)
C5—C6—H6119.9C19—C20—H20119.7
C8—C7—C4119.8 (2)C15—C20—H20119.7
C8—C7—H7120.1C3—N1—C4118.13 (17)
C4—C7—H7120.1C3—N1—Cd1ii113.66 (13)
C7—C8—C9120.6 (2)C4—N1—Cd1ii128.17 (13)
C7—C8—H8119.7C13—N2—C16118.63 (17)
C9—C8—H8119.7C13—N2—Cd1116.90 (14)
C10—C9—C8120.8 (2)C16—N2—Cd1124.15 (13)
C10—C9—H9119.6C1—O1—Cd1105.75 (14)
C8—C9—H9119.6C11—O3—Cd1i88.09 (12)
C9—C10—C5120.0 (2)C11—O4—Cd1i92.87 (13)
C9—C10—H10120.0O1—Cd1—O4iv159.22 (6)
C5—C10—H10120.0O1—Cd1—N297.38 (6)
O3—C11—O4122.58 (19)O4iv—Cd1—N290.81 (5)
O3—C11—C12119.90 (19)O1—Cd1—N1iii101.45 (6)
O4—C11—C12117.52 (19)O4iv—Cd1—N1iii96.41 (6)
O3—C11—Cd1i63.76 (11)N2—Cd1—N1iii97.04 (6)
O4—C11—Cd1i58.81 (11)O1—Cd1—O3iv110.18 (6)
C12—C11—Cd1i176.28 (16)O4iv—Cd1—O3iv56.46 (5)
C14—C12—C13118.20 (19)N2—Cd1—O3iv145.40 (6)
C14—C12—C11121.32 (19)N1iii—Cd1—O3iv97.50 (6)
C13—C12—C11120.49 (19)O1—Cd1—C11iv136.51 (7)
N2—C13—C12124.2 (2)O4iv—Cd1—C11iv28.31 (6)
N2—C13—H13117.9N2—Cd1—C11iv118.46 (6)
C12—C13—H13117.9N1iii—Cd1—C11iv97.88 (6)
C12—C14—C15120.2 (2)O3iv—Cd1—C11iv28.14 (6)
C12—C14—H14119.9
O2—C1—C2—C6174.6 (2)C17—C18—C19—C201.2 (4)
O1—C1—C2—C64.8 (3)C18—C19—C20—C150.5 (4)
O2—C1—C2—C35.2 (3)C14—C15—C20—C19177.5 (2)
O1—C1—C2—C3175.38 (19)C16—C15—C20—C192.2 (3)
C6—C2—C3—N10.4 (3)C2—C3—N1—C41.1 (3)
C1—C2—C3—N1179.44 (18)C2—C3—N1—Cd1ii176.85 (15)
N1—C4—C5—C61.1 (3)C7—C4—N1—C3178.10 (19)
C7—C4—C5—C6178.4 (2)C5—C4—N1—C31.4 (3)
N1—C4—C5—C10179.84 (19)C7—C4—N1—Cd1ii4.3 (3)
C7—C4—C5—C100.3 (3)C5—C4—N1—Cd1ii176.15 (14)
C3—C2—C6—C50.0 (3)C12—C13—N2—C160.8 (3)
C1—C2—C6—C5179.81 (18)C12—C13—N2—Cd1172.89 (16)
C4—C5—C6—C20.4 (3)C17—C16—N2—C13177.34 (19)
C10—C5—C6—C2179.1 (2)C15—C16—N2—C132.5 (3)
N1—C4—C7—C8178.5 (2)C17—C16—N2—Cd19.4 (3)
C5—C4—C7—C81.0 (3)C15—C16—N2—Cd1170.71 (14)
C4—C7—C8—C92.1 (4)O2—C1—O1—Cd15.0 (3)
C7—C8—C9—C101.9 (4)C2—C1—O1—Cd1174.42 (14)
C8—C9—C10—C50.6 (4)O4—C11—O3—Cd1i0.1 (2)
C6—C5—C10—C9178.2 (2)C12—C11—O3—Cd1i179.26 (17)
C4—C5—C10—C90.5 (3)O3—C11—O4—Cd1i0.1 (2)
O3—C11—C12—C14178.30 (19)C12—C11—O4—Cd1i179.27 (15)
O4—C11—C12—C142.3 (3)C1—O1—Cd1—O4iv33.2 (2)
O3—C11—C12—C131.9 (3)C1—O1—Cd1—N279.22 (14)
O4—C11—C12—C13177.47 (19)C1—O1—Cd1—N1iii177.98 (13)
C14—C12—C13—N20.9 (3)C1—O1—Cd1—O3iv79.52 (14)
C11—C12—C13—N2179.27 (18)C1—O1—Cd1—C11iv67.38 (17)
C13—C12—C14—C151.0 (3)C13—N2—Cd1—O177.63 (15)
C11—C12—C14—C15179.23 (19)C16—N2—Cd1—O195.72 (15)
C12—C14—C15—C20179.7 (2)C13—N2—Cd1—O4iv121.51 (15)
C12—C14—C15—C160.7 (3)C16—N2—Cd1—O4iv65.14 (15)
C14—C15—C16—N22.5 (3)C13—N2—Cd1—N1iii24.95 (15)
C20—C15—C16—N2177.84 (19)C16—N2—Cd1—N1iii161.70 (15)
C14—C15—C16—C17177.42 (19)C13—N2—Cd1—O3iv139.20 (14)
C20—C15—C16—C172.3 (3)C16—N2—Cd1—O3iv47.45 (19)
N2—C16—C17—C18179.46 (19)C13—N2—Cd1—C11iv127.90 (14)
C15—C16—C17—C180.7 (3)C16—N2—Cd1—C11iv58.75 (16)
C16—C17—C18—C191.1 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C10H6NO2)2]
Mr456.72
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)28.5458 (19), 8.2274 (5), 15.381 (1)
β (°) 112.708 (1)
V3)3332.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.13 × 0.11 × 0.10
Data collection
DiffractometerRigaku Saturn 724+ CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.845, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
7361, 3014, 2659
Rint0.015
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.10
No. of reflections3014
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: , SHELXL97 (Sheldrick, 2008), CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N1i2.3410 (16)Cd1—O3ii2.3858 (15)
Cd1—N22.3188 (17)Cd1—O4ii2.2770 (15)
Cd1—O12.1625 (15)
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2.
 

Acknowledgements

The authors are thankful to Jiangsu University for support of this research.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, H.-J. (2003). Acta Cryst. C59, m371–m372.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChi, Y. X., Niu, S. Y., Jin, J., Sun, L. P., Yang, G. D. & Ye, L. (2007). Z. Anorg. Allg. Chem. 633, 1274–1278.  CAS Google Scholar
First citationHu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J. Y., Achten, M. A. & Zhang, A. W. (2007). Inorg. Chem. Commun. 10, 114–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, S. Y., Chi, Y. X., Jin, J., Yang, G. D. & Ye, L. (2006). Struct. Chem. 17, 209–216.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y. S., Yan, B. & Chen, Z. X. (2006). J. Solid State Chem. 179, 4037–4046.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds