inorganic compounds
Redetermination of Hg2I2
aUniversité Houari-Boumedienne, Faculté de Chimie, Laboratoire Sciences des Matériaux, Bp 32 El-Alia Bab-Ezzouar, Algeria, bCentre de Diffractométrie X, Sciences Chimiques de Rennes, UMR 6226 CNRS Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, France, and cDepartomento Inorgánica, Facultad C.C. Químicas, Universidad Complutense, 28040 Madrid, Spain
*Correspondence e-mail: mkarsdz@yahoo.fr
The 2I2, has been determined previously from X-ray powder diffraction data [Havighurst (1926). J. Am. Chem. Soc. 48, 2113–2125]. The results of the current redetermination based on single-crystal X-ray diffraction data provide more precise geometrical data and also anisotropic displacement parameters for the Hg and I atoms, which are both situated on positions with site-symmetry 4mm. The structure consists of linear dimers I—Hg—Hg—I extending along the c axis with an Hg—Hg distance of 2.5903 (13) Å. The overall coordination sphere of the Hg+ atom is a considerably distorted octahedron. The crystal specimen under investigation was twinned by non-merohedry with a refined twin domain fraction of 0.853 (14):0.147 (14).
of mercurous iodide, HgRelated literature
The structures of the mercurous halides Hg2X2 (X = Cl, Br, I) were originally determined from X-ray powder data by Havighurst (1926). Studies based on single crystals for X = F, Cl, Br were reported by Dorm (1970) and for X = F also by Grdenić & Djordjević (1956) and Schrötter & Müller (1992). For the physical properties of mercurous halides, see: Zadokhin & Solodovnik (2004); Markov et al. (2007, 2010); Taylor et al. (2011). For theoretical studies of the structures of mercurous halides, see: Liao & Zhang (1995); Liao & Schwarz (1997).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT and CELL_NOW (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.
Supporting information
10.1107/S1600536811056339/wm2566sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811056339/wm2566Isup2.hkl
Les monocristaux de Hg2I2 ont été obtenus lors des essais de synthèse du clathrate I8Hg10Ge36, à partir d'un mélange d'éléments purs et en présence de HgO et WO3 comme agents précurseurs. Le mélange broyé puis scellé dans un tube en quartz, est porté à une température de 1073 K pendant environ 10 jours. Des cristaux de la phase α-Ge ont été aussi identifiés.
La structure a été déterminée par isotypie aux halogénures de mercure(I) dans le groupe d'espace I4/mmm. Le cristal étudié correspond à une macle non-mériédrique, contitué de deux individus mis en évidence par le programme CELL_NOW (Bruker, 2006) avec une matrice de macle de [0.137 0.983 0.053, 0.984 -0.149 0.038, 0.250 0.262 -0.988]. La structure a été affinée avec JANA2006 en utilisant un fichier de type HKL5 crée par le programme TWINABS (Bruker, 2006) et contenant la contribution de ces deux individus. En fin d'affinement, la fraction en volume des composants est de: 0.853 (14): 0.147 (14), et la carte de densité électronique est de: ρmax = 4.99 e Å-3 (localisée à 0.88 Å de I) et ρmin = -4.73 e Å-3 (localisée à 1.99 Å de Hg).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006) and CELL_NOW (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).Hg2I2 | Dx = 7.783 Mg m−3 |
Mr = 654.98 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4/mmm | Cell parameters from 274 reflections |
Hall symbol: -I 4 2 | θ = 4.5–32.9° |
a = 4.8974 (9) Å | µ = 65.76 mm−1 |
c = 11.649 (2) Å | T = 150 K |
V = 279.40 (9) Å3 | Prism, black |
Z = 2 | 0.10 × 0.06 × 0.04 mm |
F(000) = 532 |
Bruker APEXII CCD diffractometer | 253 independent reflections |
Radiation source: X-ray tube | 164 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.056 |
ω and ϕm scans | θmax = 39.6°, θmin = 3.5° |
Absorption correction: multi-scan (TWINABS; Bruker, 2006) | h = −5→6 |
Tmin = 0.024, Tmax = 0.072 | k = 0→8 |
448 measured reflections | l = 0→20 |
Refinement on F | 0 constraints |
R[F2 > 2σ(F2)] = 0.039 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F2) = 0.044 | (Δ/σ)max = 0.0003 |
S = 1.47 | Δρmax = 4.99 e Å−3 |
253 reflections | Δρmin = −4.73 e Å−3 |
9 parameters | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 27 (7) |
Hg2I2 | Z = 2 |
Mr = 654.98 | Mo Kα radiation |
Tetragonal, I4/mmm | µ = 65.76 mm−1 |
a = 4.8974 (9) Å | T = 150 K |
c = 11.649 (2) Å | 0.10 × 0.06 × 0.04 mm |
V = 279.40 (9) Å3 |
Bruker APEXII CCD diffractometer | 253 independent reflections |
Absorption correction: multi-scan (TWINABS; Bruker, 2006) | 164 reflections with I > 3σ(I) |
Tmin = 0.024, Tmax = 0.072 | Rint = 0.056 |
448 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 9 parameters |
wR(F2) = 0.044 | 0 restraints |
S = 1.47 | Δρmax = 4.99 e Å−3 |
253 reflections | Δρmin = −4.73 e Å−3 |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The crystal studied was twinned by non-merohedry with a refined twin domain fraction of 0.853 (14): 0.147 (14). The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0 | 0 | 0.11118 (6) | 0.0263 (2) | |
I1 | 0 | 0 | 0.34524 (10) | 0.0207 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0356 (4) | 0.0356 (4) | 0.0078 (3) | 0 | 0 | 0 |
I1 | 0.0271 (6) | 0.0271 (6) | 0.0079 (5) | 0 | 0 | 0 |
Hg1—Hg1i | 2.5903 (13) | Hg1—I1iii | 3.5000 (9) |
Hg1—I1 | 2.7266 (17) | Hg1—I1iv | 3.5000 (9) |
Hg1—I1ii | 3.5000 (9) | Hg1—I1v | 3.5000 (9) |
Hg1i—Hg1—I1 | 180.0 (5) | I1iv—Hg1—I1v | 88.795 (15) |
Hg1i—Hg1—I1ii | 98.34 (2) | Hg1—I1—Hg1ii | 98.34 (2) |
Hg1i—Hg1—I1iii | 98.34 (2) | Hg1—I1—Hg1iii | 98.34 (2) |
Hg1i—Hg1—I1iv | 98.34 (2) | Hg1—I1—Hg1iv | 98.34 (2) |
Hg1i—Hg1—I1v | 98.34 (2) | Hg1—I1—Hg1v | 98.34 (2) |
I1—Hg1—I1ii | 81.66 (2) | Hg1—I1—I1vi | 180.0 (5) |
I1—Hg1—I1iii | 81.66 (2) | Hg1ii—I1—Hg1iii | 88.795 (16) |
I1—Hg1—I1iv | 81.66 (2) | Hg1ii—I1—Hg1iv | 88.795 (16) |
I1—Hg1—I1v | 81.66 (2) | Hg1ii—I1—Hg1v | 163.32 (4) |
I1ii—Hg1—I1iii | 88.795 (15) | Hg1ii—I1—I1vi | 81.66 (2) |
I1ii—Hg1—I1iv | 88.795 (15) | Hg1iii—I1—Hg1iv | 163.32 (4) |
I1ii—Hg1—I1v | 163.32 (4) | Hg1iii—I1—Hg1v | 88.795 (16) |
I1iii—Hg1—I1iv | 163.32 (4) | Hg1iii—I1—I1vi | 81.66 (2) |
I1iii—Hg1—I1v | 88.795 (15) | Hg1iv—I1—Hg1v | 88.795 (16) |
Symmetry codes: (i) −x, y, −z; (ii) −x−1/2, y−1/2, −z+1/2; (iii) −x−1/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) −x+1/2, y+1/2, −z+1/2; (vi) −x, y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | Hg2I2 |
Mr | 654.98 |
Crystal system, space group | Tetragonal, I4/mmm |
Temperature (K) | 150 |
a, c (Å) | 4.8974 (9), 11.649 (2) |
V (Å3) | 279.40 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 65.76 |
Crystal size (mm) | 0.10 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (TWINABS; Bruker, 2006) |
Tmin, Tmax | 0.024, 0.072 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 448, 253, 164 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.897 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.044, 1.47 |
No. of reflections | 253 |
No. of parameters | 9 |
Δρmax, Δρmin (e Å−3) | 4.99, −4.73 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006) and CELL_NOW (Bruker, 2006), SIR97 (Altomare et al., 1999), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).
Hg1—I1 | 2.7266 (17) | Hg1—I1i | 3.5000 (9) |
Symmetry code: (i) −x−1/2, y−1/2, −z+1/2. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2006). APEX2, SAINT, CELL_NOW and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dorm, E. (1970). J. Chem. Soc. D, pp. 466–467. Google Scholar
Grdenić, D. & Djordjević, C. (1956). J. Chem. Soc. pp. 1316–1319. Google Scholar
Havighurst, R. J. (1926). J. Am. Chem. Soc. 48, 2113–2125. CrossRef CAS Google Scholar
Liao, M. S. & Schwarz, W. H. E. (1997). J. Alloys Compd, 246, 124–130. CrossRef CAS Web of Science Google Scholar
Liao, M. S. & Zhang, Q. (1995). J. Mol. Struct. (THEOCHIM), 358, 195–203. CrossRef CAS Google Scholar
Markov, Yu. F., Knorr, K. & Roginski, E. M. (2007). Ferroelectrics, 359, 82–93. Web of Science CrossRef CAS Google Scholar
Markov, Yu. F., Roginski, E. M. & Wallacher, D. (2010). Bull. Russ. Acad. Sci. Phys. 74, 1198–1202. CrossRef Google Scholar
Petříček, V., Dušék, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. Google Scholar
Schrötter, F. & Müller, B. G. (1992). Z. Anorg. Allg. Chem. 618, 53–58. Google Scholar
Taylor, R. E., Bai, S. & Dybowski, C. (2011). J. Mol. Struct. 987, 193–198. Web of Science CrossRef CAS Google Scholar
Zadokhin, B. S. & Solodovnik, E. V. (2004). Phys. Solid State, 46, 2110–2114. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Les cristaux d'halogénures de mercure(I) de formulation Hg2X2 (X = F, Cl, Br et I) sont connus pour leurs propriétés physiques anisotropes (acousto-optiques, biréfringences etc). Ces dernières années, ces composés ont fait l'objet de nombreux travaux, essentiellement pour leurs propriétés dynamiques (Zadokhin & Solodovnik, 2004), ferroélastiques (Markov et al. 2007, 2010) et résonnances magnétiques nucléaires (NMR) (Taylor et al., 2011). La présence de liaisons Hg—Hg, qui est l'une des caractéristiques de ce type de composé a suscité plusieurs études quant à la nature et aux propriétés de ces liaisons (Liao & Zhang, 1995; Liao & Schwarz, 1997). La structure de ces halogènures a été déterminée au préalable par diffraction des rayons X sur poudre (Havighurst, 1926), puis sur monocristal pour Hg2X2 (X: F, Cl et Br) par Dorm (1970) et pour Hg2F2 par Schrötter & Müller (1992). La structure de Hg2I2 est analogue à celle des autres halogènures, elle est caractérisée par des chaînes linéaires I—Hg—Hg—I le long de l'axe c (Fig. 1). A la différence des autres halogènures formés par les ions Hg2+2 et X-, l'iodure de mercure(I) Hg2I2 quant à lui est caractérisé par des dimères 'HgI' (Grdenić & Djordjević, 1956).
La présente redétermination par diffraction des rayons X sur monocristal, fournit plus de précisions sur les distances interatomiques, ainsi que sur les paramètres d'agitation thermiques (ADP's). Les liaisons Hg—Hg [2.5903 (13) Å] et Hg—I [2.7266 (17) Å] sont différentes de celles observées par Havighurst (1926) [respectivement 2.694 et 2.682 Å]. Quatres longues distances Hg—I de 3.5000 (9) Å sont aussi observées, donnant aux atomes de Hg un environnement octadérique distordu (Fig. 2). Les résultats obtenus sur monocristal montrent une tendance des différentes liaisons à varier selon l'électronégativité de l'halogène (Havighurst, 1926). En effet, la liaison Hg—halogéne augmente du fluor à l'iode d'environ 0.58 et 0.78 Å respectivement pour la courte et la longue distance: Hg—F [2.14 (2) et 2.715 (5) Å]; Hg—Cl [2.43 (4) et 3.209 (6) Å]; Hg—Br [2.71 (2) et 3.32 (1) Å] et Hg—I [2.7266 (17) et 3.5000 (9) Å]; quant à liaison Hg—Hg, elle augmente seulement de 0.08 Å: F [2.507 (1) Å]; Cl [2.526 (6) Å]; Br [2.49 (1) Å] et I [2.5903 (13) Å]. Ceci contredit en partie les conclusions de Liao & Zhang, (1995) and Liao & Schwarz (1997), selon lesquelles la liaison Hg—Hg est indépendante de l'électronégativité de l'halogéne. Toutefois une redétermination structurale de Hg2Br2 semble nécessaire pour confirmer cette tendance. Enfin, il faut remarquer que comme pour les autres halogénures de mercures(I), l'agitation thermique (ADP's) autour du mercure U11(Hg) est supérieure à U33(Hg), alors qu'autour de l'iode elle est comparable à celles des autres halogènes.