metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m92-m93

The chain structure of [Ni(C4H2O4)(C12H8N2)(H2O)]n with different types of fumarate bridging

aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
*Correspondence e-mail: juraj.kuchar@upjs.sk

(Received 8 December 2011; accepted 19 December 2011; online 7 January 2012)

Using modified solvothermal conditions (longer cooling time), beside previously characterized dark-green crystals of [Ni(C4H2O4)(C12H8N2)] (main product), a few light-green crystals of the polymeric title compound, catena-poly[[aqua­(1,10-phenanthroline-κ2N,N′)nickel(II)]-μ-fumarato-κ2O:O′-[aqua­(1,10-phenanthroline-κ2N,N′)nickel(II)]-μ-fumarato-κ4O,O′:O′′,O′′′], [Ni(C4H2O4)(C12H8N2)(H2O)]n were isolated. Its crystal structure is made up from zigzag chains, propagating in [001], in which the Ni2+ ions are linked alternatively by μ2-fumarato and bis-chelating fumarato bridging ligands. The Ni2+ ion is coordinated in a deformed octa­hedral geometry by one chelating 1,10-phenanthroline ligand, one aqua ligand in a cis position with regard to both N-donor atoms and by two different fumarato ligands, each residing with its central C=C bond on an inversion centre, occupying the remaining coordination sites in a fac fashion. The chains thus formed are linked by O—H⋯O hydrogen bonds and ππ inter­actions between the aromatic rings of the phenanthroline ligands with a shortest ring centroid separation of 3.4787 (10) Å.

Related literature

For Ni2+ complexes containing both fum and phen ligands (fum = fumarato, phen = 1,10-phenanthroline), see: Černák et al. (2009[Černák, J., Pavlová, A., Orendáčová, A., Kajňaková, M. & Kuchár, J. (2009). Polyhedron, 28, 2893-2898.]) for [Ni(fum)(phen)] with a two-dimensional structure and Ma et al. (2003[Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m900-m902.]) for [Ni2(phen)4(fum)(H2O)2]fum·16H2O with an ionic structure containing a dinuclear complex cation. For an Ni2+ complex, [Ni2(fum)2(py)6]·2py (py = pyridine), exhibiting a one-dimensional structure with the same type of fumarato bridging ligands, see: Mori et al. (2004[Mori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Microporous Mesoporous Mater. 73, 31-46.]); Marsh et al. (2005[Marsh, R. E. (2005). Acta Cryst. B61, 359.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C4H2O4)(C12H8N2)(H2O)]

  • Mr = 370.99

  • Triclinic, [P \overline 1]

  • a = 7.8998 (4) Å

  • b = 9.8238 (5) Å

  • c = 11.3815 (8) Å

  • α = 68.677 (6)°

  • β = 70.141 (6)°

  • γ = 89.655 (5)°

  • V = 766.89 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 173 K

  • 0.46 × 0.27 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: analytical [Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) in CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])] Tmin = 0.658, Tmax = 0.866

  • 12619 measured reflections

  • 3173 independent reflections

  • 2972 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.057

  • S = 1.04

  • 3173 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O5 0.85 1.78 2.6085 (15) 163
O1—H2O1⋯O2i 0.85 1.93 2.7820 (15) 177
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2009[Crystal Impact (2009). DIAMOND, Crystal Impact, D-53002 Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Within our broader study on low-dimensional compounds of Ni(II) in the aqueous-alcoholic system Ni(II)-fum-phen (fum = fumarato, phen = 1,10-phenanthroline) using solvothermal conditions, we have isolated the title compound [Ni(fum)(H2O)(phen)] (I) in the form of few light-green crystals accompanying the major dark-green crystalline product [Ni(fum)(phen)] (II) (Černák et al., 2009). Such dark-green crystals were only formed if the reaction mixture was cooled from 373 K down to room temperature during 8 h. When the cooling time was elongated to 20 h, some light-green crystals of (I) likewise appeared.

The crystal structure of (I) is built up of zigzag chains exhibiting the backbone composition [–Ni–fum–Ni–fum–]n propagating parallel to the [001] direction. Within the chain the Ni2+ ions are linked alternatively by µ2-fumarato and bis-chelating fumarato bridging ligands (Fig. 1, Fig. 2). The same type of chains is observed in [Ni2(fum)2(py)6].2py (Mori et al., 2004; Marsh et al., 2005). On the other hand, the dark-green [Ni(fum)(phen)] exhibits a two-dimensional crystal structure built up of dimers of crystallographically non-equivalent Ni2+ ions linked by two different types of bridging fumarato ligands (Černák et al., 2009).

The Ni2+ central atom in (I) is octahedrally coordinated in a deformed NiN2O3O donor set by one chelating phen ligand, one aqua ligand placed in cis-position with regard to both donor nitrogen atoms of the phen ligand, and three coordination sites are occupied by oxygen atoms originating from two chemically different fum ligands, one coordinating through one O-donor atom, and the second one coordinating in a chelating fashion (Fig. 2). The presence of an additional aqua ligand in the coordination sphere of the Ni(II) atom lowers the number of free coordination sites available for polymerization from four in (II) to three in (I). Consequently, a crystal structure with lower dimensionality is realised.

The mean value of the Ni–N bond lengths (2.07 (2) Å) is close to that observed in [Ni2(phen)4(fum)(H2O)2]fum.16H2O (2.096 (1) Å) (Ma et al., 2003). In (I) two crystallographically independent fum2- ligands in the asymmetric unit reside on an inversion centre. The chelating fum ligand coordinates in an unsymmetrical fashion and the corresponding Ni—O bonds are longer with respect to the Ni—O bond of the monodentately coordinating fum ligand (Table 2). A similar situation as to the Ni–O bond lengths was observed in [Ni2(fum)2(py)6].2py (Mori et al., 2004). The Ni—O bond length of the aqua ligand exhibits an usual value (Ma et al., 2003).

Both hydrogen atoms of the aqua ligand are involved in rather strong hydrogen bonds of the O—H···O type (Fig. 3, Table 3). The H1O1 atom forms an intermolecular hydrogen bond with the not coordinating O5 atom from the carboxylate group. On the other hand, the H2O1 atom participates in an intermolecular hydrogen bond with the O2 atom (symmetry code 2 - x, 1 - y, -z) linking neighbouring chains; due to symmetry operators (centre of symmetry) the chains are linked with a pair of such hydrogen bond forming a ring arrangement R22(8).

Moreover, the chains interact also through ππ interactions between the aromatic rings of the phen ligands (Fig. 3). The distances between the centres of gravity, Cgi of the aromatic rings, are: 3.7942 (11) Å for Cg1—Cg1iv (Cg1 is the centre of gravity of the aromatic ring formed by atoms N1, C10, C9, C3, C2, C1) and 3.4787 (10) Å for Cg2···Cg2v (Cg2 is the centre of gravity of the aromatic ring formed by atoms N2, C8, C7, C6, C11, C12). Similar ππ interactions were also observed in the structure of the dark-green [Ni(fum)(phen)] (Černák et al., 2009).

Related literature top

For Ni2+ complexes containing both fum and phen ligands (fum = fumarato, phen = 1,10-phenanthroline), see: Černák et al. (2009) for [Ni(fum)(phen)] with a two-dimensional structure and Ma et al. (2003) for [Ni2(phen)4(fum)(H2O)2]fum.16H2O with an ionic structure containing a dinuclear complex cation. For an Ni2+ complex {[Ni2(fum)2(py)6].2py (py = pyridine)} exhibiting a one-dimensional structure with the same type of fumarato bridging ligands, see: Mori et al. (2004); Marsh et al. (2005).

Experimental top

A Parr reaction vessel (total volume 20 cm3) was filled with 6 cm3 of aqueous-ethanolic solution (1:1) containing 238 mg (1 mmol) of NiCl2.6H2O, 116 mg (1 mmol) of fumaric acid and 396 mg (2 mmol) of 1,10-phenantroline. Finally, 112 mg (2 mmol) of solid KOH was added. The closed reaction vessel was heated by uniform heating rate to 373 K during one hour and then was left at this temperature for 80 h. The reaction vessel was then uniformly cooled to room temperature during 20 h. The product consisted of dark-green crystals of [Ni(fum)(phen)] (main product) and few light-green crystals of [Ni(fum)(H2O)(phen)]. The mixture of crystals was separated from the mother liquor by filtration and dried at laboratory temperature. The light-green crystals were picked up and used for X-ray study.

Refinement top

The hydrogen atoms from the water molecule were located in a difference map, but their positions were constrained by geometric parameters to values of 0.850 Å for the O—H bond. The isotropic displacement parameters of the hydrogen atoms were tied to those of the parent oxygen atoms with Uiso(H) = 1.5Ueq(O). The hydrogen atoms of the phenantroline ligand and fumarato(2-) ligand were positioned geometrically with C—H = 0.950 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment around the Ni2+ ion in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: i) 1 - x, 1 - y, -z; ii) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. View of the hydrogen bonding system in (I) linking neighbouring chains. Colour code Ni: green, O: red, N: blue, H: white spheres. Hydrogen atoms of the fumarato ligands are omitted as well as the phen ligands but their N donor atoms for clarity.
[Figure 3] Fig. 3. View of the ππ interactions between the phen ligands in (I). [Symmetry codes: iv) 2 - x, -y, 1 - z; v) 2 - x, -y, -z.]
catena-poly[[aqua(1,10-phenanthroline- κ2N,N')nickel(II)]-µ-fumarato-κ2O:O'- [aqua(1,10-phenanthroline-κ2N,N')nickel(II)]-µ-fumarato- κ4O,O':O'',O'''] top
Crystal data top
[Ni(C4H2O4)(C12H8N2)(H2O)]Z = 2
Mr = 370.99F(000) = 380
Triclinic, P1Dx = 1.607 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8998 (4) ÅCell parameters from 9394 reflections
b = 9.8238 (5) Åθ = 3.3–29.4°
c = 11.3815 (8) ŵ = 1.29 mm1
α = 68.677 (6)°T = 173 K
β = 70.141 (6)°Prism, light-green
γ = 89.655 (5)°0.46 × 0.27 × 0.12 mm
V = 766.89 (8) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3173 independent reflections
Radiation source: Enhance (Mo) X-ray Source2972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.3438 pixels mm-1θmax = 26.5°, θmin = 3.3°
ω scansh = 99
Absorption correction: analytical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
k = 1212
Tmin = 0.658, Tmax = 0.866l = 1414
12619 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0268P)2 + 0.3218P]
where P = (Fo2 + 2Fc2)/3
3173 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C4H2O4)(C12H8N2)(H2O)]γ = 89.655 (5)°
Mr = 370.99V = 766.89 (8) Å3
Triclinic, P1Z = 2
a = 7.8998 (4) ÅMo Kα radiation
b = 9.8238 (5) ŵ = 1.29 mm1
c = 11.3815 (8) ÅT = 173 K
α = 68.677 (6)°0.46 × 0.27 × 0.12 mm
β = 70.141 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3173 independent reflections
Absorption correction: analytical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
2972 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.866Rint = 0.022
12619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
3173 reflectionsΔρmin = 0.25 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.83574 (2)0.255869 (19)0.208342 (18)0.02046 (7)
O11.05052 (14)0.37310 (12)0.20856 (11)0.0254 (2)
H1O10.99460.42260.25390.038*
H2O11.10600.43100.12680.038*
O20.77961 (14)0.43278 (11)0.05893 (11)0.0246 (2)
O30.60066 (15)0.22129 (11)0.15882 (11)0.0256 (2)
O40.65578 (15)0.30773 (12)0.35633 (11)0.0297 (2)
O50.82308 (16)0.48624 (13)0.36300 (12)0.0351 (3)
N10.85113 (17)0.05252 (14)0.34101 (12)0.0240 (3)
N21.02443 (17)0.18287 (13)0.07328 (12)0.0215 (3)
C10.7599 (2)0.01127 (18)0.47314 (16)0.0311 (4)
H10.67070.03850.51530.037*
C20.7899 (3)0.1492 (2)0.55307 (17)0.0373 (4)
H20.72210.19160.64760.045*
C30.9174 (3)0.22201 (19)0.49376 (18)0.0370 (4)
H30.93890.31550.54690.044*
C41.1536 (3)0.22521 (19)0.28194 (19)0.0375 (4)
H41.18100.31870.33000.045*
C51.2444 (2)0.15787 (19)0.14727 (19)0.0351 (4)
H51.33520.20460.10260.042*
C61.2939 (2)0.05748 (19)0.07064 (18)0.0321 (4)
H61.38500.01560.12090.039*
C71.2463 (2)0.19111 (18)0.13455 (16)0.0311 (4)
H71.30510.24310.22940.037*
C81.1105 (2)0.25035 (17)0.05917 (15)0.0263 (3)
H81.07860.34290.10480.032*
C91.0168 (2)0.15825 (17)0.35373 (17)0.0291 (3)
C100.9774 (2)0.01967 (16)0.28145 (15)0.0228 (3)
C111.2066 (2)0.01704 (17)0.07015 (17)0.0271 (3)
C121.0727 (2)0.05085 (16)0.13778 (15)0.0221 (3)
C130.6336 (2)0.35570 (16)0.08395 (14)0.0219 (3)
C140.4973 (2)0.42762 (17)0.02642 (16)0.0249 (3)
H140.40640.36450.03400.030*
C150.6762 (2)0.41233 (16)0.39247 (15)0.0247 (3)
C160.5037 (2)0.44635 (18)0.47800 (16)0.0280 (3)
H160.40000.38930.49870.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01891 (11)0.02183 (11)0.01896 (10)0.00744 (7)0.00459 (8)0.00816 (8)
O10.0204 (6)0.0307 (6)0.0219 (5)0.0058 (4)0.0051 (4)0.0091 (4)
O20.0189 (6)0.0254 (5)0.0260 (5)0.0056 (4)0.0082 (5)0.0062 (4)
O30.0252 (6)0.0218 (5)0.0281 (6)0.0065 (4)0.0082 (5)0.0093 (4)
O40.0258 (6)0.0322 (6)0.0296 (6)0.0048 (5)0.0008 (5)0.0186 (5)
O50.0254 (6)0.0413 (7)0.0394 (7)0.0038 (5)0.0029 (5)0.0247 (6)
N10.0222 (7)0.0256 (6)0.0207 (6)0.0043 (5)0.0059 (5)0.0068 (5)
N20.0209 (7)0.0216 (6)0.0208 (6)0.0059 (5)0.0059 (5)0.0082 (5)
C10.0282 (9)0.0358 (9)0.0236 (8)0.0030 (7)0.0054 (7)0.0088 (7)
C20.0402 (11)0.0378 (9)0.0226 (8)0.0031 (8)0.0091 (8)0.0011 (7)
C30.0461 (11)0.0285 (8)0.0326 (9)0.0039 (8)0.0212 (9)0.0012 (7)
C40.0444 (11)0.0270 (8)0.0482 (11)0.0179 (8)0.0262 (9)0.0139 (8)
C50.0329 (10)0.0330 (9)0.0480 (10)0.0185 (7)0.0175 (8)0.0226 (8)
C60.0255 (9)0.0365 (9)0.0368 (9)0.0070 (7)0.0043 (7)0.0233 (8)
C70.0297 (9)0.0340 (9)0.0235 (8)0.0004 (7)0.0006 (7)0.0126 (7)
C80.0288 (9)0.0247 (7)0.0224 (7)0.0040 (6)0.0069 (7)0.0079 (6)
C90.0323 (9)0.0249 (7)0.0327 (8)0.0061 (7)0.0182 (7)0.0078 (7)
C100.0219 (8)0.0222 (7)0.0249 (7)0.0043 (6)0.0104 (6)0.0080 (6)
C110.0233 (8)0.0280 (8)0.0348 (8)0.0077 (6)0.0108 (7)0.0172 (7)
C120.0201 (8)0.0226 (7)0.0257 (7)0.0049 (6)0.0090 (6)0.0111 (6)
C130.0202 (8)0.0246 (7)0.0204 (7)0.0080 (6)0.0047 (6)0.0106 (6)
C140.0177 (8)0.0291 (7)0.0283 (8)0.0061 (6)0.0079 (6)0.0119 (6)
C150.0263 (8)0.0258 (7)0.0193 (7)0.0080 (6)0.0049 (6)0.0090 (6)
C160.0223 (8)0.0322 (8)0.0260 (8)0.0036 (6)0.0016 (7)0.0140 (7)
Geometric parameters (Å, º) top
Ni1—O42.0263 (10)C3—H30.9500
Ni1—N12.0527 (12)C4—C51.350 (3)
Ni1—O12.0576 (11)C4—C91.432 (2)
Ni1—N22.0811 (12)C4—H40.9500
Ni1—O22.1124 (10)C5—C111.436 (2)
Ni1—O32.1771 (11)C5—H50.9500
O1—H1O10.8500C6—C71.371 (2)
O1—H2O10.8500C6—C111.408 (2)
O2—C131.2711 (18)C6—H60.9500
O3—C131.2540 (18)C7—C81.398 (2)
O4—C151.2671 (18)C7—H70.9500
O5—C151.2470 (19)C8—H80.9500
N1—C11.326 (2)C9—C101.408 (2)
N1—C101.3563 (19)C10—C121.438 (2)
N2—C81.3253 (19)C11—C121.403 (2)
N2—C121.3631 (19)C13—C141.490 (2)
C1—C21.402 (2)C14—C14i1.322 (3)
C1—H10.9500C14—H140.9127
C2—C31.365 (3)C15—C161.498 (2)
C2—H20.9500C16—C16ii1.315 (3)
C3—C91.407 (2)C16—H160.9056
O4—Ni1—N193.22 (5)C5—C4—C9121.22 (15)
O4—Ni1—O192.07 (4)C5—C4—H4119.4
N1—Ni1—O198.29 (5)C9—C4—H4119.4
O4—Ni1—N2173.69 (5)C4—C5—C11121.40 (15)
N1—Ni1—N280.59 (5)C4—C5—H5119.3
O1—Ni1—N287.68 (5)C11—C5—H5119.3
O4—Ni1—O290.64 (4)C7—C6—C11119.38 (14)
N1—Ni1—O2165.34 (5)C7—C6—H6120.3
O1—Ni1—O295.70 (4)C11—C6—H6120.3
N2—Ni1—O295.66 (4)C6—C7—C8119.52 (15)
O4—Ni1—O384.64 (4)C6—C7—H7120.2
N1—Ni1—O3104.64 (5)C8—C7—H7120.2
O1—Ni1—O3156.97 (4)N2—C8—C7122.79 (14)
N2—Ni1—O398.02 (4)N2—C8—H8118.6
O2—Ni1—O361.64 (4)C7—C8—H8118.6
O4—Ni1—C1384.46 (5)C3—C9—C10116.94 (15)
N1—Ni1—C13135.31 (5)C3—C9—C4124.20 (15)
O1—Ni1—C13126.36 (5)C10—C9—C4118.86 (15)
N2—Ni1—C13100.76 (5)N1—C10—C9122.99 (14)
O2—Ni1—C1331.19 (4)N1—C10—C12117.23 (13)
O3—Ni1—C1330.68 (4)C9—C10—C12119.78 (14)
Ni1—O1—H1O1100.8C12—C11—C6117.24 (14)
Ni1—O1—H2O1106.0C12—C11—C5118.60 (15)
H1O1—O1—H2O1109.3C6—C11—C5124.15 (15)
C13—O2—Ni189.42 (8)N2—C12—C11123.04 (14)
C13—O3—Ni186.97 (9)N2—C12—C10116.83 (13)
C15—O4—Ni1127.93 (10)C11—C12—C10120.13 (13)
C1—N1—C10118.30 (13)O3—C13—O2121.07 (13)
C1—N1—Ni1128.64 (11)O3—C13—C14119.63 (13)
C10—N1—Ni1113.02 (10)O2—C13—C14119.28 (13)
C8—N2—C12118.02 (13)O3—C13—Ni162.35 (8)
C8—N2—Ni1129.72 (10)O2—C13—Ni159.39 (7)
C12—N2—Ni1112.00 (10)C14—C13—Ni1170.01 (10)
N1—C1—C2122.60 (16)C14i—C14—C13122.62 (18)
N1—C1—H1118.7C14i—C14—H14122.2
C2—C1—H1118.7C13—C14—H14115.2
C3—C2—C1119.33 (16)O5—C15—O4126.05 (14)
C3—C2—H2120.3O5—C15—C16119.26 (13)
C1—C2—H2120.3O4—C15—C16114.68 (14)
C2—C3—C9119.83 (15)C16ii—C16—C15123.7 (2)
C2—C3—H3120.1C16ii—C16—H16119.5
C9—C3—H3120.1C15—C16—H16116.8
O4—Ni1—O2—C1378.18 (8)C2—C3—C9—C4179.82 (16)
N1—Ni1—O2—C1327.1 (2)C5—C4—C9—C3179.90 (17)
O1—Ni1—O2—C13170.32 (8)C5—C4—C9—C100.0 (2)
N2—Ni1—O2—C13101.46 (8)C1—N1—C10—C90.6 (2)
O3—Ni1—O2—C135.38 (8)Ni1—N1—C10—C9177.36 (12)
O4—Ni1—O3—C1388.17 (9)C1—N1—C10—C12179.14 (14)
N1—Ni1—O3—C13179.90 (8)Ni1—N1—C10—C122.93 (16)
O1—Ni1—O3—C135.53 (15)C3—C9—C10—N10.4 (2)
N2—Ni1—O3—C1397.59 (9)C4—C9—C10—N1179.51 (14)
O2—Ni1—O3—C135.46 (8)C3—C9—C10—C12179.28 (14)
N1—Ni1—O4—C15117.90 (13)C4—C9—C10—C120.8 (2)
O1—Ni1—O4—C1519.47 (13)C7—C6—C11—C120.4 (2)
O2—Ni1—O4—C1576.25 (13)C7—C6—C11—C5179.43 (15)
O3—Ni1—O4—C15137.69 (13)C4—C5—C11—C120.3 (2)
C13—Ni1—O4—C15106.87 (13)C4—C5—C11—C6178.73 (17)
O4—Ni1—N1—C13.18 (14)C8—N2—C12—C110.9 (2)
O1—Ni1—N1—C195.75 (14)Ni1—N2—C12—C11175.67 (11)
N2—Ni1—N1—C1178.02 (14)C8—N2—C12—C10179.84 (13)
O2—Ni1—N1—C1101.8 (2)Ni1—N2—C12—C105.10 (16)
O3—Ni1—N1—C182.11 (14)C6—C11—C12—N20.4 (2)
C13—Ni1—N1—C182.18 (15)C5—C11—C12—N2178.66 (14)
O4—Ni1—N1—C10174.48 (10)C6—C11—C12—C10179.62 (14)
O1—Ni1—N1—C1081.92 (10)C5—C11—C12—C100.6 (2)
N2—Ni1—N1—C104.31 (10)N1—C10—C12—N21.5 (2)
O2—Ni1—N1—C1080.5 (2)C9—C10—C12—N2178.18 (13)
O3—Ni1—N1—C10100.22 (10)N1—C10—C12—C11179.20 (13)
C13—Ni1—N1—C10100.15 (11)C9—C10—C12—C111.1 (2)
N1—Ni1—N2—C8179.04 (14)Ni1—O3—C13—O29.36 (13)
O1—Ni1—N2—C880.24 (14)Ni1—O3—C13—C14168.84 (12)
O2—Ni1—N2—C815.26 (14)Ni1—O2—C13—O39.63 (14)
O3—Ni1—N2—C877.35 (14)Ni1—O2—C13—C14168.57 (12)
C13—Ni1—N2—C846.36 (14)O4—Ni1—C13—O388.83 (8)
N1—Ni1—N2—C125.08 (10)N1—Ni1—C13—O30.14 (11)
O1—Ni1—N2—C1293.73 (10)O1—Ni1—C13—O3177.32 (7)
O2—Ni1—N2—C12170.78 (10)N2—Ni1—C13—O387.59 (9)
O3—Ni1—N2—C12108.69 (10)O2—Ni1—C13—O3170.69 (13)
C13—Ni1—N2—C12139.67 (10)O4—Ni1—C13—O2100.48 (8)
C10—N1—C1—C20.4 (2)N1—Ni1—C13—O2170.55 (8)
Ni1—N1—C1—C2177.15 (12)O1—Ni1—C13—O211.99 (10)
N1—C1—C2—C30.1 (3)N2—Ni1—C13—O283.10 (8)
C1—C2—C3—C90.0 (3)O3—Ni1—C13—O2170.69 (13)
C9—C4—C5—C110.6 (3)O3—C13—C14—C14i164.10 (18)
C11—C6—C7—C80.7 (2)O2—C13—C14—C14i14.1 (3)
C12—N2—C8—C70.6 (2)Ni1—O4—C15—O515.4 (2)
Ni1—N2—C8—C7174.28 (11)Ni1—O4—C15—C16164.36 (10)
C6—C7—C8—N20.2 (2)O5—C15—C16—C16ii1.9 (3)
C2—C3—C9—C100.1 (2)O4—C15—C16—C16ii177.9 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O50.851.782.6085 (15)163
O1—H2O1···O2iii0.851.932.7820 (15)177
Symmetry code: (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C4H2O4)(C12H8N2)(H2O)]
Mr370.99
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.8998 (4), 9.8238 (5), 11.3815 (8)
α, β, γ (°)68.677 (6), 70.141 (6), 89.655 (5)
V3)766.89 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.46 × 0.27 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionAnalytical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
Tmin, Tmax0.658, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
12619, 3173, 2972
Rint0.022
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.04
No. of reflections3173
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O50.851.782.6085 (15)163.1
O1—H2O1···O2i0.851.932.7820 (15)177.0
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

Financial support by the Slovak Ministry of Education (VEGA project No. 1/0089/09) is gratefully acknowledged.

References

First citationČernák, J., Pavlová, A., Orendáčová, A., Kajňaková, M. & Kuchár, J. (2009). Polyhedron, 28, 2893–2898.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCrystal Impact (2009). DIAMOND, Crystal Impact, D-53002 Bonn, Germany.  Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m900–m902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarsh, R. E. (2005). Acta Cryst. B61, 359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Microporous Mesoporous Mater. 73, 31–46.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m92-m93
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds