metal-organic compounds
The chain structure of [Ni(C4H2O4)(C12H8N2)(H2O)]n with different types of fumarate bridging
aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
*Correspondence e-mail: juraj.kuchar@upjs.sk
Using modified solvothermal conditions (longer cooling time), beside previously characterized dark-green crystals of [Ni(C4H2O4)(C12H8N2)] (main product), a few light-green crystals of the polymeric title compound, catena-poly[[aqua(1,10-phenanthroline-κ2N,N′)nickel(II)]-μ-fumarato-κ2O:O′-[aqua(1,10-phenanthroline-κ2N,N′)nickel(II)]-μ-fumarato-κ4O,O′:O′′,O′′′], [Ni(C4H2O4)(C12H8N2)(H2O)]n were isolated. Its is made up from zigzag chains, propagating in [001], in which the Ni2+ ions are linked alternatively by μ2-fumarato and bis-chelating fumarato bridging ligands. The Ni2+ ion is coordinated in a deformed octahedral geometry by one chelating 1,10-phenanthroline ligand, one aqua ligand in a cis position with regard to both N-donor atoms and by two different fumarato ligands, each residing with its central C=C bond on an inversion centre, occupying the remaining coordination sites in a fac fashion. The chains thus formed are linked by O—H⋯O hydrogen bonds and π–π interactions between the aromatic rings of the phenanthroline ligands with a shortest ring centroid separation of 3.4787 (10) Å.
Related literature
For Ni2+ complexes containing both fum and phen ligands (fum = fumarato, phen = 1,10-phenanthroline), see: Černák et al. (2009) for [Ni(fum)(phen)] with a two-dimensional structure and Ma et al. (2003) for [Ni2(phen)4(fum)(H2O)2]fum·16H2O with an ionic structure containing a dinuclear complex cation. For an Ni2+ complex, [Ni2(fum)2(py)6]·2py (py = pyridine), exhibiting a one-dimensional structure with the same type of fumarato bridging ligands, see: Mori et al. (2004); Marsh et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811054614/wm2574sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811054614/wm2574Isup2.hkl
A Parr reaction vessel (total volume 20 cm3) was filled with 6 cm3 of aqueous-ethanolic solution (1:1) containing 238 mg (1 mmol) of NiCl2.6H2O, 116 mg (1 mmol) of fumaric acid and 396 mg (2 mmol) of 1,10-phenantroline. Finally, 112 mg (2 mmol) of solid KOH was added. The closed reaction vessel was heated by uniform heating rate to 373 K during one hour and then was left at this temperature for 80 h. The reaction vessel was then uniformly cooled to room temperature during 20 h. The product consisted of dark-green crystals of [Ni(fum)(phen)] (main product) and few light-green crystals of [Ni(fum)(H2O)(phen)]. The mixture of crystals was separated from the mother liquor by filtration and dried at laboratory temperature. The light-green crystals were picked up and used for X-ray study.
The hydrogen atoms from the water molecule were located in a difference map, but their positions were constrained by geometric parameters to values of 0.850 Å for the O—H bond. The isotropic displacement parameters of the hydrogen atoms were tied to those of the parent oxygen atoms with Uiso(H) = 1.5Ueq(O). The hydrogen atoms of the phenantroline ligand and fumarato(2-) ligand were positioned geometrically with C—H = 0.950 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C4H2O4)(C12H8N2)(H2O)] | Z = 2 |
Mr = 370.99 | F(000) = 380 |
Triclinic, P1 | Dx = 1.607 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8998 (4) Å | Cell parameters from 9394 reflections |
b = 9.8238 (5) Å | θ = 3.3–29.4° |
c = 11.3815 (8) Å | µ = 1.29 mm−1 |
α = 68.677 (6)° | T = 173 K |
β = 70.141 (6)° | Prism, light-green |
γ = 89.655 (5)° | 0.46 × 0.27 × 0.12 mm |
V = 766.89 (8) Å3 |
Oxford Diffraction Xcalibur Sapphire2 diffractometer | 3173 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2972 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 8.3438 pixels mm-1 | θmax = 26.5°, θmin = 3.3° |
ω scans | h = −9→9 |
Absorption correction: analytical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] | k = −12→12 |
Tmin = 0.658, Tmax = 0.866 | l = −14→14 |
12619 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.057 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0268P)2 + 0.3218P] where P = (Fo2 + 2Fc2)/3 |
3173 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
[Ni(C4H2O4)(C12H8N2)(H2O)] | γ = 89.655 (5)° |
Mr = 370.99 | V = 766.89 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8998 (4) Å | Mo Kα radiation |
b = 9.8238 (5) Å | µ = 1.29 mm−1 |
c = 11.3815 (8) Å | T = 173 K |
α = 68.677 (6)° | 0.46 × 0.27 × 0.12 mm |
β = 70.141 (6)° |
Oxford Diffraction Xcalibur Sapphire2 diffractometer | 3173 independent reflections |
Absorption correction: analytical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] | 2972 reflections with I > 2σ(I) |
Tmin = 0.658, Tmax = 0.866 | Rint = 0.022 |
12619 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.057 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.33 e Å−3 |
3173 reflections | Δρmin = −0.25 e Å−3 |
217 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.83574 (2) | 0.255869 (19) | 0.208342 (18) | 0.02046 (7) | |
O1 | 1.05052 (14) | 0.37310 (12) | 0.20856 (11) | 0.0254 (2) | |
H1O1 | 0.9946 | 0.4226 | 0.2539 | 0.038* | |
H2O1 | 1.1060 | 0.4310 | 0.1268 | 0.038* | |
O2 | 0.77961 (14) | 0.43278 (11) | 0.05893 (11) | 0.0246 (2) | |
O3 | 0.60066 (15) | 0.22129 (11) | 0.15882 (11) | 0.0256 (2) | |
O4 | 0.65578 (15) | 0.30773 (12) | 0.35633 (11) | 0.0297 (2) | |
O5 | 0.82308 (16) | 0.48624 (13) | 0.36300 (12) | 0.0351 (3) | |
N1 | 0.85113 (17) | 0.05252 (14) | 0.34101 (12) | 0.0240 (3) | |
N2 | 1.02443 (17) | 0.18287 (13) | 0.07328 (12) | 0.0215 (3) | |
C1 | 0.7599 (2) | −0.01127 (18) | 0.47314 (16) | 0.0311 (4) | |
H1 | 0.6707 | 0.0385 | 0.5153 | 0.037* | |
C2 | 0.7899 (3) | −0.1492 (2) | 0.55307 (17) | 0.0373 (4) | |
H2 | 0.7221 | −0.1916 | 0.6476 | 0.045* | |
C3 | 0.9174 (3) | −0.22201 (19) | 0.49376 (18) | 0.0370 (4) | |
H3 | 0.9389 | −0.3155 | 0.5469 | 0.044* | |
C4 | 1.1536 (3) | −0.22521 (19) | 0.28194 (19) | 0.0375 (4) | |
H4 | 1.1810 | −0.3187 | 0.3300 | 0.045* | |
C5 | 1.2444 (2) | −0.15787 (19) | 0.14727 (19) | 0.0351 (4) | |
H5 | 1.3352 | −0.2046 | 0.1026 | 0.042* | |
C6 | 1.2939 (2) | 0.05748 (19) | −0.07064 (18) | 0.0321 (4) | |
H6 | 1.3850 | 0.0156 | −0.1209 | 0.039* | |
C7 | 1.2463 (2) | 0.19111 (18) | −0.13455 (16) | 0.0311 (4) | |
H7 | 1.3051 | 0.2431 | −0.2294 | 0.037* | |
C8 | 1.1105 (2) | 0.25035 (17) | −0.05917 (15) | 0.0263 (3) | |
H8 | 1.0786 | 0.3429 | −0.1048 | 0.032* | |
C9 | 1.0168 (2) | −0.15825 (17) | 0.35373 (17) | 0.0291 (3) | |
C10 | 0.9774 (2) | −0.01967 (16) | 0.28145 (15) | 0.0228 (3) | |
C11 | 1.2066 (2) | −0.01704 (17) | 0.07015 (17) | 0.0271 (3) | |
C12 | 1.0727 (2) | 0.05085 (16) | 0.13778 (15) | 0.0221 (3) | |
C13 | 0.6336 (2) | 0.35570 (16) | 0.08395 (14) | 0.0219 (3) | |
C14 | 0.4973 (2) | 0.42762 (17) | 0.02642 (16) | 0.0249 (3) | |
H14 | 0.4064 | 0.3645 | 0.0340 | 0.030* | |
C15 | 0.6762 (2) | 0.41233 (16) | 0.39247 (15) | 0.0247 (3) | |
C16 | 0.5037 (2) | 0.44635 (18) | 0.47800 (16) | 0.0280 (3) | |
H16 | 0.4000 | 0.3893 | 0.4987 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01891 (11) | 0.02183 (11) | 0.01896 (10) | 0.00744 (7) | −0.00459 (8) | −0.00816 (8) |
O1 | 0.0204 (6) | 0.0307 (6) | 0.0219 (5) | 0.0058 (4) | −0.0051 (4) | −0.0091 (4) |
O2 | 0.0189 (6) | 0.0254 (5) | 0.0260 (5) | 0.0056 (4) | −0.0082 (5) | −0.0062 (4) |
O3 | 0.0252 (6) | 0.0218 (5) | 0.0281 (6) | 0.0065 (4) | −0.0082 (5) | −0.0093 (4) |
O4 | 0.0258 (6) | 0.0322 (6) | 0.0296 (6) | 0.0048 (5) | −0.0008 (5) | −0.0186 (5) |
O5 | 0.0254 (6) | 0.0413 (7) | 0.0394 (7) | 0.0038 (5) | −0.0029 (5) | −0.0247 (6) |
N1 | 0.0222 (7) | 0.0256 (6) | 0.0207 (6) | 0.0043 (5) | −0.0059 (5) | −0.0068 (5) |
N2 | 0.0209 (7) | 0.0216 (6) | 0.0208 (6) | 0.0059 (5) | −0.0059 (5) | −0.0082 (5) |
C1 | 0.0282 (9) | 0.0358 (9) | 0.0236 (8) | 0.0030 (7) | −0.0054 (7) | −0.0088 (7) |
C2 | 0.0402 (11) | 0.0378 (9) | 0.0226 (8) | −0.0031 (8) | −0.0091 (8) | −0.0011 (7) |
C3 | 0.0461 (11) | 0.0285 (8) | 0.0326 (9) | 0.0039 (8) | −0.0212 (9) | −0.0012 (7) |
C4 | 0.0444 (11) | 0.0270 (8) | 0.0482 (11) | 0.0179 (8) | −0.0262 (9) | −0.0139 (8) |
C5 | 0.0329 (10) | 0.0330 (9) | 0.0480 (10) | 0.0185 (7) | −0.0175 (8) | −0.0226 (8) |
C6 | 0.0255 (9) | 0.0365 (9) | 0.0368 (9) | 0.0070 (7) | −0.0043 (7) | −0.0233 (8) |
C7 | 0.0297 (9) | 0.0340 (9) | 0.0235 (8) | 0.0004 (7) | −0.0006 (7) | −0.0126 (7) |
C8 | 0.0288 (9) | 0.0247 (7) | 0.0224 (7) | 0.0040 (6) | −0.0069 (7) | −0.0079 (6) |
C9 | 0.0323 (9) | 0.0249 (7) | 0.0327 (8) | 0.0061 (7) | −0.0182 (7) | −0.0078 (7) |
C10 | 0.0219 (8) | 0.0222 (7) | 0.0249 (7) | 0.0043 (6) | −0.0104 (6) | −0.0080 (6) |
C11 | 0.0233 (8) | 0.0280 (8) | 0.0348 (8) | 0.0077 (6) | −0.0108 (7) | −0.0172 (7) |
C12 | 0.0201 (8) | 0.0226 (7) | 0.0257 (7) | 0.0049 (6) | −0.0090 (6) | −0.0111 (6) |
C13 | 0.0202 (8) | 0.0246 (7) | 0.0204 (7) | 0.0080 (6) | −0.0047 (6) | −0.0106 (6) |
C14 | 0.0177 (8) | 0.0291 (7) | 0.0283 (8) | 0.0061 (6) | −0.0079 (6) | −0.0119 (6) |
C15 | 0.0263 (8) | 0.0258 (7) | 0.0193 (7) | 0.0080 (6) | −0.0049 (6) | −0.0090 (6) |
C16 | 0.0223 (8) | 0.0322 (8) | 0.0260 (8) | 0.0036 (6) | −0.0016 (7) | −0.0140 (7) |
Ni1—O4 | 2.0263 (10) | C3—H3 | 0.9500 |
Ni1—N1 | 2.0527 (12) | C4—C5 | 1.350 (3) |
Ni1—O1 | 2.0576 (11) | C4—C9 | 1.432 (2) |
Ni1—N2 | 2.0811 (12) | C4—H4 | 0.9500 |
Ni1—O2 | 2.1124 (10) | C5—C11 | 1.436 (2) |
Ni1—O3 | 2.1771 (11) | C5—H5 | 0.9500 |
O1—H1O1 | 0.8500 | C6—C7 | 1.371 (2) |
O1—H2O1 | 0.8500 | C6—C11 | 1.408 (2) |
O2—C13 | 1.2711 (18) | C6—H6 | 0.9500 |
O3—C13 | 1.2540 (18) | C7—C8 | 1.398 (2) |
O4—C15 | 1.2671 (18) | C7—H7 | 0.9500 |
O5—C15 | 1.2470 (19) | C8—H8 | 0.9500 |
N1—C1 | 1.326 (2) | C9—C10 | 1.408 (2) |
N1—C10 | 1.3563 (19) | C10—C12 | 1.438 (2) |
N2—C8 | 1.3253 (19) | C11—C12 | 1.403 (2) |
N2—C12 | 1.3631 (19) | C13—C14 | 1.490 (2) |
C1—C2 | 1.402 (2) | C14—C14i | 1.322 (3) |
C1—H1 | 0.9500 | C14—H14 | 0.9127 |
C2—C3 | 1.365 (3) | C15—C16 | 1.498 (2) |
C2—H2 | 0.9500 | C16—C16ii | 1.315 (3) |
C3—C9 | 1.407 (2) | C16—H16 | 0.9056 |
O4—Ni1—N1 | 93.22 (5) | C5—C4—C9 | 121.22 (15) |
O4—Ni1—O1 | 92.07 (4) | C5—C4—H4 | 119.4 |
N1—Ni1—O1 | 98.29 (5) | C9—C4—H4 | 119.4 |
O4—Ni1—N2 | 173.69 (5) | C4—C5—C11 | 121.40 (15) |
N1—Ni1—N2 | 80.59 (5) | C4—C5—H5 | 119.3 |
O1—Ni1—N2 | 87.68 (5) | C11—C5—H5 | 119.3 |
O4—Ni1—O2 | 90.64 (4) | C7—C6—C11 | 119.38 (14) |
N1—Ni1—O2 | 165.34 (5) | C7—C6—H6 | 120.3 |
O1—Ni1—O2 | 95.70 (4) | C11—C6—H6 | 120.3 |
N2—Ni1—O2 | 95.66 (4) | C6—C7—C8 | 119.52 (15) |
O4—Ni1—O3 | 84.64 (4) | C6—C7—H7 | 120.2 |
N1—Ni1—O3 | 104.64 (5) | C8—C7—H7 | 120.2 |
O1—Ni1—O3 | 156.97 (4) | N2—C8—C7 | 122.79 (14) |
N2—Ni1—O3 | 98.02 (4) | N2—C8—H8 | 118.6 |
O2—Ni1—O3 | 61.64 (4) | C7—C8—H8 | 118.6 |
O4—Ni1—C13 | 84.46 (5) | C3—C9—C10 | 116.94 (15) |
N1—Ni1—C13 | 135.31 (5) | C3—C9—C4 | 124.20 (15) |
O1—Ni1—C13 | 126.36 (5) | C10—C9—C4 | 118.86 (15) |
N2—Ni1—C13 | 100.76 (5) | N1—C10—C9 | 122.99 (14) |
O2—Ni1—C13 | 31.19 (4) | N1—C10—C12 | 117.23 (13) |
O3—Ni1—C13 | 30.68 (4) | C9—C10—C12 | 119.78 (14) |
Ni1—O1—H1O1 | 100.8 | C12—C11—C6 | 117.24 (14) |
Ni1—O1—H2O1 | 106.0 | C12—C11—C5 | 118.60 (15) |
H1O1—O1—H2O1 | 109.3 | C6—C11—C5 | 124.15 (15) |
C13—O2—Ni1 | 89.42 (8) | N2—C12—C11 | 123.04 (14) |
C13—O3—Ni1 | 86.97 (9) | N2—C12—C10 | 116.83 (13) |
C15—O4—Ni1 | 127.93 (10) | C11—C12—C10 | 120.13 (13) |
C1—N1—C10 | 118.30 (13) | O3—C13—O2 | 121.07 (13) |
C1—N1—Ni1 | 128.64 (11) | O3—C13—C14 | 119.63 (13) |
C10—N1—Ni1 | 113.02 (10) | O2—C13—C14 | 119.28 (13) |
C8—N2—C12 | 118.02 (13) | O3—C13—Ni1 | 62.35 (8) |
C8—N2—Ni1 | 129.72 (10) | O2—C13—Ni1 | 59.39 (7) |
C12—N2—Ni1 | 112.00 (10) | C14—C13—Ni1 | 170.01 (10) |
N1—C1—C2 | 122.60 (16) | C14i—C14—C13 | 122.62 (18) |
N1—C1—H1 | 118.7 | C14i—C14—H14 | 122.2 |
C2—C1—H1 | 118.7 | C13—C14—H14 | 115.2 |
C3—C2—C1 | 119.33 (16) | O5—C15—O4 | 126.05 (14) |
C3—C2—H2 | 120.3 | O5—C15—C16 | 119.26 (13) |
C1—C2—H2 | 120.3 | O4—C15—C16 | 114.68 (14) |
C2—C3—C9 | 119.83 (15) | C16ii—C16—C15 | 123.7 (2) |
C2—C3—H3 | 120.1 | C16ii—C16—H16 | 119.5 |
C9—C3—H3 | 120.1 | C15—C16—H16 | 116.8 |
O4—Ni1—O2—C13 | −78.18 (8) | C2—C3—C9—C4 | 179.82 (16) |
N1—Ni1—O2—C13 | 27.1 (2) | C5—C4—C9—C3 | −179.90 (17) |
O1—Ni1—O2—C13 | −170.32 (8) | C5—C4—C9—C10 | 0.0 (2) |
N2—Ni1—O2—C13 | 101.46 (8) | C1—N1—C10—C9 | −0.6 (2) |
O3—Ni1—O2—C13 | 5.38 (8) | Ni1—N1—C10—C9 | 177.36 (12) |
O4—Ni1—O3—C13 | 88.17 (9) | C1—N1—C10—C12 | 179.14 (14) |
N1—Ni1—O3—C13 | −179.90 (8) | Ni1—N1—C10—C12 | −2.93 (16) |
O1—Ni1—O3—C13 | 5.53 (15) | C3—C9—C10—N1 | 0.4 (2) |
N2—Ni1—O3—C13 | −97.59 (9) | C4—C9—C10—N1 | −179.51 (14) |
O2—Ni1—O3—C13 | −5.46 (8) | C3—C9—C10—C12 | −179.28 (14) |
N1—Ni1—O4—C15 | 117.90 (13) | C4—C9—C10—C12 | 0.8 (2) |
O1—Ni1—O4—C15 | 19.47 (13) | C7—C6—C11—C12 | 0.4 (2) |
O2—Ni1—O4—C15 | −76.25 (13) | C7—C6—C11—C5 | 179.43 (15) |
O3—Ni1—O4—C15 | −137.69 (13) | C4—C5—C11—C12 | 0.3 (2) |
C13—Ni1—O4—C15 | −106.87 (13) | C4—C5—C11—C6 | −178.73 (17) |
O4—Ni1—N1—C1 | 3.18 (14) | C8—N2—C12—C11 | −0.9 (2) |
O1—Ni1—N1—C1 | 95.75 (14) | Ni1—N2—C12—C11 | −175.67 (11) |
N2—Ni1—N1—C1 | −178.02 (14) | C8—N2—C12—C10 | 179.84 (13) |
O2—Ni1—N1—C1 | −101.8 (2) | Ni1—N2—C12—C10 | 5.10 (16) |
O3—Ni1—N1—C1 | −82.11 (14) | C6—C11—C12—N2 | 0.4 (2) |
C13—Ni1—N1—C1 | −82.18 (15) | C5—C11—C12—N2 | −178.66 (14) |
O4—Ni1—N1—C10 | −174.48 (10) | C6—C11—C12—C10 | 179.62 (14) |
O1—Ni1—N1—C10 | −81.92 (10) | C5—C11—C12—C10 | 0.6 (2) |
N2—Ni1—N1—C10 | 4.31 (10) | N1—C10—C12—N2 | −1.5 (2) |
O2—Ni1—N1—C10 | 80.5 (2) | C9—C10—C12—N2 | 178.18 (13) |
O3—Ni1—N1—C10 | 100.22 (10) | N1—C10—C12—C11 | 179.20 (13) |
C13—Ni1—N1—C10 | 100.15 (11) | C9—C10—C12—C11 | −1.1 (2) |
N1—Ni1—N2—C8 | −179.04 (14) | Ni1—O3—C13—O2 | 9.36 (13) |
O1—Ni1—N2—C8 | −80.24 (14) | Ni1—O3—C13—C14 | −168.84 (12) |
O2—Ni1—N2—C8 | 15.26 (14) | Ni1—O2—C13—O3 | −9.63 (14) |
O3—Ni1—N2—C8 | 77.35 (14) | Ni1—O2—C13—C14 | 168.57 (12) |
C13—Ni1—N2—C8 | 46.36 (14) | O4—Ni1—C13—O3 | −88.83 (8) |
N1—Ni1—N2—C12 | −5.08 (10) | N1—Ni1—C13—O3 | 0.14 (11) |
O1—Ni1—N2—C12 | 93.73 (10) | O1—Ni1—C13—O3 | −177.32 (7) |
O2—Ni1—N2—C12 | −170.78 (10) | N2—Ni1—C13—O3 | 87.59 (9) |
O3—Ni1—N2—C12 | −108.69 (10) | O2—Ni1—C13—O3 | 170.69 (13) |
C13—Ni1—N2—C12 | −139.67 (10) | O4—Ni1—C13—O2 | 100.48 (8) |
C10—N1—C1—C2 | 0.4 (2) | N1—Ni1—C13—O2 | −170.55 (8) |
Ni1—N1—C1—C2 | −177.15 (12) | O1—Ni1—C13—O2 | 11.99 (10) |
N1—C1—C2—C3 | −0.1 (3) | N2—Ni1—C13—O2 | −83.10 (8) |
C1—C2—C3—C9 | 0.0 (3) | O3—Ni1—C13—O2 | −170.69 (13) |
C9—C4—C5—C11 | −0.6 (3) | O3—C13—C14—C14i | 164.10 (18) |
C11—C6—C7—C8 | −0.7 (2) | O2—C13—C14—C14i | −14.1 (3) |
C12—N2—C8—C7 | 0.6 (2) | Ni1—O4—C15—O5 | −15.4 (2) |
Ni1—N2—C8—C7 | 174.28 (11) | Ni1—O4—C15—C16 | 164.36 (10) |
C6—C7—C8—N2 | 0.2 (2) | O5—C15—C16—C16ii | 1.9 (3) |
C2—C3—C9—C10 | −0.1 (2) | O4—C15—C16—C16ii | −177.9 (2) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O5 | 0.85 | 1.78 | 2.6085 (15) | 163 |
O1—H2O1···O2iii | 0.85 | 1.93 | 2.7820 (15) | 177 |
Symmetry code: (iii) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C4H2O4)(C12H8N2)(H2O)] |
Mr | 370.99 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 7.8998 (4), 9.8238 (5), 11.3815 (8) |
α, β, γ (°) | 68.677 (6), 70.141 (6), 89.655 (5) |
V (Å3) | 766.89 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.46 × 0.27 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire2 diffractometer |
Absorption correction | Analytical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] |
Tmin, Tmax | 0.658, 0.866 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12619, 3173, 2972 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.057, 1.04 |
No. of reflections | 3173 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.25 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O5 | 0.85 | 1.78 | 2.6085 (15) | 163.1 |
O1—H2O1···O2i | 0.85 | 1.93 | 2.7820 (15) | 177.0 |
Symmetry code: (i) −x+2, −y+1, −z. |
Acknowledgements
Financial support by the Slovak Ministry of Education (VEGA project No. 1/0089/09) is gratefully acknowledged.
References
Černák, J., Pavlová, A., Orendáčová, A., Kajňaková, M. & Kuchár, J. (2009). Polyhedron, 28, 2893–2898. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Crystal Impact (2009). DIAMOND, Crystal Impact, D-53002 Bonn, Germany. Google Scholar
Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m900–m902. Web of Science CSD CrossRef IUCr Journals Google Scholar
Marsh, R. E. (2005). Acta Cryst. B61, 359. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Microporous Mesoporous Mater. 73, 31–46. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Within our broader study on low-dimensional compounds of Ni(II) in the aqueous-alcoholic system Ni(II)-fum-phen (fum = fumarato, phen = 1,10-phenanthroline) using solvothermal conditions, we have isolated the title compound [Ni(fum)(H2O)(phen)] (I) in the form of few light-green crystals accompanying the major dark-green crystalline product [Ni(fum)(phen)] (II) (Černák et al., 2009). Such dark-green crystals were only formed if the reaction mixture was cooled from 373 K down to room temperature during 8 h. When the cooling time was elongated to 20 h, some light-green crystals of (I) likewise appeared.
The crystal structure of (I) is built up of zigzag chains exhibiting the backbone composition [–Ni–fum–Ni–fum–]n propagating parallel to the [001] direction. Within the chain the Ni2+ ions are linked alternatively by µ2-fumarato and bis-chelating fumarato bridging ligands (Fig. 1, Fig. 2). The same type of chains is observed in [Ni2(fum)2(py)6].2py (Mori et al., 2004; Marsh et al., 2005). On the other hand, the dark-green [Ni(fum)(phen)] exhibits a two-dimensional crystal structure built up of dimers of crystallographically non-equivalent Ni2+ ions linked by two different types of bridging fumarato ligands (Černák et al., 2009).
The Ni2+ central atom in (I) is octahedrally coordinated in a deformed NiN2O3O donor set by one chelating phen ligand, one aqua ligand placed in cis-position with regard to both donor nitrogen atoms of the phen ligand, and three coordination sites are occupied by oxygen atoms originating from two chemically different fum ligands, one coordinating through one O-donor atom, and the second one coordinating in a chelating fashion (Fig. 2). The presence of an additional aqua ligand in the coordination sphere of the Ni(II) atom lowers the number of free coordination sites available for polymerization from four in (II) to three in (I). Consequently, a crystal structure with lower dimensionality is realised.
The mean value of the Ni–N bond lengths (2.07 (2) Å) is close to that observed in [Ni2(phen)4(fum)(H2O)2]fum.16H2O (2.096 (1) Å) (Ma et al., 2003). In (I) two crystallographically independent fum2- ligands in the asymmetric unit reside on an inversion centre. The chelating fum ligand coordinates in an unsymmetrical fashion and the corresponding Ni—O bonds are longer with respect to the Ni—O bond of the monodentately coordinating fum ligand (Table 2). A similar situation as to the Ni–O bond lengths was observed in [Ni2(fum)2(py)6].2py (Mori et al., 2004). The Ni—O bond length of the aqua ligand exhibits an usual value (Ma et al., 2003).
Both hydrogen atoms of the aqua ligand are involved in rather strong hydrogen bonds of the O—H···O type (Fig. 3, Table 3). The H1O1 atom forms an intermolecular hydrogen bond with the not coordinating O5 atom from the carboxylate group. On the other hand, the H2O1 atom participates in an intermolecular hydrogen bond with the O2 atom (symmetry code 2 - x, 1 - y, -z) linking neighbouring chains; due to symmetry operators (centre of symmetry) the chains are linked with a pair of such hydrogen bond forming a ring arrangement R22(8).
Moreover, the chains interact also through π—π interactions between the aromatic rings of the phen ligands (Fig. 3). The distances between the centres of gravity, Cgi of the aromatic rings, are: 3.7942 (11) Å for Cg1—Cg1iv (Cg1 is the centre of gravity of the aromatic ring formed by atoms N1, C10, C9, C3, C2, C1) and 3.4787 (10) Å for Cg2···Cg2v (Cg2 is the centre of gravity of the aromatic ring formed by atoms N2, C8, C7, C6, C11, C12). Similar π—π interactions were also observed in the structure of the dark-green [Ni(fum)(phen)] (Černák et al., 2009).