inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages i12-i13

Redetermination of kovdorskite, Mg2PO4(OH)·3H2O

aDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA
*Correspondence e-mail: shaunnamm@email.arizona.edu

(Received 15 December 2011; accepted 4 January 2012; online 11 January 2012)

The crystal structure of kovdorskite, ideally Mg2PO4(OH)·3H2O (dimagnesium phosphate hydroxide trihydrate), was reported previously with isotropic displacement paramaters only and without H-atom positions [Ovchinnikov et al. (1980[Ovchinnikov, V. E., Soloveva, L. P., Pudovkina, Z. V., Kapustin, Y. L. & Belov, N. V. (1980). Dokl. Akad. Nauk SSSR, 255, 351-354.]). Dokl. Akad. Nauk SSSR. 255, 351–354]. In this study, the kovdorskite structure is redetermined based on single-crystal X-ray diffraction data from a sample from the type locality, the Kovdor massif, Kola Peninsula, Russia, with anisotropic displacement parameters for all non-H atoms, with all H-atom located and with higher precision. Moreover, inconsistencies of the previously published structural data with respect to reported and calculated X-ray powder patterns are also discussed. The structure of kovdorskite contains a set of four edge-sharing MgO6 octa­hedra inter­connected by PO4 tetra­hedra and O—H⋯O hydrogen bonds, forming columns and channels parallel to [001]. The hydrogen-bonding system in kovdorskite is formed through the water mol­ecules, with the OH ions contributing little, if any, to the system, as indicated by the long H⋯A distances (>2.50 Å) to the nearest O atoms. The hydrogen-bond lengths determined from the structure refinement agree well with Raman spectroscopic data.

Related literature

For background to kovdorskite, see: Kapustin et al. (1980[Kapustin, Y. L., Bykova, A. V. & Pudovkina, Z. V. (1980). Zap. Vses. Mineral. Ova. 109, 341-347.]); Ovchinnikov et al. (1980[Ovchinnikov, V. E., Soloveva, L. P., Pudovkina, Z. V., Kapustin, Y. L. & Belov, N. V. (1980). Dokl. Akad. Nauk SSSR, 255, 351-354.]); Ponomareva (1990[Ponomareva, E. V. (1990). Zap. Vses. Mineral. Ova. 119, 92-100.]); Lake & Craven (2001[Lake, C. H. & Craven, B. M. (2001). Mineral. Rec, 32, 43.]). For biomaterials studies of hydrated magnesium phosphates, see: Sutor et al. (1974[Sutor, D., Wooley, S. E. & Ellingsworth, J. J. (1974). Brit. J. Urol. 46, 275-288.]); Tamimi et al. (2011[Tamimi, F., Le Nihouannen, D., Bassett, D. C., Ibasco, S., Gbureck, U., Knowles, J., Wright, A., Flynn, A., Komarova, S. V. & Barralet, J. E. (2011). Acta Biomater. 7, 2678-2685.]); Klammert et al. (2011[Klammert, U., Ignatius, A., Wolfram, U., Reuther, T. & Gbureck, U. (2011). Acta Biomater. 7, 3469-3475.]). For applications of hydrated magnesium phosphates in the refractories industry, see: Kingery (1950[Kingery, W. D. (1950). J. Am. Ceram. Soc. 33, 239-241.], 1952[Kingery, W. D. (1952). J. Am. Ceram. Soc. 35, 61-63.]); Lyon et al. (1966[Lyon, J. E., Fox, T. U. & Lyons, J. W. (1966). Am. Ceram. Soc. Bull. 45, 1078-1081.]); Sarkar (1990[Sarkar, A. K. (1990). Am. Ceram. Soc. Bull. 69, 234-238.]). For applications of hydrated magnesium phosphate in fertilizers, see: Pelly & Bar-On (1979[Pelly, I. & Bar-On, P. (1979). J. Agric. Food Chem. 27, 147-152.]). For Raman spectra of related systems, see: Frost et al. (2002[Frost, R. L., Martens, W., Williams, P. A. & Kloprogge, J. T. (2002). Mineral. Mag. 66, 1063-1073.], 2011[Frost, R. L., Palmer, S. J. & Pogson, R. E. (2011). Spectrochim. Acta Part A, 79, 1149-1153.]). For correlations between O—H streching frequencies and O—H⋯O donor–acceptor distances, see: Libowitzky (1999[Libowitzky, E. (1999). Monatsh. Chem. 130, 1047-1059.]).

Experimental

Crystal data
  • Mg2PO4(OH)·3H2O

  • Mr = 214.65

  • Monoclinic, P 21 /a

  • a = 10.4785 (1) Å

  • b = 12.9336 (2) Å

  • c = 4.7308 (1) Å

  • β = 105.054 (1)°

  • V = 619.14 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 293 K

  • 0.10 × 0.09 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005[Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.]) Tmin = 0.938, Tmax = 0.944

  • 8463 measured reflections

  • 2231 independent reflections

  • 2008 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.07

  • 2231 reflections

  • 129 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OH5—H1⋯OW6i 0.892 (17) 2.497 (18) 3.2408 (10) 141.3 (15)
OH5—H1⋯OH5ii 0.892 (17) 2.511 (18) 3.2033 (14) 134.9 (15)
OW6—H2⋯O1iii 0.90 (2) 1.77 (2) 2.6518 (10) 165.3 (19)
OW6—H3⋯O2iv 0.869 (18) 1.849 (19) 2.7097 (10) 170.4 (17)
OW7—H4⋯O4 0.88 (2) 1.93 (2) 2.7221 (11) 149.4 (17)
OW7—H5⋯O2iv 0.83 (3) 2.07 (3) 2.8513 (11) 157 (2)
OW8—H6⋯O4 0.83 (2) 1.99 (2) 2.7647 (11) 156.7 (18)
OW8—H7⋯O1i 0.79 (3) 2.19 (3) 2.9294 (11) 156 (2)
Symmetry codes: (i) x, y, z+1; (ii) -x, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003[Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The pseudo-ternary MgO–P2O5–H2O system has been the subject of numerous studies because magnesium phosphates elicit industrial interest. They are used as bonding in refractories (Kingery, 1950; Lyon et al., 1966) and mortars (Kingery, 1952) or as rapid-setting cements (Sarkar, 1990). They also play an important role in the fertilizer industry due to their solubility properties (Pelly & Bar-On, 1979) and in medical research. In particular, newberyite, Mg(HPO4).3H2O, is a constituent of human urinary stones (Sutor et al., 1974) and has been found to act as a self-setting cement for synthetic bone replacements (Klammert et al., 2011). Moreover, newberyite and cattiite, Mg3(PO4)2.22H2O, have shown promising results during in-vivo bone regeneration experiments (Tamimi et al., 2011). In addition to newberyite and cattiite, there are eight other known hydrated Mg-phosphate minerals, including althausite Mg2PO4(OH), raadeite Mg7(PO4)2(OH)8, kovdorskite Mg2PO4(OH).3H2O (or with formula [Mg2(OH)(H2O)3]PO4 that better represents the crystal-chemical situation), garyansellite Mg3(PO4)2.3H2O, phosphorrösslerite Mg(HPO4).7H2O, barićite Mg3(PO4)2.8H2O, and bobierrite Mg3(PO4)2.8H2O.

Kovdorskite from the Kovdor massif, Kola Peninsula, Russia was originally described by Kapustin et al. (1980) with monoclinic symmetry in space group P21/c and unit-cell parameters a = 4.74 (2), b = 12.90 (4), c = 10.35 (4) Å, β = 102.0 (5)°. Its structure was subsequently determined by Ovchinnikov et al. (1980) based on space group P21/a and unit-cell parameters a = 10.35 (4), b = 12.90 (4), c = 4.73 (2) Å, β = 102.0 (5)°. The resultant R factor was 8% with isotropic displacement parameters for all atoms and no locations of H atoms. However, in a meeting abstract, Lake & Craven (2001) reported that kovdorskite crystallizes in space group P21/n with unit-cell parameters a = 4.724, b = 12.729, c = 10.134 Å, β = 102.22°, without presenting other structure information, such as atomic coordinates and displacement parameters. Further chemical and physical analyses on kovdorskite by Ponomareva (1990) revealed that the variation of trace Fe content gives rise to green to blue coloration in this mineral whereas traces of Mn cause a pink coloration.

In the course of identifying minerals for the RRUFF project (http://rruff.info), we noted that the powder X-ray diffraction pattern of kovdorskite we measured on a sample from the type locality displays some obvious inconsistencies with that calculated from the structure model given by Ovchinnikov et al. (1980) (Fig. 1). For comparison, plotted in Fig. 1 are also the powder X-ray diffraction data tabulated in the original description of the mineral (Kapustin et al., 1980), which clearly agree with our measured data. In seeking the reason behind the discrepancies between the measured and calculated powder X-ray diffraction data and to better understand the relationships between the hydrogen environments and Raman spectra of hydrous minerals, we re-determined the structure of kovdorskite by means of single-crystal X-ray diffraction.

The crystal structure of kovdorskite is characterized by clusters of four edge-sharing MgO6 octahedra that are interconnected by PO4 tetrahedra and hydrogen bonds to form columns and channels parallel to [001] (Figs. 2, 3). Within each cluster, there are two special corners where three octahedra are joined. These corners are occupied by hydroxyl ions (OH5). The hydrogen-bonding system in kovdorskite is mainly formed by the H atoms of H2O groups, which are all directed toward the channels. The H1 atom (bonded to OH5) contributes little, if any, to the hydrogen bonding system, as indicated by the long H···A distances to the nearest OW6 (2.50 Å) or OH5 (2.51 Å).

An examination of our structure data indicates that the discrepancy in the previously published crystallographic data for kovdorskite (Kapustin et al., 1980; Ovchinnikov et al., 1980; Lake & Craven, 2001) and the mismatch between the measured and calculated powder X-ray diffraction pattern result from the inconsistent choice of the unit-cell settings versus space groups by Kapustin et al. (1980) and Ovchinnikov et al. (1980). The space group P21/a and atomic coordinates given by Ovchinnikov et al. (1980) actually correspond to a unit-cell a = 10.45, b =12.90, c = 4.73 Å, and β = 104.3°, which can be derived with the transformation matrix (1 0 1 / 0 1 0 / 0 0 1) from their reported cell parameters. The powder X-ray diffraction pattern calculated using this new unit-cell setting, along with reported space group and atomic coordinates, then matches that measured experimentally. In our case, if we choose the unit-cell setting with a = 10.3164 (1), b =12.9336 (2), c = 4.7308 (1) Å, and β = 101.231 (1)°, then the corresponding space group is P21/n. However, if we adopt the setting with a = 10.4785 (1), b =12.9336 (2), c = 4.7308 (1) Å, and β = 105.054 (1)°, we have space group P21/a. The matrix for the transformation from the former setting to the latter one is the same as that given above. In this study, we have adopted the latter unit-cell setting to facilitate a direct comparison of our atomic coordinates with those reported by Ovchinnikov et al. (1980).

There have been numerous Raman spectroscopic measurements on a variety of phosphates, including barićite, bobierrite (Frost et al., 2002), and newberyite (Frost et al., 2011). Presented in Figure 4 is the Raman spectrum of kovdorskite. A tentative assignment of major Raman bands for this mineral is made according to previous studies on hydrous Mg-phosphate minerals (e.g. Frost et al., 2002, 2011). The most intense, sharp peak at 3681 cm-1 is ascribed to the OH5—H1 stretching mode, whereas three relatively broad bands at 3395, 3219, and 2967 cm-1 are attributable to the O—H stretching vibrations of the H2O molecules, and the very broad bump at 1550 ±100 cm-1 to the H2O bending vibrations. The O–H···O hydrogen bond lengths inferred from the measured spectrum are in the range 2.62–2.90 Å (Libowitzky, 1999), which compare well with those determined from our X-ray structural analysis (2.65–2.93 Å). Stretching vibrations within the PO4 group are responsible for the bands between 840 and 1120 cm-1 and bending vibrations for weak bands between 300 and 600 cm-1. The bands below 300 cm-1 are attributed to lattice vibrational modes and Mg—O interactions.

Related literature top

For background to kovdorskite, see: Kapustin et al. (1980); Ovchinnikov et al. (1980); Ponomareva (1990); Lake & Craven (2001). For biomaterials studies of hydrated magnesium phosphates, see: Sutor et al. (1974); Tamimi et al. (2011); Klammert et al. (2011). For applications of hydrated magnesium phosphates in the refractories industry, see: Kingery (1950, 1952); Lyon et al. (1966); Sarkar (1990). For applications of hydrated magnesium phosphate in fertilizers, see: Pelly & Bar-On (1979). For Raman spectra of related systems, see: Frost et al. (2002, 2011). For correlations between O—H streching frequencies and O—H···O donor–acceptor distances, see: Libowitzky (1999).

Experimental top

The kovdorskite specimen used in this study is from the type locality Kovdor Massif, Kola Peninsula, Russia and is in the collection of the RRUFF project (deposition No R050505, http://rruff.info). The chemical composition of the sample was analyzed with a CAMECA SX50 electron microprobe. Only Mg and P, plus very trace amounts of Mn and Ca, were detected. The empirical chemical formula, calculated on the basis of 4.5 O atoms, is Mg2.00PO4.00(OH).2.67H2O, where the amount of H2O was estimated by the difference from 100% mass totals.

The Raman spectrum of kovdorskite was collected from a randomly oriented crystal at 100% power on a Thermo Almega microRaman system, using a solid-state laser with a wavenumber of 532 nm, and a thermoelectrically cooled CCD detector. The laser is partially polarized with 4 cm-1 resolution and a spot size of 1 µm.

Refinement top

All H atoms were located from difference Fourier syntheses and their positions were refined with isotropic displacement parameters. For simplicity, an ideal chemistry, Mg2.00PO4.00(OH).3H2O, was assumed during the final refinement. The highest residual peak in the difference Fourier maps was located at (0.1815, 0.3311, 0.4211), 0.73 Å from O3, and the deepest hole at (0.7791, 0.7157, 0.4322), 0.50 Å from P1.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Comparison of the powder X-ray diffraction patterns for kovdorskite. The patterns are shown vertically offset for clarity: (a) by Kapustin et al. (1980), (b) our measurement, (c) calculated pattern based on the data given by Ovchinnikov et al. (1980), and (d) calculated pattern with space group and atomic coordinates reported by Ovchinnikov et al. (1980), but a transformed unit-cell setting (see text).
[Figure 2] Fig. 2. The crystal structure of kovdorskite viewed down c. Green octahedra represent the MgO6 groups and pink tetrahedra the PO4 groups. H atoms are given as blue spheres.
[Figure 3] Fig. 3. The crystal structure of kovdorskite viewed down c, showing atoms with displacement ellipsoids at the 99% probability level. Green, pink and red ellipsoids represent Mg, P and O atoms, respectively. H atoms are given as blue spheres with an arbitrary radius.
[Figure 4] Fig. 4. Raman spectrum of kovdorskite.
dimagnesium phosphate hydroxide trihydrate top
Crystal data top
Mg2PO4(OH)·3H2OF(000) = 440
Mr = 214.65Dx = 2.303 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 4644 reflections
a = 10.4785 (1) Åθ = 2.7–32.5°
b = 12.9336 (2) ŵ = 0.65 mm1
c = 4.7308 (1) ÅT = 293 K
β = 105.054 (1)°Cuboid, colorless
V = 619.14 (2) Å30.10 × 0.09 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2231 independent reflections
Radiation source: fine-focus sealed tube2008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scanθmax = 32.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
h = 1513
Tmin = 0.938, Tmax = 0.944k = 1519
8463 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.150P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2231 reflectionsΔρmax = 0.50 e Å3
129 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
Mg2PO4(OH)·3H2OV = 619.14 (2) Å3
Mr = 214.65Z = 4
Monoclinic, P21/aMo Kα radiation
a = 10.4785 (1) ŵ = 0.65 mm1
b = 12.9336 (2) ÅT = 293 K
c = 4.7308 (1) Å0.10 × 0.09 × 0.09 mm
β = 105.054 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2231 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
2008 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.944Rint = 0.026
8463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.056All H-atom parameters refined
S = 1.07Δρmax = 0.50 e Å3
2231 reflectionsΔρmin = 0.34 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.15418 (3)0.48809 (3)0.04828 (7)0.00906 (8)
Mg20.49666 (3)0.21171 (3)0.93433 (7)0.00854 (8)
P10.21969 (2)0.321419 (19)0.59573 (5)0.00682 (7)
O10.34918 (7)0.26654 (6)0.58522 (15)0.01002 (14)
O20.13841 (7)0.24609 (5)0.73290 (15)0.01022 (14)
O30.14008 (7)0.35212 (6)0.28575 (14)0.01018 (14)
O40.25621 (7)0.41919 (6)0.78609 (15)0.01050 (14)
OH50.01976 (7)0.56414 (5)0.22485 (15)0.00943 (13)
OW60.16539 (8)0.64623 (6)0.12401 (16)0.01279 (14)
OW70.32209 (8)0.53186 (7)0.35888 (18)0.01745 (16)
OW80.48594 (8)0.34594 (7)1.16317 (18)0.01686 (16)
H10.0319 (18)0.5627 (14)0.419 (4)0.034 (5)*
H20.160 (2)0.6770 (16)0.298 (5)0.051 (6)*
H30.2345 (18)0.6736 (13)0.005 (4)0.030 (4)*
H40.3228 (19)0.5108 (14)0.536 (4)0.035 (5)*
H50.353 (3)0.591 (2)0.371 (5)0.070 (8)*
H60.4269 (19)0.3840 (15)1.068 (4)0.038 (5)*
H70.468 (3)0.3322 (18)1.312 (6)0.063 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.00832 (15)0.00862 (16)0.00998 (15)0.00010 (12)0.00191 (11)0.00105 (11)
Mg20.00828 (15)0.00792 (16)0.00926 (15)0.00010 (12)0.00198 (11)0.00018 (11)
P10.00668 (11)0.00727 (12)0.00646 (11)0.00097 (8)0.00160 (7)0.00004 (7)
O10.0086 (3)0.0122 (3)0.0093 (3)0.0028 (3)0.0025 (2)0.0001 (2)
O20.0105 (3)0.0093 (3)0.0120 (3)0.0004 (3)0.0051 (2)0.0011 (2)
O30.0106 (3)0.0101 (3)0.0082 (3)0.0000 (3)0.0006 (2)0.0015 (2)
O40.0115 (3)0.0097 (3)0.0105 (3)0.0007 (3)0.0033 (2)0.0028 (2)
OH50.0103 (3)0.0095 (3)0.0082 (3)0.0003 (2)0.0018 (2)0.0000 (2)
OW60.0143 (3)0.0130 (3)0.0106 (3)0.0037 (3)0.0024 (3)0.0006 (3)
OW70.0181 (4)0.0163 (4)0.0149 (4)0.0043 (3)0.0011 (3)0.0001 (3)
OW80.0172 (4)0.0150 (4)0.0162 (4)0.0034 (3)0.0004 (3)0.0031 (3)
Geometric parameters (Å, º) top
Mg1—O4i2.0407 (8)Mg2—OW82.0644 (9)
Mg1—OH5ii2.0553 (8)Mg2—O12.0720 (7)
Mg1—OW72.0573 (9)Mg2—O3v2.0991 (8)
Mg1—OH52.0641 (8)Mg2—OW6iv2.2798 (8)
Mg1—O32.1124 (8)P1—O31.5390 (7)
Mg1—OW62.2162 (8)P1—O41.5419 (7)
Mg2—O2iii2.0365 (8)P1—O11.5434 (7)
Mg2—OH5iv2.0427 (8)P1—O21.5436 (7)
O4i—Mg1—OH5ii89.62 (3)O2iii—Mg2—O191.09 (3)
O4i—Mg1—OW793.92 (3)OH5iv—Mg2—O192.98 (3)
OH5ii—Mg1—OW7173.58 (4)OW8—Mg2—O189.96 (3)
O4i—Mg1—OH5167.00 (3)O2iii—Mg2—O3v90.97 (3)
OH5ii—Mg1—OH579.87 (3)OH5iv—Mg2—O3v84.20 (3)
OW7—Mg1—OH597.28 (3)OW8—Mg2—O3v92.33 (3)
O4i—Mg1—O394.58 (3)O1—Mg2—O3v176.63 (3)
OH5ii—Mg1—O383.55 (3)O2iii—Mg2—OW6iv172.77 (3)
OW7—Mg1—O390.82 (3)OH5iv—Mg2—OW6iv78.34 (3)
OH5—Mg1—O391.84 (3)OW8—Mg2—OW6iv87.62 (3)
O4i—Mg1—OW695.35 (3)O1—Mg2—OW6iv87.90 (3)
OH5ii—Mg1—OW6101.25 (3)O3v—Mg2—OW6iv89.74 (3)
OW7—Mg1—OW683.77 (3)O3—P1—O4109.62 (4)
OH5—Mg1—OW679.40 (3)O3—P1—O1110.58 (4)
O3—Mg1—OW6168.99 (3)O4—P1—O1108.00 (4)
O2iii—Mg2—OH5iv94.57 (3)O3—P1—O2109.98 (4)
O2iii—Mg2—OW899.54 (3)O4—P1—O2110.63 (4)
OH5iv—Mg2—OW8165.53 (4)O1—P1—O2107.99 (4)
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y1/2, z+1; (v) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OH5—H1···OW6vi0.892 (17)2.497 (18)3.2408 (10)141.3 (15)
OH5—H1···OH5vii0.892 (17)2.511 (18)3.2033 (14)134.9 (15)
OW6—H2···O1viii0.90 (2)1.77 (2)2.6518 (10)165.3 (19)
OW6—H3···O2ix0.869 (18)1.849 (19)2.7097 (10)170.4 (17)
OW7—H4···O40.88 (2)1.93 (2)2.7221 (11)149.4 (17)
OW7—H5···O2ix0.83 (3)2.07 (3)2.8513 (11)157 (2)
OW8—H6···O40.83 (2)1.99 (2)2.7647 (11)156.7 (18)
OW8—H7···O1vi0.79 (3)2.19 (3)2.9294 (11)156 (2)
Symmetry codes: (vi) x, y, z+1; (vii) x, y+1, z+1; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaMg2PO4(OH)·3H2O
Mr214.65
Crystal system, space groupMonoclinic, P21/a
Temperature (K)293
a, b, c (Å)10.4785 (1), 12.9336 (2), 4.7308 (1)
β (°) 105.054 (1)
V3)619.14 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.10 × 0.09 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2005)
Tmin, Tmax0.938, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
8463, 2231, 2008
Rint0.026
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.07
No. of reflections2231
No. of parameters129
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XtalDraw (Downs & Hall-Wallace, 2003), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OH5—H1···OW6i0.892 (17)2.497 (18)3.2408 (10)141.3 (15)
OH5—H1···OH5ii0.892 (17)2.511 (18)3.2033 (14)134.9 (15)
OW6—H2···O1iii0.90 (2)1.77 (2)2.6518 (10)165.3 (19)
OW6—H3···O2iv0.869 (18)1.849 (19)2.7097 (10)170.4 (17)
OW7—H4···O40.88 (2)1.93 (2)2.7221 (11)149.4 (17)
OW7—H5···O2iv0.83 (3)2.07 (3)2.8513 (11)157 (2)
OW8—H6···O40.83 (2)1.99 (2)2.7647 (11)156.7 (18)
OW8—H7···O1i0.79 (3)2.19 (3)2.9294 (11)156 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge support of this study by the Arizona Science Foundatioh and NASA NNX11AN75A, Mars Science Laboratory Investigations.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowns, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250.  CAS Google Scholar
First citationFrost, R. L., Martens, W., Williams, P. A. & Kloprogge, J. T. (2002). Mineral. Mag. 66, 1063–1073.  Web of Science CrossRef CAS Google Scholar
First citationFrost, R. L., Palmer, S. J. & Pogson, R. E. (2011). Spectrochim. Acta Part A, 79, 1149–1153.  CrossRef CAS Google Scholar
First citationKapustin, Y. L., Bykova, A. V. & Pudovkina, Z. V. (1980). Zap. Vses. Mineral. Ova. 109, 341–347.  CAS Google Scholar
First citationKingery, W. D. (1950). J. Am. Ceram. Soc. 33, 239–241.  CrossRef CAS Google Scholar
First citationKingery, W. D. (1952). J. Am. Ceram. Soc. 35, 61–63.  CrossRef CAS Google Scholar
First citationKlammert, U., Ignatius, A., Wolfram, U., Reuther, T. & Gbureck, U. (2011). Acta Biomater. 7, 3469–3475.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLake, C. H. & Craven, B. M. (2001). Mineral. Rec, 32, 43.  Google Scholar
First citationLibowitzky, E. (1999). Monatsh. Chem. 130, 1047–1059.  Web of Science CrossRef CAS Google Scholar
First citationLyon, J. E., Fox, T. U. & Lyons, J. W. (1966). Am. Ceram. Soc. Bull. 45, 1078–1081.  CAS Google Scholar
First citationOvchinnikov, V. E., Soloveva, L. P., Pudovkina, Z. V., Kapustin, Y. L. & Belov, N. V. (1980). Dokl. Akad. Nauk SSSR, 255, 351–354.  CAS Google Scholar
First citationPelly, I. & Bar-On, P. (1979). J. Agric. Food Chem. 27, 147–152.  CrossRef CAS Web of Science Google Scholar
First citationPonomareva, E. V. (1990). Zap. Vses. Mineral. Ova. 119, 92–100.  CAS Google Scholar
First citationSarkar, A. K. (1990). Am. Ceram. Soc. Bull. 69, 234–238.  CAS Google Scholar
First citationSheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutor, D., Wooley, S. E. & Ellingsworth, J. J. (1974). Brit. J. Urol. 46, 275–288.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTamimi, F., Le Nihouannen, D., Bassett, D. C., Ibasco, S., Gbureck, U., Knowles, J., Wright, A., Flynn, A., Komarova, S. V. & Barralet, J. E. (2011). Acta Biomater. 7, 2678–2685.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages i12-i13
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds