metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­cobalt(II)]-μ2-7-oxa­bi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato-κ4O2,O3,O7:O2′]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 24 December 2011; accepted 6 January 2012; online 14 January 2012)

The polymeric title complex, [Co(C8H8O5)(H2O)2]n was synthesized by reaction of cobalt acetate with 7-oxabicyclo­[2,2,1]heptane-2,3-dicarb­oxy­lic anhydride. The CoII ion is six-coordinated in a distorted octa­hedral environment, binding to two water O atoms, to the ether O atom of the bicyclo­heptane unit, to two carboxyl­ate O atoms from two different carboxyl­ate groups of the same anion and to one carboxyl­ate O atom from a symmetry-related anion. The bridging character of the dianion leads to the formation of ribbons along [001]. The ribbons are linked into a layered network parallel to (010) by several O—H⋯O hydrogen-bonding inter­actions involving the coordinating water mol­ecules as donors and the carboxyl­ate O atoms of neighbouring ribbons as acceptors. The crystal under investigation was an inversion twin.

Related literature

For background to the applications of norcantharidin [systematic name: 7-oxabicyclo­(2.2.1)heptane-2,3-dicarb­oxy­lic anhydride], see: Yang et al. (2002[Yang, L.-Q., Crans, D. C., Miller, S. M., Cour, A., Anderson, O. P., Kaszynski, P. M., Godzala, M. E., Austin, L. D. & Willsky, G. R. (2002). Inorg. Chem. 41, 4859-4871.]). For the isotypic Cu analogue, see: Wang et al. (2009a[Wang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2009a). Acta Cryst. E65, m169.]), and for a related Ni complex with monoclinic symmetry, see: Wang et al. (2009b[Wang, Y.-Y., Hu, R.-D., Zhu, W.-Z. & Lin, Q.-Y. (2009b). Acta Cryst. E65, m787.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H8O5)(H2O)2]

  • Mr = 279.11

  • Orthorhombic, I b a 2

  • a = 10.3794 (10) Å

  • b = 18.983 (3) Å

  • c = 10.5021 (12) Å

  • V = 2069.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 296 K

  • 0.22 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.742, Tmax = 0.851

  • 13174 measured reflections

  • 1837 independent reflections

  • 1821 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.088

  • S = 1.00

  • 1837 reflections

  • 146 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.77 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 860 Friedel pairs

  • Flack parameter: 0.12 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.85 1.98 2.832 (3) 180
O2W—H2WB⋯O4i 0.85 1.96 2.811 (3) 180
O1W—H1WB⋯O4ii 0.85 1.95 2.800 (3) 180
O2W—H2WA⋯O3iii 0.85 1.86 2.708 (3) 180
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) [-x, y, z-{\script{1\over 2}}]; (iii) -x, -y+2, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylic anhydride (norcantharidin), a traditional Chinese drug, has great anti-cancer activity. The coordination chemistry of cobalt has been important in biology mainly because of coenzyme B12 (Yang et al., 2002). Therefore studying the combination of norcantharidin and cobalt seemed interesting. In this communication, the polymeric title complex, [Co(C8H8O5)(H2O)2]n is reported.

The isostructural cooper complex (Wang et al., 2009a) and a similar nickel complex with monoclinic symmetry (Wang et al., 2009b) of demethylcantharate have been reported previously. The coordination of the Co2+ ion in the title complex is shown in Fig. 1. The Co2+ ion is six-coordinated in a distorted octahedral coordination mode, binding to two water O atoms, to the bridging O atom of the bicycloheptane unit, to two carboxylate O atoms from different carboxylate groups and to one carboxylate O atom from a symmetry-related bridging anion. This leads to the formation of ribbons extending along [001] (Fig. 2).

As also shown in Fig. 2, the ribbons are linked into a two-dimensional network parallel to (010) by several O—H···O hydrogen-bonding interactions involving the coordinating water molecules as donors and the carboxylate O atoms of neighbouring ribbons as acceptors.

Related literature top

For background to the applications of norcantharidin [systematic name: 7-oxabicyclo(2.2.1)heptane-2,3-dicarboxylic anhydride], see: Yang et al. (2002). For the isotypic Cu analogue, see: Wang et al. (2009a), and for a related Ni complex with monoclinic symmetry, see: Wang et al. (2009b).

Experimental top

A mixture of 0.5 mmol norcantharidin, 0.5 mmol cobalt acetate and 15 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. The solution was filtered and block red crystals were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aliphatic tertiary carbon C—H = 0.98 Å, aliphatic secondary carbon C—H = 0.97 Å, both with Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to the O atoms were located in a difference Fourier map and refined with O—H distance restraints of 0.85 (1) Å and Uiso(H) = 1.5Ueq(O). The crystal under investigation was an inversion twin with a ratio of 0.88 (3):0.12 (3).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination of the Co2+ ion with atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. [[Symmetry code (A) x, -y+2, z-1/2].
[Figure 2] Fig. 2. The one-dimensional polymeric structure of the title complex along [001] with hydrogen bonding interactions (dotted lines).
catena-Poly[[diaquacobalt(II)]-µ2-7-oxabicyclo[2.2.1]heptane-2,3- dicarboxylato-κ4O2,O3,O7:O2'] top
Crystal data top
[Co(C8H8O5)(H2O)2]F(000) = 1144
Mr = 279.11Dx = 1.792 Mg m3
Orthorhombic, Iba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 9954 reflections
a = 10.3794 (10) Åθ = 2.2–25.0°
b = 18.983 (3) ŵ = 1.68 mm1
c = 10.5021 (12) ÅT = 296 K
V = 2069.3 (5) Å3Block, red
Z = 80.22 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1837 independent reflections
Radiation source: fine-focus sealed tube1821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 129
Tmin = 0.742, Tmax = 0.851k = 2222
13174 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0734P)2 + 1.6545P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1837 reflectionsΔρmax = 0.32 e Å3
146 parametersΔρmin = 0.77 e Å3
7 restraintsAbsolute structure: Flack (1983), 860 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (3)
Crystal data top
[Co(C8H8O5)(H2O)2]V = 2069.3 (5) Å3
Mr = 279.11Z = 8
Orthorhombic, Iba2Mo Kα radiation
a = 10.3794 (10) ŵ = 1.68 mm1
b = 18.983 (3) ÅT = 296 K
c = 10.5021 (12) Å0.22 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1837 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1821 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.851Rint = 0.025
13174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.32 e Å3
S = 1.00Δρmin = 0.77 e Å3
1837 reflectionsAbsolute structure: Flack (1983), 860 Friedel pairs
146 parametersAbsolute structure parameter: 0.12 (3)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.23966 (4)0.966647 (19)0.74932 (8)0.02813 (16)
O1W0.1588 (3)0.91672 (15)0.5806 (2)0.0429 (6)
H1WA0.20800.94310.53690.064*
H1WB0.08430.89870.57270.064*
O10.3221 (2)0.99510 (11)0.9348 (2)0.0248 (4)
O2W0.1226 (2)1.06142 (12)0.7759 (2)0.0374 (6)
H2WA0.04831.07310.80260.056*
H2WB0.11211.08580.70890.056*
O20.3530 (2)0.96635 (11)1.1378 (2)0.0257 (5)
O30.1138 (2)0.90091 (11)0.8609 (2)0.0303 (5)
O40.0868 (2)0.85747 (12)1.0548 (2)0.0309 (5)
O50.37724 (17)0.87420 (9)0.76172 (19)0.0215 (4)
C10.4783 (3)0.87921 (15)0.8584 (3)0.0242 (6)
H10.53460.92020.84800.029*
C20.4010 (3)0.87971 (14)0.9824 (3)0.0201 (6)
H20.45220.85871.05100.024*
C30.2838 (3)0.82969 (15)0.9480 (3)0.0217 (6)
H30.28520.78781.00230.026*
C40.3196 (3)0.80965 (14)0.8104 (3)0.0258 (6)
H40.24650.79270.75970.031*
C50.4367 (4)0.75899 (17)0.8103 (4)0.0389 (8)
H5A0.42720.72230.87380.047*
H5B0.44920.73760.72730.047*
C60.5475 (3)0.80918 (18)0.8437 (3)0.0351 (7)
H6A0.58950.79530.92240.042*
H6B0.61100.81100.77600.042*
C70.3557 (2)0.95301 (15)1.0216 (3)0.0179 (6)
C80.1514 (3)0.86588 (14)0.9561 (3)0.0211 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0293 (2)0.0306 (3)0.0245 (2)0.00025 (14)0.0007 (2)0.0048 (2)
O1W0.0397 (14)0.0645 (17)0.0247 (11)0.0249 (12)0.0039 (11)0.0043 (12)
O10.0329 (11)0.0223 (10)0.0191 (9)0.0030 (8)0.0000 (9)0.0004 (8)
O2W0.0309 (12)0.0419 (12)0.0394 (14)0.0150 (10)0.0098 (10)0.0125 (10)
O20.0236 (12)0.0331 (10)0.0203 (10)0.0057 (8)0.0002 (9)0.0052 (7)
O30.0186 (10)0.0394 (12)0.0329 (12)0.0013 (9)0.0023 (9)0.0144 (10)
O40.0272 (11)0.0399 (12)0.0257 (11)0.0020 (9)0.0057 (9)0.0035 (9)
O50.0231 (9)0.0226 (9)0.0187 (10)0.0008 (7)0.0006 (8)0.0003 (8)
C10.0195 (13)0.0282 (14)0.0249 (15)0.0029 (11)0.0012 (12)0.0046 (11)
C20.0196 (13)0.0224 (14)0.0183 (13)0.0023 (11)0.0012 (11)0.0008 (11)
C30.0240 (13)0.0184 (13)0.0227 (14)0.0009 (12)0.0005 (12)0.0036 (11)
C40.0310 (16)0.0205 (13)0.0259 (14)0.0007 (11)0.0011 (13)0.0034 (11)
C50.051 (2)0.0250 (15)0.0408 (18)0.0140 (14)0.0077 (17)0.0045 (13)
C60.0303 (16)0.0438 (17)0.0312 (17)0.0170 (14)0.0038 (15)0.0048 (14)
C70.0125 (12)0.0237 (13)0.0174 (14)0.0020 (10)0.0001 (11)0.0046 (11)
C80.0200 (14)0.0196 (13)0.0238 (14)0.0038 (10)0.0011 (12)0.0001 (11)
Geometric parameters (Å, º) top
Co1—O2i2.091 (2)C1—C61.519 (4)
Co1—O32.154 (2)C1—C21.529 (4)
Co1—O1W2.178 (3)C1—H10.9800
Co1—O2W2.188 (2)C2—C71.525 (4)
Co1—O12.194 (2)C2—C31.585 (4)
Co1—O52.2664 (18)C2—H20.9800
O1W—H1WA0.8500C3—C81.539 (4)
O1W—H1WB0.8500C3—C41.540 (4)
O1—C71.262 (4)C3—H30.9800
O2W—H2WA0.8501C4—C51.550 (4)
O2W—H2WB0.8499C4—H40.9800
O2—C71.246 (4)C5—C61.534 (5)
O2—Co1ii2.091 (2)C5—H5A0.9700
O3—C81.262 (4)C5—H5B0.9700
O4—C81.244 (4)C6—H6A0.9700
O5—C41.456 (3)C6—H6B0.9700
O5—C11.462 (4)
O2i—Co1—O3176.84 (9)C1—C2—C3101.8 (2)
O2i—Co1—O1W91.46 (10)C7—C2—H2109.9
O3—Co1—O1W87.54 (10)C1—C2—H2109.9
O2i—Co1—O2W83.31 (9)C3—C2—H2109.9
O3—Co1—O2W94.03 (8)C8—C3—C4112.2 (2)
O1W—Co1—O2W104.34 (11)C8—C3—C2113.9 (2)
O2i—Co1—O197.37 (9)C4—C3—C2100.2 (2)
O3—Co1—O184.03 (9)C8—C3—H3110.0
O1W—Co1—O1168.35 (9)C4—C3—H3110.0
O2W—Co1—O184.31 (9)C2—C3—H3110.0
O2i—Co1—O598.56 (8)O5—C4—C3102.7 (2)
O3—Co1—O584.39 (7)O5—C4—C5101.5 (2)
O1W—Co1—O587.28 (10)C3—C4—C5110.1 (2)
O2W—Co1—O5168.22 (10)O5—C4—H4113.8
O1—Co1—O583.92 (8)C3—C4—H4113.8
Co1—O1W—H1WA87.2C5—C4—H4113.8
Co1—O1W—H1WB127.2C6—C5—C4101.7 (2)
H1WA—O1W—H1WB137.0C6—C5—H5A111.4
C7—O1—Co1126.40 (17)C4—C5—H5A111.4
Co1—O2W—H2WA139.4C6—C5—H5B111.4
Co1—O2W—H2WB114.5C4—C5—H5B111.4
H2WA—O2W—H2WB90.8H5A—C5—H5B109.3
C7—O2—Co1ii133.2 (2)C1—C6—C5102.2 (3)
C8—O3—Co1123.30 (19)C1—C6—H6A111.3
C4—O5—C196.1 (2)C5—C6—H6A111.3
C4—O5—Co1114.38 (16)C1—C6—H6B111.3
C1—O5—Co1116.19 (14)C5—C6—H6B111.3
O5—C1—C6102.2 (2)H6A—C6—H6B109.2
O5—C1—C2102.4 (2)O2—C7—O1124.9 (3)
C6—C1—C2109.8 (2)O2—C7—C2117.2 (2)
O5—C1—H1113.7O1—C7—C2117.9 (2)
C6—C1—H1113.7O4—C8—O3124.1 (3)
C2—C1—H1113.7O4—C8—C3118.0 (3)
C7—C2—C1113.4 (2)O3—C8—C3117.8 (3)
C7—C2—C3111.8 (2)
O2i—Co1—O1—C7134.4 (2)C7—C2—C3—C4122.2 (2)
O3—Co1—O1—C748.5 (2)C1—C2—C3—C40.9 (3)
O1W—Co1—O1—C74.6 (6)C1—O5—C4—C357.7 (2)
O2W—Co1—O1—C7143.1 (2)Co1—O5—C4—C364.7 (2)
O5—Co1—O1—C736.5 (2)C1—O5—C4—C556.1 (2)
O1W—Co1—O3—C8131.9 (2)Co1—O5—C4—C5178.54 (17)
O2W—Co1—O3—C8123.9 (2)C8—C3—C4—O585.4 (3)
O1—Co1—O3—C840.0 (2)C2—C3—C4—O535.8 (3)
O5—Co1—O3—C844.4 (2)C8—C3—C4—C5167.1 (2)
O2i—Co1—O5—C4167.10 (18)C2—C3—C4—C571.7 (3)
O3—Co1—O5—C411.75 (19)O5—C4—C5—C634.5 (3)
O1W—Co1—O5—C476.03 (19)C3—C4—C5—C673.8 (3)
O2W—Co1—O5—C494.6 (4)O5—C1—C6—C535.0 (3)
O1—Co1—O5—C496.32 (19)C2—C1—C6—C573.2 (3)
O2i—Co1—O5—C182.24 (18)C4—C5—C6—C10.3 (3)
O3—Co1—O5—C198.90 (18)Co1ii—O2—C7—O127.9 (4)
O1W—Co1—O5—C1173.31 (19)Co1ii—O2—C7—C2151.0 (2)
O2W—Co1—O5—C116.1 (5)Co1—O1—C7—O2149.7 (2)
O1—Co1—O5—C114.33 (18)Co1—O1—C7—C229.1 (3)
C4—O5—C1—C657.0 (3)C1—C2—C7—O2144.6 (3)
Co1—O5—C1—C6178.01 (18)C3—C2—C7—O2101.0 (3)
C4—O5—C1—C256.8 (2)C1—C2—C7—O136.5 (3)
Co1—O5—C1—C264.2 (2)C3—C2—C7—O177.9 (3)
O5—C1—C2—C786.2 (3)Co1—O3—C8—O4142.1 (2)
C6—C1—C2—C7165.7 (2)Co1—O3—C8—C339.6 (3)
O5—C1—C2—C334.1 (3)C4—C3—C8—O4149.2 (3)
C6—C1—C2—C374.0 (3)C2—C3—C8—O497.8 (3)
C7—C2—C3—C82.2 (3)C4—C3—C8—O329.2 (3)
C1—C2—C3—C8119.1 (2)C2—C3—C8—O383.8 (3)
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.851.982.832 (3)180
O2W—H2WB···O4i0.851.962.811 (3)180
O1W—H1WB···O4iii0.851.952.800 (3)180
O2W—H2WA···O3iv0.851.862.708 (3)180
Symmetry codes: (i) x, y+2, z1/2; (iii) x, y, z1/2; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Co(C8H8O5)(H2O)2]
Mr279.11
Crystal system, space groupOrthorhombic, Iba2
Temperature (K)296
a, b, c (Å)10.3794 (10), 18.983 (3), 10.5021 (12)
V3)2069.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.22 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.742, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
13174, 1837, 1821
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.088, 1.00
No. of reflections1837
No. of parameters146
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.77
Absolute structureFlack (1983), 860 Friedel pairs
Absolute structure parameter0.12 (3)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.851.982.832 (3)179.7
O2W—H2WB···O4i0.851.962.811 (3)179.6
O1W—H1WB···O4ii0.851.952.800 (3)179.9
O2W—H2WA···O3iii0.851.862.708 (3)179.6
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y, z1/2; (iii) x, y+2, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2009a). Acta Cryst. E65, m169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-Y., Hu, R.-D., Zhu, W.-Z. & Lin, Q.-Y. (2009b). Acta Cryst. E65, m787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L.-Q., Crans, D. C., Miller, S. M., Cour, A., Anderson, O. P., Kaszynski, P. M., Godzala, M. E., Austin, L. D. & Willsky, G. R. (2002). Inorg. Chem. 41, 4859–4871.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds