metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m167-m168

[N,N-Bis(2-amino­eth­yl)ethane-1,2-di­amine](ethane-1,2-di­amine)­nickel(II) thio­sulfate trihydrate

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

(Received 5 January 2012; accepted 13 January 2012; online 18 January 2012)

The title compound, [Ni(C2H8N2)(C6H18N4)]S2O3·3H2O, was accidentally synthesized under solvothermal conditions applying [Ni(en)3]Cl2 (en is ethane-1,2-diamine) as the Ni source. The asymmetric unit consists of one discrete [Ni(tren)(en)]2+ complex [tren is N,N-bis­(2-amino­eth­yl)ethane-1,2-diamine] in which the Ni2+ cation is sixfold coord­inated within a slightly distorted octa­hedron, one thio­sulfate anion and three water mol­ecules. In the crystal, the complex cations, anions and water mol­ecules are linked by an intricate hydrogen-bonding network. One C atom of the tren ligand, as well as one O atom of a water mol­ecule, are disordered over two sites and were refined using a split model (occupancy ratios = 0.85:15 and 0.60:0.40, respectively).

Related literature

For background of this work, see: Lühmann et al. (2011[Lühmann, H., Näther, C. & Bensch, W. (2011). Z. Anorg. Allg. Chem. 637, 1007-1012.]); Seidlhofer et al. (2011[Seidlhofer, B., Djamil, J., Näther, C. & Bensch, W. (2011). Cryst. Growth Des. 11, 5554-5560.]). For related thio­sulfate crystal structures, see: Nardelli & Coghi (1958[Nardelli, M. & Coghi, L. (1958). Ric. Sci. 28, 609-610.]); Varand et al. (1967[Varand, V. L., Podberezskaya, N. V., Shulman, V. M., Bakakin, V. V. & Ruchkin, E. D. (1967). Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim. Nauk, 5, 44-47.]); Freire et al. (2000[Freire, E., Baggio, S., Mombru, A. & Baggio, R. (2000). Acta Cryst. C56, 541-543.]); Díaz de Vivar et al. (2007[Díaz de Vivar, M. E., Baggio, S., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m153-m156.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H8N2)(C6H18N4)]S2O3·3H2O

  • Mr = 431.23

  • Monoclinic, P 21 /n

  • a = 10.890 (2) Å

  • b = 10.0494 (17) Å

  • c = 16.689 (3) Å

  • β = 96.68 (2)°

  • V = 1813.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 170 K

  • 0.16 × 0.11 × 0.06 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998[Stoe & Cie (1998). X-SHAPE and IPDS Program Package. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.559, Tmax = 0.748

  • 23884 measured reflections

  • 4358 independent reflections

  • 3924 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.05

  • 4358 reflections

  • 216 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N5 2.0865 (16)
Ni1—N4 2.1099 (15)
Ni1—N1 2.1124 (16)
Ni1—N2 2.1364 (15)
Ni1—N3 2.1491 (16)
Ni1—N6 2.1634 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3i 0.92 2.47 3.324 (2) 155
N2—H2N2⋯O2ii 0.92 2.25 3.084 (2) 150
N3—H1N3⋯S2iii 0.92 2.68 3.5921 (18) 169
N4—H1N4⋯O2ii 0.92 2.09 2.971 (2) 161
N4—H2N4⋯O2iii 0.92 2.25 3.151 (2) 165
N4—H2N4⋯S2iii 0.92 3.21 3.8838 (17) 131
N5—H1N5⋯O1iii 0.92 2.40 3.244 (2) 153
N5—H1N5⋯O2iii 0.92 2.48 3.289 (2) 147
N5—H2N5⋯O4ii 0.92 2.09 2.997 (3) 168
N6—H1N6⋯O3i 0.92 2.30 3.062 (2) 140
N6—H2N6⋯O1 0.92 2.44 3.307 (2) 158
N6—H2N6⋯S2 0.92 2.89 3.6214 (17) 137
O4—H2O4⋯S2 0.84 2.56 3.390 (2) 171
O5—H1O5⋯O3 0.84 2.02 2.858 (3) 179
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: IPDS Program Package (Stoe & Cie, 1998[Stoe & Cie (1998). X-SHAPE and IPDS Program Package. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS Program Package; data reduction: IPDS Program Package; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of the title compound was determined within a project on the synthesis, structure determination and investigation of the properties of new thioantimonates (Seidlhofer et al., 2011; Lühmann et al., 2011). The crystals were obtained accidentally by the reaction of [Ni(en)3]Cl2 with Sb and S in tris(2-aminoethyl)amine.

The structure consists of a discrete [Ni(tren)(en)]2+ complex, a thiosulfate anion and three water molecules. The Ni2+ cation is octahedrally coordinated by four N atoms from one tris(2-aminoethyl)amine and two N atoms from one ethylenediamine ligand (Fig. 1). The Ni—N bond lengths are between 2.0865 (16) and 2.1634 (15) Å and the N—Ni—N angles range from 82.39 (6) to 175.52 (6) °. In the crystal structure the cations, anions and water molecules are connected by a complex hydrogen-bonded network into a three-dimensional structure (Tab. 1 and Fig. 2). It is noted that only a few isolated thiosulfate nickel complexes are known up to date (Nardelli & Coghi, 1958; Varand et al., 1967; Freire et al., 2000; Díaz de Vivar et al., 2007).

Related literature top

For background of this work, see: Lühmann et al. (2011); Seidlhofer et al. (2011). For related thiosulfate crystal structures, see: Nardelli & Coghi (1958); Varand et al. (1967); Freire et al. (2000); Díaz de Vivar et al. (2007).

Experimental top

The title compound was synthesized by heating [Ni(en)3]Cl2 (1.4 mmol), Sb (1.4 mmol) and S (4 mmol) in 50% tris(2-aminoethyl)amine (6.6 ml) for 8 d at 413 K. The reaction mixture was cooled down, filtered off and washed with water, ethanol and acetone. The pink crystals are unstable in air. Yield: 17% based on Ni. Elemental analysis found: C 23.75%, H 7.76%, N 19.90%; calc.: C 22.28%, H 7.48%, N 19.49%.

Refinement top

The C—H and N—H hydrogen atoms were positioned with idealized geometry and were refined with Uiso(H) = 1.2Ueq(C, N). The O—H hydrogen atoms were located in difference maps, and their bonds lengths were set to ideal values and subsequently refined with (Uiso(H) = 1.5 Ueq(O) using a riding model. The C atom C6 and the O atom O6 are disordered and were refined using a split model. The C atom of lower occupancy (occupancy ratio 0.85:0.15) was refined only isotropically, whereas both O atoms (occupancy ratio 0.60:0.40) were refined anisotropically.

Computing details top

Data collection: IPDS Program Package (Stoe & Cie, 1998); cell refinement: IPDS Program Package (Stoe & Cie, 1998); data reduction: IPDS Program Package (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular parts of the crystal structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level. The disorder of the O6 and C6 atoms is shown with bonds as open lines.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b axis. Hydrogen bonding is shown as dashed lines; disordered atoms are not shown for clarity. Colour code: Ni: orange; N: blue; O: red; C: black; H white.
[N,N-Bis(2-aminoethyl)ethane-1,2-diamine](ethane-1,2- diamine)nickel(II) thiosulfate trihydrate top
Crystal data top
[Ni(C2H8N2)(C6H18N4)]S2O3·3H2OF(000) = 920
Mr = 431.23Dx = 1.579 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4358 reflections
a = 10.890 (2) Åθ = 2.4–28.1°
b = 10.0494 (17) ŵ = 1.34 mm1
c = 16.689 (3) ÅT = 170 K
β = 96.68 (2)°Parallelepiped, pink
V = 1813.9 (6) Å30.16 × 0.11 × 0.06 mm
Z = 4
Data collection top
Stoe IPDS-1
diffractometer
4358 independent reflections
Radiation source: fine-focus sealed tube3924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ scansθmax = 28.1°, θmin = 2.4°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
h = 1414
Tmin = 0.559, Tmax = 0.748k = 1313
23884 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.6394P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4358 reflectionsΔρmax = 0.55 e Å3
216 parametersΔρmin = 0.77 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0202 (16)
Crystal data top
[Ni(C2H8N2)(C6H18N4)]S2O3·3H2OV = 1813.9 (6) Å3
Mr = 431.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.890 (2) ŵ = 1.34 mm1
b = 10.0494 (17) ÅT = 170 K
c = 16.689 (3) Å0.16 × 0.11 × 0.06 mm
β = 96.68 (2)°
Data collection top
Stoe IPDS-1
diffractometer
4358 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
3924 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.748Rint = 0.065
23884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
4358 reflectionsΔρmin = 0.77 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.825612 (19)0.70992 (2)0.095341 (12)0.00955 (10)
N10.66319 (15)0.77843 (15)0.02610 (9)0.0145 (3)
C10.68958 (19)0.91729 (19)0.00384 (13)0.0231 (4)
H1A0.68880.97580.05150.028*
H1B0.62490.94880.03850.028*
C20.8153 (2)0.9243 (2)0.02702 (13)0.0260 (4)
H2A0.81160.87830.07970.031*
H2B0.83741.01850.03510.031*
N20.91090 (15)0.86132 (16)0.03095 (10)0.0168 (3)
H1N20.94680.92410.06640.020*
H2N20.97160.82470.00390.020*
C30.56558 (18)0.7694 (2)0.08050 (12)0.0200 (4)
H3A0.48380.78490.04930.024*
H3B0.57900.83900.12260.024*
C40.56718 (18)0.6330 (2)0.12019 (12)0.0216 (4)
H4A0.51190.63340.16330.026*
H4B0.53620.56540.07970.026*
N30.69498 (15)0.59804 (16)0.15526 (9)0.0170 (3)
H1N30.70820.50840.14900.020*
H2N30.70520.61710.20950.020*
C50.63530 (14)0.69377 (15)0.04694 (9)0.0204 (4)
H5A0.66150.74130.09410.024*
H5B0.54480.68000.05710.024*
C60.69987 (14)0.55683 (15)0.03937 (9)0.0174 (4)0.85
H6A0.65300.49590.00760.021*0.85
H6B0.70180.51770.09370.021*0.85
C6'0.7426 (12)0.6239 (15)0.0703 (8)0.029 (3)*0.15
H6C0.79020.68530.10130.034*0.15
H6D0.71420.54880.10610.034*0.15
N40.82558 (15)0.57175 (15)0.00015 (9)0.0151 (3)
H1N40.87650.60130.03640.018*
H2N40.85480.49090.02000.018*
N50.98383 (15)0.62798 (15)0.15913 (9)0.0155 (3)
H1N50.97690.53680.16070.019*
H2N51.05230.64900.13410.019*
C70.99714 (19)0.6825 (2)0.24186 (11)0.0197 (4)
H7A1.08270.66900.26780.024*
H7B0.93990.63640.27460.024*
C80.96731 (18)0.8296 (2)0.23676 (11)0.0183 (4)
H8A0.97270.86780.29170.022*
H8B1.02800.87610.20690.022*
N60.84107 (15)0.84901 (15)0.19495 (9)0.0139 (3)
H1N60.83060.93500.17650.017*
H2N60.78260.83130.22910.017*
S10.59787 (4)0.75756 (4)0.35625 (3)0.01400 (12)
S20.77905 (5)0.75258 (6)0.39543 (3)0.02618 (14)
O10.58163 (15)0.83268 (16)0.27970 (9)0.0263 (3)
O20.53275 (14)0.82554 (16)0.41669 (9)0.0241 (3)
O30.55239 (16)0.62002 (14)0.34450 (11)0.0307 (4)
O40.70135 (19)0.76209 (19)0.58623 (12)0.0412 (5)
H1O40.75400.72120.61790.062*
H2O40.72450.76920.54010.062*
O50.31217 (17)0.58765 (18)0.25772 (12)0.0389 (4)
H1O50.38290.59820.28280.058*
H2O50.29560.66110.23500.058*
O60.3335 (2)0.8638 (3)0.21164 (18)0.0350 (9)0.60
H1O60.29960.94120.22260.053*
H2O60.41470.87580.23130.053*
O6'0.3485 (2)0.9043 (3)0.19116 (18)0.0382 (16)0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00967 (15)0.00919 (14)0.00982 (14)0.00134 (7)0.00127 (8)0.00001 (7)
N10.0134 (8)0.0142 (7)0.0157 (7)0.0003 (5)0.0006 (6)0.0004 (5)
C10.0239 (10)0.0156 (8)0.0283 (10)0.0034 (7)0.0032 (8)0.0080 (7)
C20.0295 (11)0.0240 (10)0.0241 (10)0.0055 (8)0.0023 (8)0.0131 (8)
N20.0172 (8)0.0159 (7)0.0185 (7)0.0036 (6)0.0073 (6)0.0010 (6)
C30.0108 (9)0.0257 (9)0.0238 (9)0.0023 (7)0.0029 (7)0.0019 (7)
C40.0149 (9)0.0245 (9)0.0269 (10)0.0074 (7)0.0090 (7)0.0023 (7)
N30.0198 (8)0.0151 (7)0.0169 (7)0.0048 (6)0.0056 (6)0.0011 (5)
C50.0203 (10)0.0245 (9)0.0146 (8)0.0002 (7)0.0051 (7)0.0023 (7)
C60.0174 (10)0.0182 (10)0.0157 (9)0.0038 (8)0.0015 (7)0.0061 (8)
N40.0177 (8)0.0131 (7)0.0152 (7)0.0003 (6)0.0041 (5)0.0034 (5)
N50.0153 (7)0.0126 (7)0.0180 (7)0.0011 (6)0.0007 (6)0.0018 (5)
C70.0206 (10)0.0228 (9)0.0144 (8)0.0027 (8)0.0033 (7)0.0017 (7)
C80.0179 (9)0.0190 (8)0.0167 (8)0.0012 (7)0.0038 (7)0.0056 (7)
N60.0170 (7)0.0118 (6)0.0130 (7)0.0006 (5)0.0023 (5)0.0023 (5)
S10.0159 (2)0.0109 (2)0.0162 (2)0.00063 (15)0.00616 (16)0.00066 (15)
S20.0154 (3)0.0291 (3)0.0348 (3)0.0045 (2)0.0061 (2)0.0132 (2)
O10.0286 (8)0.0301 (8)0.0198 (7)0.0012 (6)0.0007 (6)0.0067 (6)
O20.0212 (7)0.0251 (7)0.0287 (7)0.0008 (6)0.0141 (6)0.0079 (6)
O30.0346 (9)0.0130 (6)0.0446 (10)0.0050 (6)0.0046 (7)0.0052 (6)
O40.0467 (12)0.0387 (9)0.0426 (10)0.0195 (9)0.0234 (9)0.0145 (8)
O50.0305 (9)0.0374 (9)0.0483 (10)0.0004 (7)0.0025 (8)0.0186 (8)
O60.0327 (18)0.0252 (14)0.0431 (18)0.0002 (12)0.0129 (14)0.0037 (14)
O6'0.024 (2)0.050 (3)0.038 (3)0.008 (2)0.0087 (19)0.028 (3)
Geometric parameters (Å, º) top
Ni1—N52.0865 (16)C6—H6A0.9900
Ni1—N42.1099 (15)C6—H6B0.9900
Ni1—N12.1124 (16)C6'—N41.492 (12)
Ni1—N22.1364 (15)C6'—H6C0.9900
Ni1—N32.1491 (16)C6'—H6D0.9900
Ni1—N62.1634 (15)N4—H1N40.9200
N1—C31.479 (2)N4—H2N40.9200
N1—C11.481 (2)N5—C71.477 (2)
N1—C51.489 (2)N5—H1N50.9200
C1—C21.519 (3)N5—H2N50.9200
C1—H1A0.9900C7—C81.514 (3)
C1—H1B0.9900C7—H7A0.9900
C2—N21.479 (3)C7—H7B0.9900
C2—H2A0.9900C8—N61.480 (2)
C2—H2B0.9900C8—H8A0.9900
N2—H1N20.9200C8—H8B0.9900
N2—H2N20.9200N6—H1N60.9200
C3—C41.521 (3)N6—H2N60.9200
C3—H3A0.9900S1—O21.4675 (14)
C3—H3B0.9900S1—O31.4736 (15)
C4—N31.488 (3)S1—O11.4767 (15)
C4—H4A0.9900S1—S22.0058 (8)
C4—H4B0.9900O4—H1O40.8401
N3—H1N30.9200O4—H2O40.8400
N3—H2N30.9200O5—H1O50.8400
C5—C6'1.454 (12)O5—H2O50.8401
C5—C61.5439O6—H1O60.8898
C5—H5A0.9900O6—H2O60.9142
C5—H5B0.9900O6'—H1O60.8737
C6—N41.457 (2)O6'—H2O60.9683
N5—Ni1—N492.99 (6)C6—C5—H5A108.9
N5—Ni1—N1175.52 (6)C6'—C5—H5B134.5
N4—Ni1—N182.86 (6)N1—C5—H5B108.9
N5—Ni1—N298.99 (6)C6—C5—H5B108.9
N4—Ni1—N292.98 (6)H5A—C5—H5B107.7
N1—Ni1—N283.00 (6)N4—C6—C5109.90 (8)
N5—Ni1—N396.21 (6)N4—C6—H6A109.7
N4—Ni1—N393.66 (6)C5—C6—H6A109.7
N1—Ni1—N382.39 (6)N4—C6—H6B109.7
N2—Ni1—N3163.06 (6)C5—C6—H6B109.7
N5—Ni1—N682.94 (6)H6A—C6—H6B108.2
N4—Ni1—N6175.51 (6)C5—C6'—N4113.0 (9)
N1—Ni1—N6101.25 (6)C5—C6'—H6C109.0
N2—Ni1—N685.81 (6)N4—C6'—H6C109.0
N3—Ni1—N688.69 (6)C5—C6'—H6D109.0
C3—N1—C1112.73 (16)N4—C6'—H6D109.0
C3—N1—C5112.01 (14)H6C—C6'—H6D107.8
C1—N1—C5111.11 (14)C6—N4—Ni1109.06 (10)
C3—N1—Ni1105.07 (11)C6'—N4—Ni1108.0 (5)
C1—N1—Ni1105.65 (11)C6—N4—H1N4109.9
C5—N1—Ni1109.87 (11)Ni1—N4—H1N4109.9
N1—C1—C2109.73 (16)C6—N4—H2N4109.9
N1—C1—H1A109.7C6'—N4—H2N4138.3
C2—C1—H1A109.7Ni1—N4—H2N4109.9
N1—C1—H1B109.7H1N4—N4—H2N4108.3
C2—C1—H1B109.7C7—N5—Ni1108.42 (12)
H1A—C1—H1B108.2C7—N5—H1N5110.0
N2—C2—C1110.62 (16)Ni1—N5—H1N5110.0
N2—C2—H2A109.5C7—N5—H2N5110.0
C1—C2—H2A109.5Ni1—N5—H2N5110.0
N2—C2—H2B109.5H1N5—N5—H2N5108.4
C1—C2—H2B109.5N5—C7—C8108.22 (15)
H2A—C2—H2B108.1N5—C7—H7A110.1
C2—N2—Ni1108.64 (12)C8—C7—H7A110.1
C2—N2—H1N2110.0N5—C7—H7B110.1
Ni1—N2—H1N2110.0C8—C7—H7B110.1
C2—N2—H2N2110.0H7A—C7—H7B108.4
Ni1—N2—H2N2110.0N6—C8—C7109.67 (15)
H1N2—N2—H2N2108.3N6—C8—H8A109.7
N1—C3—C4110.49 (16)C7—C8—H8A109.7
N1—C3—H3A109.6N6—C8—H8B109.7
C4—C3—H3A109.6C7—C8—H8B109.7
N1—C3—H3B109.6H8A—C8—H8B108.2
C4—C3—H3B109.6C8—N6—Ni1105.19 (11)
H3A—C3—H3B108.1C8—N6—H1N6110.7
N3—C4—C3110.30 (15)Ni1—N6—H1N6110.7
N3—C4—H4A109.6C8—N6—H2N6110.7
C3—C4—H4A109.6Ni1—N6—H2N6110.7
N3—C4—H4B109.6H1N6—N6—H2N6108.8
C3—C4—H4B109.6O2—S1—O3110.26 (10)
H4A—C4—H4B108.1O2—S1—O1109.74 (10)
C4—N3—Ni1109.44 (11)O3—S1—O1111.09 (10)
C4—N3—H1N3109.8O2—S1—S2108.85 (7)
Ni1—N3—H1N3109.8O3—S1—S2108.82 (8)
C4—N3—H2N3109.8O1—S1—S2108.01 (7)
Ni1—N3—H2N3109.8H1O4—O4—H2O4111.2
H1N3—N3—H2N3108.2H1O5—O5—H2O5104.5
C6'—C5—N1113.6 (6)H1O6—O6—H2O6102.6
N1—C5—C6113.25 (8)H1O6—O6'—H2O699.6
N1—C5—H5A108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.922.473.324 (2)155
N2—H2N2···O2ii0.922.253.084 (2)150
N3—H1N3···S2iii0.922.683.5921 (18)169
N4—H1N4···O2ii0.922.092.971 (2)161
N4—H2N4···O2iii0.922.253.151 (2)165
N4—H2N4···S2iii0.923.213.8838 (17)131
N5—H1N5···O1iii0.922.403.244 (2)153
N5—H1N5···O2iii0.922.483.289 (2)147
N5—H2N5···O4ii0.922.092.997 (3)168
N6—H1N6···O3i0.922.303.062 (2)140
N6—H2N6···O10.922.443.307 (2)158
N6—H2N6···S20.922.893.6214 (17)137
O4—H2O4···S20.842.563.390 (2)171
O5—H1O5···O30.842.022.858 (3)179
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H8N2)(C6H18N4)]S2O3·3H2O
Mr431.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)170
a, b, c (Å)10.890 (2), 10.0494 (17), 16.689 (3)
β (°) 96.68 (2)
V3)1813.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.16 × 0.11 × 0.06
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1998)
Tmin, Tmax0.559, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
23884, 4358, 3924
Rint0.065
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.05
No. of reflections4358
No. of parameters216
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.77

Computer programs: IPDS Program Package (Stoe & Cie, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N52.0865 (16)Ni1—N22.1364 (15)
Ni1—N42.1099 (15)Ni1—N32.1491 (16)
Ni1—N12.1124 (16)Ni1—N62.1634 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.922.473.324 (2)155.0
N2—H2N2···O2ii0.922.253.084 (2)150.4
N3—H1N3···S2iii0.922.683.5921 (18)169.4
N4—H1N4···O2ii0.922.092.971 (2)160.5
N4—H2N4···O2iii0.922.253.151 (2)165.1
N4—H2N4···S2iii0.923.213.8838 (17)131.3
N5—H1N5···O1iii0.922.403.244 (2)152.9
N5—H1N5···O2iii0.922.483.289 (2)146.7
N5—H2N5···O4ii0.922.092.997 (3)167.7
N6—H1N6···O3i0.922.303.062 (2)139.5
N6—H2N6···O10.922.443.307 (2)158.1
N6—H2N6···S20.922.893.6214 (17)137.4
O4—H2O4···S20.842.563.390 (2)170.5
O5—H1O5···O30.842.022.858 (3)178.7
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

Financial support by the State Schleswig-Holstein and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDíaz de Vivar, M. E., Baggio, S., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m153–m156.  CSD CrossRef IUCr Journals Google Scholar
First citationFreire, E., Baggio, S., Mombru, A. & Baggio, R. (2000). Acta Cryst. C56, 541–543.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLühmann, H., Näther, C. & Bensch, W. (2011). Z. Anorg. Allg. Chem. 637, 1007–1012.  Google Scholar
First citationNardelli, M. & Coghi, L. (1958). Ric. Sci. 28, 609–610.  CAS Google Scholar
First citationSeidlhofer, B., Djamil, J., Näther, C. & Bensch, W. (2011). Cryst. Growth Des. 11, 5554–5560.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1998). X-SHAPE and IPDS Program Package. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVarand, V. L., Podberezskaya, N. V., Shulman, V. M., Bakakin, V. V. & Ruchkin, E. D. (1967). Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim. Nauk, 5, 44–47.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m167-m168
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds