metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(azido-κN)(1,10-phenanthroline-κ2N,N′)palladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 9 January 2012; accepted 10 January 2012; online 14 January 2012)

In the title complex, [Pd(N3)2(C12H8N2)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 1,10-phenanthroline (phen) ligand and two N atoms from two azide anions. The azido ligands are slightly bent with bond angles of 174.8 (4) and 174.5 (5)°. The complex mol­ecules are stacked in columns along the a axis and are connected by inter­molecular C—H⋯N hydrogen bonds, forming a three-dimensional network. In the columns, numerous inter­molecular ππ inter­actions between the six-membered rings are present, the shortest ring centroid–centroid distance being 3.607 (2) Å.

Related literature

For the syntheses of [PdX2(phen)] (X = Cl, Br, I or SCN), see: Cheng et al. (1977[Cheng, C. P., Plankey, B., Rund, J. V. & Brown, T. L. (1977). J. Am. Chem. Soc. 99, 8413-8417.]). For the crystal structures of [PdX2(phen)] (X = Cl, Br or I), see: Ha (2010a[Ha, K. (2010a). Acta Cryst. E66, m38.],b[Ha, K. (2010b). Acta Cryst. E66, m7.],c[Ha, K. (2010c). Z. Kristallogr. New Cryst. Struct. 225, 317-318.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(N3)2(C12H8N2)]

  • Mr = 370.66

  • Orthorhombic, P b c a

  • a = 7.0724 (3) Å

  • b = 18.3069 (7) Å

  • c = 19.1309 (7) Å

  • V = 2476.95 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 200 K

  • 0.25 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 1.000

  • 17018 measured reflections

  • 3058 independent reflections

  • 2244 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.09

  • 3058 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N1 2.038 (3)
Pd1—N2 2.040 (3)
Pd1—N3 2.012 (3)
Pd1—N6 2.013 (3)
N1—Pd1—N2 81.20 (12)
N3—Pd1—N6 98.71 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N3 0.95 2.53 3.044 (5) 114
C1—H1⋯N5i 0.95 2.54 3.196 (5) 127
C5—H5⋯N8ii 0.95 2.55 3.324 (6) 139
C8—H8⋯N8iii 0.95 2.55 3.218 (6) 127
C10—H10⋯N6 0.95 2.51 3.031 (5) 114
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Syntheses (Cheng et al., 1977) and crystal structures of PdII complexes with 1,10-phenanthroline (phen; C12H8N2) and halogenide ions, [PdX2(phen)] (X = Cl, Br or I), have been reported previously (Ha, 2011a,b,c). Here the crystal structure of the pseudohalogenide [Pd(N3)2(phen)] is reported.

In the title complex, the PdII ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 1,10-phenanthroline ligand and two N atoms from two azide anions (Fig. 1). The main contribution to the distortion is the tight N1—Pd1—N2 chelate angle [81.20 (12)°], which results in a non-linear trans arrangement [N1—Pd1—N6 = 170.93 (13)° and N2—Pd1—N3 = 171.39 (13)°]. The Pd—N(phen) bond lengths are slightly longer than the Pd—N(azide) bond lengths [Pd1—N1/2: 2.038 (3) and 2.040 (3) Å; Pd1—N3/6: 2.012 (3) and 2.013 (3) Å] (Table 1). The azido ligands are slightly bent with the bond angles of N3—N4—N5 = 174.8 (4)° and N6—N7—N8 = 174.5 (4)°, however with nearly equal N—N bond lengths [N—N: 1.155 (5)–1.195 (5) Å].

In the crystal, the complex molecules are stacked in columns along the a axis and are connected by intermolecular C—H···N hydrogen bonds, forming a three-dimensional network (Fig. 2 and Table 2). In the columns, numerous intermolecular ππ interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.607 (2) Å. Intramolecular C—H···N hydrogen bonds are also present (Table 2).

Related literature top

For the syntheses of [PdX2(phen)] (X = Cl, Br, I or SCN), see: Cheng et al. (1977). For the crystal structures of [PdX2(phen)] (X = Cl, Br or I), see: Ha (2010a,b,c).

Experimental top

To a solution of Na2PdCl4 (0.1475 g, 0.501 mmol) and NaN3 (0.3239 g, 4.982 mmol) in MeOH (30 ml) was added 1,10-phenanthroline (0.1044 g, 0.579 mmol), and stirred for 3 h at room temperature. The formed precipitate was separated by filtration, washed with water and acetone, and dried at 323 K, to give a bright yellow powder (0.1615 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a dimethyl sulfoxide (DMSO) solution at 363 K.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (1.20 e Å-3) and the deepest hole (-0.62 e Å-3) in the difference Fourier map are located 1.55 Å and 0.91 Å from the atoms C11 and Pd1, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, with the atom numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title complex. Intermolecular C—H···N hydrogen-bond interactions are drawn with dashed lines.
Bis(azido-κN)(1,10-phenanthroline-κ2N,N')palladium(II) top
Crystal data top
[Pd(N3)2(C12H8N2)]F(000) = 1456
Mr = 370.66Dx = 1.988 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6741 reflections
a = 7.0724 (3) Åθ = 2.5–28.3°
b = 18.3069 (7) ŵ = 1.51 mm1
c = 19.1309 (7) ÅT = 200 K
V = 2476.95 (17) Å3Block, yellow
Z = 80.25 × 0.13 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3058 independent reflections
Radiation source: fine-focus sealed tube2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 89
Tmin = 0.886, Tmax = 1.000k = 2424
17018 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0259P)2 + 3.9659P]
where P = (Fo2 + 2Fc2)/3
3058 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Pd(N3)2(C12H8N2)]V = 2476.95 (17) Å3
Mr = 370.66Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.0724 (3) ŵ = 1.51 mm1
b = 18.3069 (7) ÅT = 200 K
c = 19.1309 (7) Å0.25 × 0.13 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3058 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2244 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 1.000Rint = 0.040
17018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.09Δρmax = 1.20 e Å3
3058 reflectionsΔρmin = 0.62 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.42841 (4)0.384720 (15)0.171291 (14)0.03115 (10)
N10.3530 (4)0.48761 (16)0.20092 (16)0.0328 (7)
N20.4398 (4)0.37116 (16)0.27707 (15)0.0322 (7)
N30.4003 (5)0.41288 (19)0.07018 (17)0.0443 (8)
N40.4887 (5)0.38609 (18)0.02351 (18)0.0408 (8)
N50.5675 (6)0.3639 (2)0.02492 (19)0.0547 (10)
N60.5003 (6)0.27920 (19)0.15822 (18)0.0463 (9)
N70.5375 (5)0.25334 (19)0.10364 (19)0.0479 (9)
N80.5816 (8)0.2236 (2)0.0529 (2)0.0781 (15)
C10.3151 (5)0.5454 (2)0.1609 (2)0.0391 (9)
H10.32080.54050.11150.047*
C20.2672 (6)0.6127 (2)0.1898 (2)0.0450 (10)
H20.24010.65290.16000.054*
C30.2592 (6)0.6212 (2)0.2605 (2)0.0461 (10)
H30.22690.66730.28000.055*
C40.2989 (5)0.5615 (2)0.3045 (2)0.0397 (9)
C50.2938 (6)0.5635 (2)0.3793 (2)0.0465 (10)
H50.26070.60760.40230.056*
C60.3351 (6)0.5037 (2)0.4177 (2)0.0472 (10)
H60.32880.50680.46730.057*
C70.3880 (5)0.4360 (2)0.3861 (2)0.0391 (9)
C80.4377 (6)0.3725 (3)0.4225 (2)0.0452 (10)
H80.43660.37220.47210.054*
C90.4880 (6)0.3106 (2)0.3863 (2)0.0461 (10)
H90.52280.26750.41070.055*
C100.4876 (6)0.3116 (2)0.3135 (2)0.0398 (9)
H100.52230.26850.28890.048*
C110.3921 (5)0.4327 (2)0.31269 (19)0.0330 (8)
C120.3466 (5)0.49549 (19)0.27182 (19)0.0330 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03266 (17)0.03068 (16)0.03012 (16)0.00224 (12)0.00067 (12)0.00230 (11)
N10.0282 (16)0.0314 (16)0.0388 (16)0.0041 (13)0.0002 (13)0.0026 (13)
N20.0284 (16)0.0370 (17)0.0313 (15)0.0040 (13)0.0022 (12)0.0056 (13)
N30.053 (2)0.047 (2)0.0330 (18)0.0048 (17)0.0011 (16)0.0055 (15)
N40.049 (2)0.0395 (18)0.0344 (18)0.0017 (16)0.0096 (16)0.0081 (15)
N50.070 (3)0.059 (2)0.035 (2)0.011 (2)0.0021 (18)0.0054 (17)
N60.064 (2)0.0362 (18)0.038 (2)0.0020 (17)0.0047 (17)0.0028 (15)
N70.065 (3)0.0349 (18)0.044 (2)0.0002 (17)0.0084 (18)0.0033 (16)
N80.137 (5)0.052 (3)0.046 (2)0.019 (3)0.008 (3)0.010 (2)
C10.031 (2)0.037 (2)0.049 (2)0.0024 (16)0.0033 (17)0.0074 (18)
C20.032 (2)0.035 (2)0.068 (3)0.0002 (17)0.0020 (19)0.0091 (19)
C30.036 (2)0.033 (2)0.070 (3)0.0016 (18)0.004 (2)0.0076 (19)
C40.029 (2)0.035 (2)0.055 (2)0.0043 (16)0.0066 (17)0.0083 (18)
C50.040 (2)0.046 (2)0.053 (3)0.0063 (19)0.009 (2)0.017 (2)
C60.042 (2)0.059 (3)0.041 (2)0.010 (2)0.0051 (18)0.009 (2)
C70.033 (2)0.048 (2)0.037 (2)0.0090 (17)0.0038 (16)0.0000 (17)
C80.041 (2)0.065 (3)0.030 (2)0.007 (2)0.0000 (17)0.0056 (19)
C90.044 (2)0.052 (3)0.041 (2)0.006 (2)0.0018 (19)0.016 (2)
C100.040 (2)0.038 (2)0.041 (2)0.0007 (18)0.0014 (17)0.0057 (17)
C110.0246 (19)0.039 (2)0.0354 (19)0.0052 (15)0.0025 (14)0.0003 (16)
C120.0259 (18)0.0317 (18)0.041 (2)0.0063 (15)0.0002 (15)0.0015 (16)
Geometric parameters (Å, º) top
Pd1—N12.038 (3)C3—C41.407 (6)
Pd1—N22.040 (3)C3—H30.9500
Pd1—N32.012 (3)C4—C121.402 (5)
Pd1—N62.013 (3)C4—C51.432 (6)
N1—C11.333 (5)C5—C61.350 (6)
N1—C121.365 (5)C5—H50.9500
N2—C101.338 (5)C6—C71.430 (6)
N2—C111.360 (5)C6—H60.9500
N3—N41.195 (5)C7—C81.399 (6)
N4—N51.155 (5)C7—C111.407 (5)
N6—N71.176 (5)C8—C91.374 (6)
N7—N81.156 (5)C8—H80.9500
C1—C21.392 (5)C9—C101.392 (5)
C1—H10.9500C9—H90.9500
C2—C31.363 (6)C10—H100.9500
C2—H20.9500C11—C121.427 (5)
N1—Pd1—N281.20 (12)C12—C4—C5118.2 (4)
N3—Pd1—N698.71 (14)C3—C4—C5125.0 (4)
N3—Pd1—N190.27 (13)C6—C5—C4121.3 (4)
N6—Pd1—N1170.93 (13)C6—C5—H5119.4
N3—Pd1—N2171.39 (13)C4—C5—H5119.4
N6—Pd1—N289.80 (13)C5—C6—C7121.9 (4)
C1—N1—C12118.7 (3)C5—C6—H6119.0
C1—N1—Pd1128.8 (3)C7—C6—H6119.0
C12—N1—Pd1112.5 (2)C8—C7—C11117.1 (4)
C10—N2—C11118.5 (3)C8—C7—C6125.2 (4)
C10—N2—Pd1128.8 (3)C11—C7—C6117.7 (4)
C11—N2—Pd1112.7 (2)C9—C8—C7120.0 (4)
N4—N3—Pd1124.1 (3)C9—C8—H8120.0
N5—N4—N3174.8 (4)C7—C8—H8120.0
N7—N6—Pd1123.6 (3)C8—C9—C10119.5 (4)
N8—N7—N6174.5 (5)C8—C9—H9120.2
N1—C1—C2121.6 (4)C10—C9—H9120.2
N1—C1—H1119.2N2—C10—C9122.1 (4)
C2—C1—H1119.2N2—C10—H10118.9
C3—C2—C1120.3 (4)C9—C10—H10118.9
C3—C2—H2119.9N2—C11—C7122.7 (3)
C1—C2—H2119.9N2—C11—C12116.7 (3)
C2—C3—C4119.8 (4)C7—C11—C12120.6 (4)
C2—C3—H3120.1N1—C12—C4122.8 (3)
C4—C3—H3120.1N1—C12—C11116.9 (3)
C12—C4—C3116.8 (4)C4—C12—C11120.3 (3)
N3—Pd1—N1—C13.1 (3)C7—C8—C9—C100.5 (6)
N2—Pd1—N1—C1178.1 (3)C11—N2—C10—C90.6 (6)
N3—Pd1—N1—C12178.3 (3)Pd1—N2—C10—C9179.8 (3)
N2—Pd1—N1—C120.5 (2)C8—C9—C10—N20.1 (6)
N6—Pd1—N2—C102.4 (3)C10—N2—C11—C71.0 (5)
N1—Pd1—N2—C10178.7 (3)Pd1—N2—C11—C7179.3 (3)
N6—Pd1—N2—C11178.0 (3)C10—N2—C11—C12178.5 (3)
N1—Pd1—N2—C110.9 (2)Pd1—N2—C11—C121.2 (4)
N6—Pd1—N3—N430.7 (4)C8—C7—C11—N20.6 (5)
N3—Pd1—N6—N79.6 (4)C6—C7—C11—N2179.9 (3)
N2—Pd1—N6—N7171.7 (4)C8—C7—C11—C12178.9 (3)
C12—N1—C1—C20.8 (5)C6—C7—C11—C120.6 (5)
Pd1—N1—C1—C2179.3 (3)C1—N1—C12—C41.0 (5)
N1—C1—C2—C30.4 (6)Pd1—N1—C12—C4179.7 (3)
C1—C2—C3—C40.2 (6)C1—N1—C12—C11178.7 (3)
C2—C3—C4—C120.4 (6)Pd1—N1—C12—C110.0 (4)
C2—C3—C4—C5179.5 (4)C3—C4—C12—N10.8 (6)
C12—C4—C5—C60.5 (6)C5—C4—C12—N1179.1 (3)
C3—C4—C5—C6179.6 (4)C3—C4—C12—C11178.9 (3)
C4—C5—C6—C70.8 (6)C5—C4—C12—C111.2 (5)
C5—C6—C7—C8178.1 (4)N2—C11—C12—N10.8 (5)
C5—C6—C7—C111.3 (6)C7—C11—C12—N1179.7 (3)
C11—C7—C8—C90.1 (6)N2—C11—C12—C4178.9 (3)
C6—C7—C8—C9179.3 (4)C7—C11—C12—C40.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N30.952.533.044 (5)114
C1—H1···N5i0.952.543.196 (5)127
C5—H5···N8ii0.952.553.324 (6)139
C8—H8···N8iii0.952.553.218 (6)127
C10—H10···N60.952.513.031 (5)114
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pd(N3)2(C12H8N2)]
Mr370.66
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)7.0724 (3), 18.3069 (7), 19.1309 (7)
V3)2476.95 (17)
Z8
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.25 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.886, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17018, 3058, 2244
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.09
No. of reflections3058
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.62

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—N12.038 (3)Pd1—N32.012 (3)
Pd1—N22.040 (3)Pd1—N62.013 (3)
N1—Pd1—N281.20 (12)N3—Pd1—N698.71 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N30.952.533.044 (5)114.0
C1—H1···N5i0.952.543.196 (5)126.8
C5—H5···N8ii0.952.553.324 (6)139.3
C8—H8···N8iii0.952.553.218 (6)127.4
C10—H10···N60.952.513.031 (5)114.3
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, C. P., Plankey, B., Rund, J. V. & Brown, T. L. (1977). J. Am. Chem. Soc. 99, 8413–8417.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2010a). Acta Cryst. E66, m38.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2010b). Acta Cryst. E66, m7.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2010c). Z. Kristallogr. New Cryst. Struct. 225, 317–318.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds