organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­methyl­ammonium di­methyl (phenyl­sulfonyl­amido)phosphate(1−)

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, and bSTC "Institute for Syngle Crystals", 60 Lenina ave., Khar'kov 61001, Ukraine
*Correspondence e-mail: elizaveta@univ.kiev.ua

(Received 28 October 2011; accepted 21 December 2011; online 7 January 2012)

The title compound, C4H12N+·C8H11NO5PS, was obtained from tetra­methyl­ammonium hydroxide and dimeth­yl(phenyl­sulfon­yl)amido­phosphate. The tetra­methyl­ammonium cation has a slightly distorted tetra­hedral configuration and the N—C bond lengths lie in the range 1.457 (3)–1.492 (3) Å. In the crystal, no classical hydrogen bonds are observed between the cation and the anion.

Related literature

For the synthesis of sulfonyl­amide derivatives, see: Kirsanov & Shevchenko (1956[Kirsanov, A. & Shevchenko, V. (1956). Zh. Obshch. Khim. 26, 504-509.]); Pietraszkiewicz et al. (2002[Pietraszkiewicz, M., Karpiuk, J. & Staniszewski, K. (2002). J. Alloys Compd, 341, 267-271.]); Trush et al. (2009[Trush, E. A., Trush, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2009). Acta Cryst. E65, m1231.]); Moroz et al. (2009[Moroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S., Demeshko, S. & Amirkhanov, V. M. (2009). Polyhedron, 28, 1331-1335.]); Shatrava et al. (2010[Shatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m397-m398.]). For the crystal structures of tetra­methyl­ammonium compounds, see: Cao et al. (2008[Cao, Y., Chen, Y. & Cheng, G. (2008). Acta Cryst. E64, m1546.]); Liu et al. (2004[Liu, F., Sheu, Y., She, J.-J., Chang, Y., Hong, F., Lee, G. & Peng, S. (2004). J. Organomet. Chem. 689, 544-548.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N+·C8H11NO5PS

  • Mr = 338.36

  • Monoclinic, C c

  • a = 15.2840 (9) Å

  • b = 9.269 (2) Å

  • c = 12.1650 (11) Å

  • β = 98.279 (9)°

  • V = 1705.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.582, Tmax = 1.000

  • 8644 measured reflections

  • 3928 independent reflections

  • 2406 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.063

  • S = 0.77

  • 3928 reflections

  • 197 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1444 Friedel pairs

  • Flack parameter: 0.05 (6)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP within SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

To date the coordination chemistry of phosphorylated sulphonylamide ligands has been of great interest (Pietraszkiewicz et al., 2002). Earlier sulfonylamide derivatives of the general type RSO2NHP(O)(R')2 and their coordination compounds have been systematically investigated and some results of our study have been already published (Moroz et al., 2009, Shatrava et al., 2010, Trush et al. 2009). However, there are no reports of the crystal structure of any alkali- or onic- salts of dimethyl(phenylsulphonyl)amidophosphate (HL). This paper reports the crystal structure of the compound {N(CH3)4+[C6H5SO2NP(O)(OCH3)2]-} (Fig. 1).

The highly polar anion contains six potential donor centers and, in spite of this fact, coordinated molecules of water or alcohol have not been detected. (Fig. 2).

The X-ray crystal structure reveals that there are no contacts shorter than 2.44 Å between cation and anion, (the presence of weak C—H···O contacts with the participation of PO and SO2 oxygens and protons of cation is observed), so the bonding may be considered as mainly ionic.

The dimethyl(phenylsulfonyl)amidophosphatotetramethylammonium salt includes a deprotonated sulphonylamidophosphate anion and cation; the latter has a standard N(CH3)4+-tetrahedral configuration (Fig. 1). The presence of non-equivalent values of C—N bond lengths is a general feature for earlier, structurally investigated tetramethylammonium compounds (Cao et al., 2008; Liu et al., 2004). The geometry of the nearest environment of the phosphorus atom in {L-} can be described as a distorted tetrahedron. The bond lengths P1—O3 and P1—N1 have values 1.460 (2) and 1.591 (2) Å, respectively, which are typical of phosphorylated sulfonylamide for compounds with ether-type substituents (Moroz et al., 2009).

The fragments O2—S1—N1—P1 and S1—N1—P1—O5 are practically planar; the values the of corresponding torsion angles are -179.8 (1)° and 163.6 (1)°, respectively; the interplanar angle is 13.2 (2)°. The average deviations of these atoms from these planes do not exceed 0.001 (4) and 0.08 (6) Å, respectively. The phenyl ring is rotated to a considerable extent with respect to the S—N bond, the value of the C2—C1—S1—N1 torsion angle being -36.1 (3)°.

Related literature top

For the synthesis of sulfonylamide derivatives, see: Kirsanov & Shevchenko (1956); Pietraszkiewicz et al. (2002); Trush et al. (2009); Moroz et al. (2009); Shatrava et al. (2010). For the crystal structures of tetramethylammonium compounds, see: Cao et al. (2008); Liu et al. (2004).

Experimental top

The dimethyl(phenylsulfonyl)amidophosphate (HL) was prepared according to the earlier published procedures (Kirsanov et al., 1956). The tetramethylammonium salt {N(CH3)4+[C6H5SO2NP(O)(OCH3)2]-} was obtained by the neutralization reaction: tetramethylammonium hydroxide (0.365 g, 1 mmol of 25% solution) was added dropwise to an equimolar amount (0.265 g, 1 mmol) of HL which was dissolved in 10 ml of isopropanol. The completion of the reaction was checked with phenolphthalein. Colorless crystals suitable for X-ray diffraction were separated. The yield was 0.31 g (92% starting from HL).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating-group model was applied for the methyl groups. The absolute configuration was determined and the Flack parameter refined to 0.05 (6).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP within SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of dimethyl(phenylsulfonyl)amidophosphato- tetramethylammonium. Displacement ellipsoids are drawn at the 20% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Projection of the structure {N(CH3)4+[C6H5SO2NP(O)(OCH3)2]-} on the ac plane.
Tetramethylammonium dimethyl (phenylsulfonylamido)phosphate(1-) top
Crystal data top
C4H12N+·C8H11NO5PSF(000) = 720
Mr = 338.36Dx = 1.318 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 15.2840 (9) ÅCell parameters from 2883 reflections
b = 9.269 (2) Åθ = 3.0–32.2°
c = 12.1650 (11) ŵ = 0.30 mm1
β = 98.279 (9)°T = 293 K
V = 1705.4 (4) Å3Needle, colourless
Z = 40.40 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3928 independent reflections
Radiation source: fine-focus sealed tube2406 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.0°
ω scansh = 2120
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1213
Tmin = 0.582, Tmax = 1.000l = 1717
8644 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max < 0.001
S = 0.77Δρmax = 0.23 e Å3
3928 reflectionsΔρmin = 0.15 e Å3
197 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0053 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1444 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (6)
Crystal data top
C4H12N+·C8H11NO5PSV = 1705.4 (4) Å3
Mr = 338.36Z = 4
Monoclinic, CcMo Kα radiation
a = 15.2840 (9) ŵ = 0.30 mm1
b = 9.269 (2) ÅT = 293 K
c = 12.1650 (11) Å0.40 × 0.20 × 0.10 mm
β = 98.279 (9)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3928 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2406 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 1.000Rint = 0.035
8644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.23 e Å3
S = 0.77Δρmin = 0.15 e Å3
3928 reflectionsAbsolute structure: Flack (1983), 1444 Friedel pairs
197 parametersAbsolute structure parameter: 0.05 (6)
2 restraints
Special details top

Experimental. Analysis found: IR (KBr pellet, cm-1): 1245(ν), 1220(νs), 1190(νs), 1060(νs), 1040(δ); 1060 (s, SO2) and 1190 (s, PO). 1H NMR (DMSO-d6): 3.4 d 6H, 3JPH =11.6 Hz; 7.78 dd (α), 2H; 7.38 m (β+γ), 3H; 31P (DMSO-d6) -3.27 h, 3JHP = 11.6 Hz.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.72846 (3)0.17887 (6)0.99705 (4)0.03893 (14)
S10.88898 (4)0.24929 (6)0.92536 (5)0.04416 (14)
N10.83352 (11)0.18063 (19)1.00894 (14)0.0476 (4)
N20.57619 (11)0.5029 (2)0.71028 (15)0.0466 (5)
O10.86516 (14)0.20683 (19)0.81208 (13)0.0773 (6)
O20.98092 (11)0.22632 (19)0.96904 (16)0.0740 (5)
O30.67793 (12)0.30800 (18)0.96015 (16)0.0681 (5)
O40.69770 (10)0.04211 (17)0.92503 (14)0.0618 (4)
O50.70883 (10)0.14025 (18)1.11691 (12)0.0586 (4)
C10.87219 (12)0.4386 (2)0.92758 (17)0.0373 (5)
C20.86269 (19)0.5079 (3)1.0247 (2)0.0609 (6)
H20.86430.45581.09020.073*
C30.8507 (2)0.6556 (3)1.0247 (2)0.0725 (8)
H30.84490.70251.09080.087*
C40.84735 (16)0.7336 (3)0.9293 (2)0.0635 (7)
H40.83900.83290.92980.076*
C50.85644 (15)0.6633 (3)0.8328 (2)0.0567 (6)
H50.85450.71520.76710.068*
C60.86836 (14)0.5174 (3)0.83254 (17)0.0474 (6)
H60.87400.47090.76620.057*
C70.60472 (19)0.0089 (4)0.9058 (3)0.1007 (12)
H7A0.59270.06930.95310.151*
H7B0.57150.09230.92180.151*
H7C0.58800.01840.82950.151*
C80.7451 (2)0.0104 (3)1.1696 (2)0.0815 (9)
H8B0.71780.07191.13070.122*
H8A0.80770.00781.16800.122*
H8C0.73390.00841.24530.122*
C90.62334 (17)0.5989 (3)0.7979 (2)0.0644 (7)
H9B0.66140.66340.76500.097*
H9A0.58090.65380.83140.097*
H9C0.65810.54140.85350.097*
C100.52163 (19)0.5918 (3)0.6247 (2)0.0697 (7)
H10B0.48770.52970.57160.105*
H10A0.48240.65160.65970.105*
H10C0.55950.65150.58760.105*
C110.51646 (17)0.4051 (3)0.7616 (2)0.0689 (7)
H11C0.47440.46140.79470.103*
H11B0.48570.34330.70560.103*
H11A0.55070.34750.81770.103*
C120.63993 (19)0.4189 (3)0.6587 (2)0.0727 (8)
H12C0.67510.36170.71420.109*
H12B0.60910.35670.60300.109*
H12A0.67760.48300.62490.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0396 (3)0.0345 (3)0.0437 (3)0.0002 (3)0.0096 (2)0.0012 (3)
S10.0473 (3)0.0415 (3)0.0467 (3)0.0013 (2)0.0171 (2)0.0014 (3)
N10.0389 (10)0.0518 (11)0.0528 (11)0.0007 (8)0.0085 (8)0.0104 (9)
N20.0414 (11)0.0503 (12)0.0489 (11)0.0025 (9)0.0087 (8)0.0038 (9)
O10.1328 (17)0.0603 (11)0.0427 (10)0.0138 (11)0.0264 (10)0.0104 (8)
O20.0463 (10)0.0711 (11)0.1084 (15)0.0072 (8)0.0238 (9)0.0168 (10)
O30.0553 (11)0.0492 (10)0.0971 (14)0.0065 (8)0.0017 (9)0.0155 (9)
O40.0595 (11)0.0609 (11)0.0665 (11)0.0170 (8)0.0142 (8)0.0184 (9)
O50.0662 (11)0.0632 (11)0.0513 (10)0.0048 (8)0.0248 (8)0.0029 (8)
C10.0332 (11)0.0441 (11)0.0348 (11)0.0091 (8)0.0064 (8)0.0025 (10)
C20.0954 (19)0.0482 (14)0.0417 (13)0.0123 (13)0.0188 (12)0.0044 (11)
C30.101 (2)0.0536 (17)0.0659 (18)0.0144 (14)0.0224 (15)0.0256 (14)
C40.0629 (16)0.0392 (14)0.089 (2)0.0055 (11)0.0140 (14)0.0010 (15)
C50.0580 (16)0.0503 (15)0.0607 (16)0.0055 (11)0.0047 (12)0.0146 (12)
C60.0552 (14)0.0525 (14)0.0344 (13)0.0052 (11)0.0059 (10)0.0045 (10)
C70.073 (2)0.102 (3)0.124 (3)0.0374 (19)0.0050 (19)0.027 (2)
C80.101 (2)0.081 (2)0.0664 (18)0.0027 (17)0.0261 (16)0.0275 (15)
C90.0523 (15)0.0679 (16)0.0732 (17)0.0069 (12)0.0099 (13)0.0097 (14)
C100.0601 (15)0.0793 (18)0.0679 (18)0.0110 (14)0.0030 (12)0.0266 (14)
C110.0565 (16)0.0727 (18)0.0772 (19)0.0160 (13)0.0083 (13)0.0213 (14)
C120.0573 (15)0.0800 (19)0.081 (2)0.0114 (15)0.0116 (13)0.0142 (16)
Geometric parameters (Å, º) top
P1—O31.4597 (17)C5—C61.365 (3)
P1—O51.5718 (16)C5—H50.9300
P1—O41.5738 (16)C6—H60.9300
P1—N11.5915 (17)C7—H7A0.9600
S1—O11.4290 (16)C7—H7B0.9600
S1—O21.4447 (16)C7—H7C0.9600
S1—N11.5510 (18)C8—H8B0.9600
S1—C11.774 (2)C8—H8A0.9600
N2—C121.457 (3)C8—H8C0.9600
N2—C101.486 (3)C9—H9B0.9600
N2—C111.486 (3)C9—H9A0.9600
N2—C91.492 (3)C9—H9C0.9600
O4—C71.440 (3)C10—H10B0.9600
O5—C81.437 (3)C10—H10A0.9600
C1—C61.362 (3)C10—H10C0.9600
C1—C21.370 (3)C11—H11C0.9600
C2—C31.381 (4)C11—H11B0.9600
C2—H20.9300C11—H11A0.9600
C3—C41.361 (4)C12—H12C0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.367 (3)C12—H12A0.9600
C4—H40.9300
O3—P1—O5107.99 (10)C5—C6—H6119.4
O3—P1—O4112.76 (10)O4—C7—H7A109.5
O5—P1—O4104.56 (9)O4—C7—H7B109.5
O3—P1—N1120.12 (10)H7A—C7—H7B109.5
O5—P1—N1104.05 (9)O4—C7—H7C109.5
O4—P1—N1105.99 (9)H7A—C7—H7C109.5
O1—S1—O2114.42 (12)H7B—C7—H7C109.5
O1—S1—N1115.58 (11)O5—C8—H8B109.5
O2—S1—N1107.03 (10)O5—C8—H8A109.5
O1—S1—C1105.65 (11)H8B—C8—H8A109.5
O2—S1—C1105.98 (10)O5—C8—H8C109.5
N1—S1—C1107.57 (10)H8B—C8—H8C109.5
S1—N1—P1125.74 (11)H8A—C8—H8C109.5
C12—N2—C10109.7 (2)N2—C9—H9B109.5
C12—N2—C11110.1 (2)N2—C9—H9A109.5
C10—N2—C11108.40 (18)H9B—C9—H9A109.5
C12—N2—C9109.99 (19)N2—C9—H9C109.5
C10—N2—C9109.5 (2)H9B—C9—H9C109.5
C11—N2—C9109.07 (19)H9A—C9—H9C109.5
C7—O4—P1118.14 (16)N2—C10—H10B109.5
C8—O5—P1119.47 (16)N2—C10—H10A109.5
C6—C1—C2118.9 (2)H10B—C10—H10A109.5
C6—C1—S1120.41 (16)N2—C10—H10C109.5
C2—C1—S1120.68 (17)H10B—C10—H10C109.5
C1—C2—C3119.7 (2)H10A—C10—H10C109.5
C1—C2—H2120.2N2—C11—H11C109.5
C3—C2—H2120.2N2—C11—H11B109.5
C4—C3—C2121.0 (2)H11C—C11—H11B109.5
C4—C3—H3119.5N2—C11—H11A109.5
C2—C3—H3119.5H11C—C11—H11A109.5
C3—C4—C5118.9 (2)H11B—C11—H11A109.5
C3—C4—H4120.6N2—C12—H12C109.5
C5—C4—H4120.6N2—C12—H12B109.5
C6—C5—C4120.3 (2)H12C—C12—H12B109.5
C6—C5—H5119.9N2—C12—H12A109.5
C4—C5—H5119.9H12C—C12—H12A109.5
C1—C6—C5121.2 (2)H12B—C12—H12A109.5
C1—C6—H6119.4

Experimental details

Crystal data
Chemical formulaC4H12N+·C8H11NO5PS
Mr338.36
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)15.2840 (9), 9.269 (2), 12.1650 (11)
β (°) 98.279 (9)
V3)1705.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.582, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8644, 3928, 2406
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.063, 0.77
No. of reflections3928
No. of parameters197
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.15
Absolute structureFlack (1983), 1444 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP within SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

 

References

First citationCao, Y., Chen, Y. & Cheng, G. (2008). Acta Cryst. E64, m1546.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKirsanov, A. & Shevchenko, V. (1956). Zh. Obshch. Khim. 26, 504–509.  CAS Google Scholar
First citationLiu, F., Sheu, Y., She, J.-J., Chang, Y., Hong, F., Lee, G. & Peng, S. (2004). J. Organomet. Chem. 689, 544–548.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S., Demeshko, S. & Amirkhanov, V. M. (2009). Polyhedron, 28, 1331–1335.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPietraszkiewicz, M., Karpiuk, J. & Staniszewski, K. (2002). J. Alloys Compd, 341, 267–271.  Web of Science CrossRef CAS Google Scholar
First citationShatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m397–m398.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrush, E. A., Trush, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2009). Acta Cryst. E65, m1231.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds