organic compounds
Tetramethylammonium dimethyl (phenylsulfonylamido)phosphate(1−)
aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, and bSTC "Institute for Syngle Crystals", 60 Lenina ave., Khar'kov 61001, Ukraine
*Correspondence e-mail: elizaveta@univ.kiev.ua
The title compound, C4H12N+·C8H11NO5PS−, was obtained from tetramethylammonium hydroxide and dimethyl(phenylsulfonyl)amidophosphate. The tetramethylammonium cation has a slightly distorted tetrahedral configuration and the N—C bond lengths lie in the range 1.457 (3)–1.492 (3) Å. In the crystal, no classical hydrogen bonds are observed between the cation and the anion.
Related literature
For the synthesis of sulfonylamide derivatives, see: Kirsanov & Shevchenko (1956); Pietraszkiewicz et al. (2002); Trush et al. (2009); Moroz et al. (2009); Shatrava et al. (2010). For the crystal structures of tetramethylammonium compounds, see: Cao et al. (2008); Liu et al. (2004).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP within SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811055024/wn2457sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811055024/wn2457Isup2.hkl
The dimethyl(phenylsulfonyl)amidophosphate (HL) was prepared according to the earlier published procedures (Kirsanov et al., 1956). The tetramethylammonium salt {N(CH3)4+[C6H5SO2NP(O)(OCH3)2]-} was obtained by the neutralization reaction: tetramethylammonium hydroxide (0.365 g, 1 mmol of 25% solution) was added dropwise to an equimolar amount (0.265 g, 1 mmol) of HL which was dissolved in 10 ml of isopropanol. The completion of the reaction was checked with phenolphthalein. Colorless crystals suitable for X-ray diffraction were separated. The yield was 0.31 g (92% starting from HL).
All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating-group model was applied for the methyl groups. The
was determined and the refined to 0.05 (6).Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP within SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).C4H12N+·C8H11NO5PS− | F(000) = 720 |
Mr = 338.36 | Dx = 1.318 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.2840 (9) Å | Cell parameters from 2883 reflections |
b = 9.269 (2) Å | θ = 3.0–32.2° |
c = 12.1650 (11) Å | µ = 0.30 mm−1 |
β = 98.279 (9)° | T = 293 K |
V = 1705.4 (4) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.20 × 0.10 mm |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 3928 independent reflections |
Radiation source: fine-focus sealed tube | 2406 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 30.0°, θmin = 3.0° |
ω scans | h = −21→20 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −12→13 |
Tmin = 0.582, Tmax = 1.000 | l = −17→17 |
8644 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0302P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.063 | (Δ/σ)max < 0.001 |
S = 0.77 | Δρmax = 0.23 e Å−3 |
3928 reflections | Δρmin = −0.15 e Å−3 |
197 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.0053 (4) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1444 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.05 (6) |
C4H12N+·C8H11NO5PS− | V = 1705.4 (4) Å3 |
Mr = 338.36 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 15.2840 (9) Å | µ = 0.30 mm−1 |
b = 9.269 (2) Å | T = 293 K |
c = 12.1650 (11) Å | 0.40 × 0.20 × 0.10 mm |
β = 98.279 (9)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 3928 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2406 reflections with I > 2σ(I) |
Tmin = 0.582, Tmax = 1.000 | Rint = 0.035 |
8644 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.063 | Δρmax = 0.23 e Å−3 |
S = 0.77 | Δρmin = −0.15 e Å−3 |
3928 reflections | Absolute structure: Flack (1983), 1444 Friedel pairs |
197 parameters | Absolute structure parameter: 0.05 (6) |
2 restraints |
Experimental. Analysis found: IR (KBr pellet, cm-1): 1245(ν), 1220(νs), 1190(νs), 1060(νs), 1040(δ); 1060 (s, SO2) and 1190 (s, PO). 1H NMR (DMSO-d6): 3.4 d 6H, 3JPH =11.6 Hz; 7.78 dd (α), 2H; 7.38 m (β+γ), 3H; 31P (DMSO-d6) -3.27 h, 3JHP = 11.6 Hz. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | −0.72846 (3) | −0.17887 (6) | −0.99705 (4) | 0.03893 (14) | |
S1 | −0.88898 (4) | −0.24929 (6) | −0.92536 (5) | 0.04416 (14) | |
N1 | −0.83352 (11) | −0.18063 (19) | −1.00894 (14) | 0.0476 (4) | |
N2 | −0.57619 (11) | −0.5029 (2) | −0.71028 (15) | 0.0466 (5) | |
O1 | −0.86516 (14) | −0.20683 (19) | −0.81208 (13) | 0.0773 (6) | |
O2 | −0.98092 (11) | −0.22632 (19) | −0.96904 (16) | 0.0740 (5) | |
O3 | −0.67793 (12) | −0.30800 (18) | −0.96015 (16) | 0.0681 (5) | |
O4 | −0.69770 (10) | −0.04211 (17) | −0.92503 (14) | 0.0618 (4) | |
O5 | −0.70883 (10) | −0.14025 (18) | −1.11691 (12) | 0.0586 (4) | |
C1 | −0.87219 (12) | −0.4386 (2) | −0.92758 (17) | 0.0373 (5) | |
C2 | −0.86269 (19) | −0.5079 (3) | −1.0247 (2) | 0.0609 (6) | |
H2 | −0.8643 | −0.4558 | −1.0902 | 0.073* | |
C3 | −0.8507 (2) | −0.6556 (3) | −1.0247 (2) | 0.0725 (8) | |
H3 | −0.8449 | −0.7025 | −1.0908 | 0.087* | |
C4 | −0.84735 (16) | −0.7336 (3) | −0.9293 (2) | 0.0635 (7) | |
H4 | −0.8390 | −0.8329 | −0.9298 | 0.076* | |
C5 | −0.85644 (15) | −0.6633 (3) | −0.8328 (2) | 0.0567 (6) | |
H5 | −0.8545 | −0.7152 | −0.7671 | 0.068* | |
C6 | −0.86836 (14) | −0.5174 (3) | −0.83254 (17) | 0.0474 (6) | |
H6 | −0.8740 | −0.4709 | −0.7662 | 0.057* | |
C7 | −0.60472 (19) | −0.0089 (4) | −0.9058 (3) | 0.1007 (12) | |
H7A | −0.5927 | 0.0693 | −0.9531 | 0.151* | |
H7B | −0.5715 | −0.0923 | −0.9218 | 0.151* | |
H7C | −0.5880 | 0.0184 | −0.8295 | 0.151* | |
C8 | −0.7451 (2) | −0.0104 (3) | −1.1696 (2) | 0.0815 (9) | |
H8B | −0.7178 | 0.0719 | −1.1307 | 0.122* | |
H8A | −0.8077 | −0.0078 | −1.1680 | 0.122* | |
H8C | −0.7339 | −0.0084 | −1.2453 | 0.122* | |
C9 | −0.62334 (17) | −0.5989 (3) | −0.7979 (2) | 0.0644 (7) | |
H9B | −0.6614 | −0.6634 | −0.7650 | 0.097* | |
H9A | −0.5809 | −0.6538 | −0.8314 | 0.097* | |
H9C | −0.6581 | −0.5414 | −0.8535 | 0.097* | |
C10 | −0.52163 (19) | −0.5918 (3) | −0.6247 (2) | 0.0697 (7) | |
H10B | −0.4877 | −0.5297 | −0.5716 | 0.105* | |
H10A | −0.4824 | −0.6516 | −0.6597 | 0.105* | |
H10C | −0.5595 | −0.6515 | −0.5876 | 0.105* | |
C11 | −0.51646 (17) | −0.4051 (3) | −0.7616 (2) | 0.0689 (7) | |
H11C | −0.4744 | −0.4614 | −0.7947 | 0.103* | |
H11B | −0.4857 | −0.3433 | −0.7056 | 0.103* | |
H11A | −0.5507 | −0.3475 | −0.8177 | 0.103* | |
C12 | −0.63993 (19) | −0.4189 (3) | −0.6587 (2) | 0.0727 (8) | |
H12C | −0.6751 | −0.3617 | −0.7142 | 0.109* | |
H12B | −0.6091 | −0.3567 | −0.6030 | 0.109* | |
H12A | −0.6776 | −0.4830 | −0.6249 | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0396 (3) | 0.0345 (3) | 0.0437 (3) | −0.0002 (3) | 0.0096 (2) | 0.0012 (3) |
S1 | 0.0473 (3) | 0.0415 (3) | 0.0467 (3) | −0.0013 (2) | 0.0171 (2) | 0.0014 (3) |
N1 | 0.0389 (10) | 0.0518 (11) | 0.0528 (11) | −0.0007 (8) | 0.0085 (8) | 0.0104 (9) |
N2 | 0.0414 (11) | 0.0503 (12) | 0.0489 (11) | −0.0025 (9) | 0.0087 (8) | 0.0038 (9) |
O1 | 0.1328 (17) | 0.0603 (11) | 0.0427 (10) | −0.0138 (11) | 0.0264 (10) | −0.0104 (8) |
O2 | 0.0463 (10) | 0.0711 (11) | 0.1084 (15) | 0.0072 (8) | 0.0238 (9) | 0.0168 (10) |
O3 | 0.0553 (11) | 0.0492 (10) | 0.0971 (14) | 0.0065 (8) | 0.0017 (9) | 0.0155 (9) |
O4 | 0.0595 (11) | 0.0609 (11) | 0.0665 (11) | −0.0170 (8) | 0.0142 (8) | −0.0184 (9) |
O5 | 0.0662 (11) | 0.0632 (11) | 0.0513 (10) | 0.0048 (8) | 0.0248 (8) | 0.0029 (8) |
C1 | 0.0332 (11) | 0.0441 (11) | 0.0348 (11) | −0.0091 (8) | 0.0064 (8) | −0.0025 (10) |
C2 | 0.0954 (19) | 0.0482 (14) | 0.0417 (13) | −0.0123 (13) | 0.0188 (12) | −0.0044 (11) |
C3 | 0.101 (2) | 0.0536 (17) | 0.0659 (18) | −0.0144 (14) | 0.0224 (15) | −0.0256 (14) |
C4 | 0.0629 (16) | 0.0392 (14) | 0.089 (2) | −0.0055 (11) | 0.0140 (14) | −0.0010 (15) |
C5 | 0.0580 (16) | 0.0503 (15) | 0.0607 (16) | −0.0055 (11) | 0.0047 (12) | 0.0146 (12) |
C6 | 0.0552 (14) | 0.0525 (14) | 0.0344 (13) | −0.0052 (11) | 0.0059 (10) | 0.0045 (10) |
C7 | 0.073 (2) | 0.102 (3) | 0.124 (3) | −0.0374 (19) | 0.0050 (19) | −0.027 (2) |
C8 | 0.101 (2) | 0.081 (2) | 0.0664 (18) | 0.0027 (17) | 0.0261 (16) | 0.0275 (15) |
C9 | 0.0523 (15) | 0.0679 (16) | 0.0732 (17) | −0.0069 (12) | 0.0099 (13) | −0.0097 (14) |
C10 | 0.0601 (15) | 0.0793 (18) | 0.0679 (18) | 0.0110 (14) | 0.0030 (12) | 0.0266 (14) |
C11 | 0.0565 (16) | 0.0727 (18) | 0.0772 (19) | −0.0160 (13) | 0.0083 (13) | 0.0213 (14) |
C12 | 0.0573 (15) | 0.0800 (19) | 0.081 (2) | 0.0114 (15) | 0.0116 (13) | −0.0142 (16) |
P1—O3 | 1.4597 (17) | C5—C6 | 1.365 (3) |
P1—O5 | 1.5718 (16) | C5—H5 | 0.9300 |
P1—O4 | 1.5738 (16) | C6—H6 | 0.9300 |
P1—N1 | 1.5915 (17) | C7—H7A | 0.9600 |
S1—O1 | 1.4290 (16) | C7—H7B | 0.9600 |
S1—O2 | 1.4447 (16) | C7—H7C | 0.9600 |
S1—N1 | 1.5510 (18) | C8—H8B | 0.9600 |
S1—C1 | 1.774 (2) | C8—H8A | 0.9600 |
N2—C12 | 1.457 (3) | C8—H8C | 0.9600 |
N2—C10 | 1.486 (3) | C9—H9B | 0.9600 |
N2—C11 | 1.486 (3) | C9—H9A | 0.9600 |
N2—C9 | 1.492 (3) | C9—H9C | 0.9600 |
O4—C7 | 1.440 (3) | C10—H10B | 0.9600 |
O5—C8 | 1.437 (3) | C10—H10A | 0.9600 |
C1—C6 | 1.362 (3) | C10—H10C | 0.9600 |
C1—C2 | 1.370 (3) | C11—H11C | 0.9600 |
C2—C3 | 1.381 (4) | C11—H11B | 0.9600 |
C2—H2 | 0.9300 | C11—H11A | 0.9600 |
C3—C4 | 1.361 (4) | C12—H12C | 0.9600 |
C3—H3 | 0.9300 | C12—H12B | 0.9600 |
C4—C5 | 1.367 (3) | C12—H12A | 0.9600 |
C4—H4 | 0.9300 | ||
O3—P1—O5 | 107.99 (10) | C5—C6—H6 | 119.4 |
O3—P1—O4 | 112.76 (10) | O4—C7—H7A | 109.5 |
O5—P1—O4 | 104.56 (9) | O4—C7—H7B | 109.5 |
O3—P1—N1 | 120.12 (10) | H7A—C7—H7B | 109.5 |
O5—P1—N1 | 104.05 (9) | O4—C7—H7C | 109.5 |
O4—P1—N1 | 105.99 (9) | H7A—C7—H7C | 109.5 |
O1—S1—O2 | 114.42 (12) | H7B—C7—H7C | 109.5 |
O1—S1—N1 | 115.58 (11) | O5—C8—H8B | 109.5 |
O2—S1—N1 | 107.03 (10) | O5—C8—H8A | 109.5 |
O1—S1—C1 | 105.65 (11) | H8B—C8—H8A | 109.5 |
O2—S1—C1 | 105.98 (10) | O5—C8—H8C | 109.5 |
N1—S1—C1 | 107.57 (10) | H8B—C8—H8C | 109.5 |
S1—N1—P1 | 125.74 (11) | H8A—C8—H8C | 109.5 |
C12—N2—C10 | 109.7 (2) | N2—C9—H9B | 109.5 |
C12—N2—C11 | 110.1 (2) | N2—C9—H9A | 109.5 |
C10—N2—C11 | 108.40 (18) | H9B—C9—H9A | 109.5 |
C12—N2—C9 | 109.99 (19) | N2—C9—H9C | 109.5 |
C10—N2—C9 | 109.5 (2) | H9B—C9—H9C | 109.5 |
C11—N2—C9 | 109.07 (19) | H9A—C9—H9C | 109.5 |
C7—O4—P1 | 118.14 (16) | N2—C10—H10B | 109.5 |
C8—O5—P1 | 119.47 (16) | N2—C10—H10A | 109.5 |
C6—C1—C2 | 118.9 (2) | H10B—C10—H10A | 109.5 |
C6—C1—S1 | 120.41 (16) | N2—C10—H10C | 109.5 |
C2—C1—S1 | 120.68 (17) | H10B—C10—H10C | 109.5 |
C1—C2—C3 | 119.7 (2) | H10A—C10—H10C | 109.5 |
C1—C2—H2 | 120.2 | N2—C11—H11C | 109.5 |
C3—C2—H2 | 120.2 | N2—C11—H11B | 109.5 |
C4—C3—C2 | 121.0 (2) | H11C—C11—H11B | 109.5 |
C4—C3—H3 | 119.5 | N2—C11—H11A | 109.5 |
C2—C3—H3 | 119.5 | H11C—C11—H11A | 109.5 |
C3—C4—C5 | 118.9 (2) | H11B—C11—H11A | 109.5 |
C3—C4—H4 | 120.6 | N2—C12—H12C | 109.5 |
C5—C4—H4 | 120.6 | N2—C12—H12B | 109.5 |
C6—C5—C4 | 120.3 (2) | H12C—C12—H12B | 109.5 |
C6—C5—H5 | 119.9 | N2—C12—H12A | 109.5 |
C4—C5—H5 | 119.9 | H12C—C12—H12A | 109.5 |
C1—C6—C5 | 121.2 (2) | H12B—C12—H12A | 109.5 |
C1—C6—H6 | 119.4 |
Experimental details
Crystal data | |
Chemical formula | C4H12N+·C8H11NO5PS− |
Mr | 338.36 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 293 |
a, b, c (Å) | 15.2840 (9), 9.269 (2), 12.1650 (11) |
β (°) | 98.279 (9) |
V (Å3) | 1705.4 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.40 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.582, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8644, 3928, 2406 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.063, 0.77 |
No. of reflections | 3928 |
No. of parameters | 197 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.15 |
Absolute structure | Flack (1983), 1444 Friedel pairs |
Absolute structure parameter | 0.05 (6) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP within SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).
References
Cao, Y., Chen, Y. & Cheng, G. (2008). Acta Cryst. E64, m1546. Web of Science CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kirsanov, A. & Shevchenko, V. (1956). Zh. Obshch. Khim. 26, 504–509. CAS Google Scholar
Liu, F., Sheu, Y., She, J.-J., Chang, Y., Hong, F., Lee, G. & Peng, S. (2004). J. Organomet. Chem. 689, 544–548. Web of Science CSD CrossRef CAS Google Scholar
Moroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S., Demeshko, S. & Amirkhanov, V. M. (2009). Polyhedron, 28, 1331–1335. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England. Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pietraszkiewicz, M., Karpiuk, J. & Staniszewski, K. (2002). J. Alloys Compd, 341, 267–271. Web of Science CrossRef CAS Google Scholar
Shatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m397–m398. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trush, E. A., Trush, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2009). Acta Cryst. E65, m1231. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
To date the coordination chemistry of phosphorylated sulphonylamide ligands has been of great interest (Pietraszkiewicz et al., 2002). Earlier sulfonylamide derivatives of the general type RSO2NHP(O)(R')2 and their coordination compounds have been systematically investigated and some results of our study have been already published (Moroz et al., 2009, Shatrava et al., 2010, Trush et al. 2009). However, there are no reports of the crystal structure of any alkali- or onic- salts of dimethyl(phenylsulphonyl)amidophosphate (HL). This paper reports the crystal structure of the compound {N(CH3)4+[C6H5SO2NP(O)(OCH3)2]-} (Fig. 1).
The highly polar anion contains six potential donor centers and, in spite of this fact, coordinated molecules of water or alcohol have not been detected. (Fig. 2).
The X-ray crystal structure reveals that there are no contacts shorter than 2.44 Å between cation and anion, (the presence of weak C—H···O contacts with the participation of PO and SO2 oxygens and protons of cation is observed), so the bonding may be considered as mainly ionic.
The dimethyl(phenylsulfonyl)amidophosphatotetramethylammonium salt includes a deprotonated sulphonylamidophosphate anion and cation; the latter has a standard N(CH3)4+-tetrahedral configuration (Fig. 1). The presence of non-equivalent values of C—N bond lengths is a general feature for earlier, structurally investigated tetramethylammonium compounds (Cao et al., 2008; Liu et al., 2004). The geometry of the nearest environment of the phosphorus atom in {L-} can be described as a distorted tetrahedron. The bond lengths P1—O3 and P1—N1 have values 1.460 (2) and 1.591 (2) Å, respectively, which are typical of phosphorylated sulfonylamide for compounds with ether-type substituents (Moroz et al., 2009).
The fragments O2—S1—N1—P1 and S1—N1—P1—O5 are practically planar; the values the of corresponding torsion angles are -179.8 (1)° and 163.6 (1)°, respectively; the interplanar angle is 13.2 (2)°. The average deviations of these atoms from these planes do not exceed 0.001 (4) and 0.08 (6) Å, respectively. The phenyl ring is rotated to a considerable extent with respect to the S—N bond, the value of the C2—C1—S1—N1 torsion angle being -36.1 (3)°.