organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,4,6-Tetra-O-acetyl-β-D-galacto­pyrano­syl butyrate

aDepartment of Chemistry, Zhejiang University, People's Republic of China, bDepartment of Biological and Chemical Engineering, Zhejiang University of Science and Technology, People's Republic of China, and cCollege of Pharmaceutical Sciences, Zhejiang University, People's Republic of China
*Correspondence e-mail: zjhzcyl@tom.com

(Received 6 December 2011; accepted 27 December 2011; online 11 January 2012)

The title compound, C18H26O11, was synthesized by a condensation reaction of 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide and butyric acid. The acet­oxy­methyl and butyrate groups are located on the same side of the pyran ring, showing the β configuration for the D-glycosyl ester; the butyl group adopts an extend conformation, the C—C—C—C torsion angle being 179.1 (7)°. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds.

Related literature

For the total synthesis of glycosyl esters, see: Li et al. (1992[Li, Z.-J., Xiao, G.-Q. & Cai, M.-S. (1992). Chin. Chem. Lett. 9, 711-712.]); Smith et al. (1986[Smith, A. B. III, Hale, K. J. & Rivero, R. A. (1986). Tetrahedron Lett. 27, 5813-5816.]). For the anti-tumor activities of glycosyl esters, see: Feldman et al. (2000[Feldman, K. S., Lawlor, M. D. & Sahasrabudhe, K. (2000). J. Org. Chem. 65, 8011-8019.]). For related structures, see: Sambaiah et al. (2001[Sambaiah, T., Fanwick, P. E. & Cushman, M. (2001). Synthesis, 10, 1450-1452.]); Parkanyi et al. (1987[Parkanyi, L., Kalman, A., Somsak, L. & Farkas, I. (1987). Carbohydr. Res. 168, 1-5.]); Roslund et al. (2004[Roslund, M. U., Klika, K. D., Lehtila, R. L., Tahtinen, P., Sillanpaa, R. & Leino, R. (2004). J. Org. Chem. 69, 18-25.]); Liu et al. (2009[Liu, H., Zou, A., Zhang, H., Wang, X. & Yang, Y. (2009). Acta Cryst. E65, o2725.]); Kumar et al. (2005)[Kumar, R., Tiwari, P., Maulik, P. R. & Misra, A. K. (2005). Carbohydr. Res. 340, 2335-2339.]. For the synthesis, see: Loganathan & Trivedi (1987[Loganathan, D. & Trivedi, G. K. (1987). Carbohydr. Res. 162, 117-125.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26O11

  • Mr = 418.39

  • Monoclinic, P 21

  • a = 9.2079 (9) Å

  • b = 8.5034 (5) Å

  • c = 14.3199 (12) Å

  • β = 100.804 (9)°

  • V = 1101.35 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 K

  • 0.38 × 0.32 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini Ultra diffractometer

  • 6393 measured reflections

  • 2160 independent reflections

  • 1582 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.147

  • S = 1.03

  • 2160 reflections

  • 268 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O11i 0.98 2.47 3.362 (5) 152
C5—H5⋯O11i 0.98 2.57 3.443 (6) 149
C11—H11B⋯O5ii 0.96 2.49 3.293 (7) 141
C16—H16C⋯O9iii 0.96 2.60 3.441 (7) 147
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carbohydrates provide excellent platforms upon which to explore unique features for the drug-discovery process. Numerous natural glycosyl esters such as phyllanthostatin family (Li et al., 1992) and dimeric ellagitannin coriariin A have been total synthetized (Smith et al., 1986). Some of them were proved to possess anti-tumor activities (Feldman et al., 2000). Also the glycosyl esters have long drawn attention as potential glycosyl donors. Several crystal structures of carbohydrate derivatives were reported (Sambaiah et al., 2001; Parkanyi et al., 1987; Roslund et al., 2004; Liu et al., 2009; Kumar et al., 2005). Recently we have synthetized the title compound and report its crystal structure herein.

The molecular structure of the title compound is shown in Fig. 1. In the molecule, the acetoxymethyl and butyrate groups are located on the same side of the pyran ring, showing the β-configuration for the D-glycosyl ester; the butyl group adopts an extend conformation, the C6–C7–C8–C9 torsion angle being 179.1 (7)°. The molecules are linked by weak C—H···O hydrogen bonding in the crystal.

Related literature top

For the total synthesis of glycosyl esters, see: Li et al. (1992); Smith et al. (1986). For the anti-tumor activities of glycosyl esters, see: Feldman et al. (2000). For related structures, see: Sambaiah et al. (2001); Parkanyi et al. (1987); Roslund et al. (2004); Liu et al. (2009); Kumar et al. (2005). For the synthesis, see: Loganathan & Trivedi (1987).

Experimental top

A solution of butyric acid (48.8 µl, 0.53 mmol), tetrabutylammonium iodide (26.7 mg, 0.07 mmol) and 5% aqueous sodium hydroxide (2 ml, 17.1 mg, 1.35 mmol) in dichloromethane (2 ml) was vigorously stirred at room temperature, then 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (145.1 mg, 0.35 mmol) was added. The mixture was stirred for 30 h, the two phases (dichloromethane phase and water phase) were then separated. The organic layer was washed with a sodium hydroxide aqueous solution (5%) and water for several times, dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (petroether/EtOAc = 2:1) to afford the title compound (Fig. 2). Single crystals suitable for X-ray data collection were obtained by slow evaporation from an ether solution (Loganathan et al., 1987).

Refinement top

Methyl H atoms were placed in calculated position with C—H = 0.96 Å and torsion angle was refined from electron density with Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.97–0.98 Å, and included in the final cycles of refinement in riding model with Uiso(H) = 1.2Ueq(C). As no significant anomalous scatterings, Friedel pairs were merged. The enantiomer has been assigned by reference to the unchanging chiral C5 atom in the synthetic procedure.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Reaction scheme.
(2S,3R,4S,5S,6R)-3,4,5-triacetoxy- 6-(acetoxymethyl)oxinan-2-yl butyrate top
Crystal data top
C18H26O11F(000) = 444
Mr = 418.39Dx = 1.262 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3799 reflections
a = 9.2079 (9) Åθ = 3.2–26.4°
b = 8.5034 (5) ŵ = 0.11 mm1
c = 14.3199 (12) ÅT = 294 K
β = 100.804 (9)°Block, colorless
V = 1101.35 (16) Å30.38 × 0.32 × 0.25 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
1582 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.4°, θmin = 2.9°
Detector resolution: 10.3592 pixels mm-1h = 118
ω scansk = 109
6393 measured reflectionsl = 1617
2160 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0855P)2 + 0.0985P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
2160 reflectionsΔρmax = 0.35 e Å3
268 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (6)
Crystal data top
C18H26O11V = 1101.35 (16) Å3
Mr = 418.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2079 (9) ŵ = 0.11 mm1
b = 8.5034 (5) ÅT = 294 K
c = 14.3199 (12) Å0.38 × 0.32 × 0.25 mm
β = 100.804 (9)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
1582 reflections with I > 2σ(I)
6393 measured reflectionsRint = 0.028
2160 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
2160 reflectionsΔρmin = 0.21 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1960 (3)0.9067 (3)0.2033 (2)0.0627 (8)
O20.2171 (3)0.8828 (4)0.3617 (2)0.0669 (8)
O30.0223 (5)0.8472 (6)0.3587 (3)0.1095 (14)
O40.2776 (3)1.2097 (3)0.3854 (2)0.0599 (7)
O50.4753 (4)1.1092 (5)0.4784 (2)0.0989 (13)
O60.4015 (3)1.3413 (3)0.23619 (19)0.0606 (7)
O70.2592 (4)1.5007 (4)0.1320 (3)0.0843 (10)
O80.4303 (3)1.0527 (3)0.13984 (19)0.0607 (7)
O90.5101 (5)1.2274 (5)0.0433 (3)0.1129 (15)
O100.1343 (4)1.0060 (4)0.0433 (2)0.0778 (9)
O110.0730 (4)0.8056 (4)0.1411 (2)0.0833 (10)
C10.1872 (5)0.9923 (5)0.2865 (3)0.0579 (10)
H10.08831.03750.28240.069*
C20.3038 (4)1.1195 (5)0.3053 (3)0.0516 (9)
H20.40301.07310.31850.062*
C30.2868 (4)1.2263 (4)0.2199 (3)0.0524 (10)
H30.19121.28000.21270.063*
C40.2904 (4)1.1312 (5)0.1311 (3)0.0553 (10)
H40.27411.19990.07510.066*
C50.1711 (5)1.0062 (5)0.1214 (3)0.0592 (10)
H50.07491.05790.11710.071*
C60.1034 (6)0.8206 (6)0.3940 (3)0.0691 (12)
C70.1506 (7)0.7109 (7)0.4739 (3)0.0898 (16)
H7A0.23960.65580.46580.108*
H7B0.07370.63380.47640.108*
C80.1820 (10)0.8143 (11)0.5717 (4)0.139 (3)
H8A0.25910.89070.56830.166*
H8B0.09310.87140.57790.166*
C90.2258 (9)0.7182 (11)0.6526 (4)0.135 (3)
H9A0.31780.66770.64900.202*
H9B0.15150.63980.65480.202*
H9C0.23780.78170.70900.202*
C100.3699 (5)1.1938 (6)0.4686 (3)0.0640 (11)
C110.3271 (7)1.2933 (7)0.5437 (3)0.0857 (15)
H11A0.23951.35160.51770.129*
H11B0.40591.36500.56740.129*
H11C0.30801.22800.59470.129*
C120.3736 (6)1.4773 (5)0.1855 (4)0.0698 (12)
C130.4984 (7)1.5887 (8)0.2062 (5)0.114 (2)
H13A0.57981.53960.24760.171*
H13B0.46831.68070.23640.171*
H13C0.52831.61820.14790.171*
C140.1652 (6)0.9010 (6)0.0361 (3)0.0709 (12)
H14A0.25900.84790.03810.085*
H14B0.08780.82290.03310.085*
C150.5298 (5)1.1116 (6)0.0906 (3)0.0697 (12)
C160.6667 (5)1.0135 (6)0.1061 (4)0.0839 (15)
H16A0.71051.01350.17240.126*
H16B0.73561.05620.07010.126*
H16C0.64200.90770.08560.126*
C170.0882 (5)0.9440 (6)0.1293 (3)0.0653 (12)
C180.0590 (7)1.0649 (8)0.2023 (3)0.0884 (15)
H18A0.14221.13470.19600.133*
H18B0.02741.12330.19500.133*
H18C0.04291.01650.26390.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0752 (19)0.0537 (15)0.0613 (17)0.0060 (14)0.0180 (14)0.0060 (14)
O20.0644 (18)0.0700 (19)0.0679 (18)0.0023 (15)0.0161 (14)0.0242 (16)
O30.083 (3)0.128 (4)0.126 (3)0.001 (2)0.042 (2)0.034 (3)
O40.0617 (17)0.0651 (17)0.0542 (15)0.0114 (14)0.0146 (12)0.0022 (14)
O50.084 (2)0.123 (3)0.082 (2)0.028 (3)0.0029 (19)0.015 (2)
O60.0665 (18)0.0549 (16)0.0591 (15)0.0089 (13)0.0083 (13)0.0000 (14)
O70.088 (2)0.068 (2)0.093 (2)0.0005 (18)0.008 (2)0.0190 (19)
O80.0660 (18)0.0577 (15)0.0618 (16)0.0012 (13)0.0209 (13)0.0072 (14)
O90.110 (3)0.112 (3)0.131 (3)0.010 (3)0.061 (3)0.055 (3)
O100.106 (2)0.0663 (19)0.0575 (17)0.0130 (18)0.0052 (16)0.0012 (16)
O110.086 (2)0.080 (2)0.079 (2)0.0041 (19)0.0024 (17)0.0216 (19)
C10.056 (2)0.061 (2)0.056 (2)0.002 (2)0.0102 (18)0.009 (2)
C20.053 (2)0.053 (2)0.049 (2)0.0056 (18)0.0099 (16)0.0022 (18)
C30.050 (2)0.052 (2)0.054 (2)0.0009 (18)0.0065 (17)0.0065 (18)
C40.060 (2)0.053 (2)0.052 (2)0.0007 (19)0.0090 (17)0.0099 (19)
C50.070 (3)0.053 (2)0.054 (2)0.006 (2)0.0084 (19)0.0048 (19)
C60.075 (3)0.073 (3)0.063 (3)0.003 (3)0.023 (2)0.005 (2)
C70.103 (4)0.091 (3)0.076 (3)0.020 (3)0.018 (3)0.024 (3)
C80.197 (9)0.135 (6)0.081 (4)0.022 (6)0.016 (5)0.021 (4)
C90.153 (7)0.160 (8)0.095 (4)0.013 (6)0.033 (4)0.010 (5)
C100.063 (3)0.070 (3)0.062 (3)0.003 (2)0.018 (2)0.004 (2)
C110.114 (4)0.087 (3)0.061 (3)0.007 (3)0.028 (3)0.007 (3)
C120.082 (3)0.056 (3)0.075 (3)0.010 (2)0.023 (3)0.002 (2)
C130.125 (5)0.087 (4)0.122 (5)0.041 (4)0.005 (4)0.014 (4)
C140.089 (3)0.057 (2)0.064 (3)0.008 (2)0.007 (2)0.004 (2)
C150.078 (3)0.065 (3)0.073 (3)0.014 (2)0.030 (2)0.003 (3)
C160.075 (3)0.080 (3)0.106 (4)0.000 (3)0.040 (3)0.010 (3)
C170.059 (3)0.076 (3)0.061 (3)0.004 (2)0.012 (2)0.006 (2)
C180.097 (4)0.101 (4)0.066 (3)0.002 (3)0.012 (3)0.005 (3)
Geometric parameters (Å, º) top
O1—C11.412 (5)C7—C81.634 (9)
O1—C51.429 (5)C7—H7A0.9700
O2—C61.331 (5)C7—H7B0.9700
O2—C11.412 (5)C8—C91.413 (9)
O3—C61.195 (6)C8—H8A0.9700
O4—C101.334 (5)C8—H8B0.9700
O4—C21.437 (5)C9—H9A0.9600
O5—C101.195 (6)C9—H9B0.9600
O6—C121.363 (5)C9—H9C0.9600
O6—C31.426 (5)C10—C111.478 (7)
O7—C121.197 (6)C11—H11A0.9600
O8—C151.353 (5)C11—H11B0.9600
O8—C41.435 (5)C11—H11C0.9600
O9—C151.190 (6)C12—C131.476 (7)
O10—C171.334 (5)C13—H13A0.9600
O10—C141.432 (5)C13—H13B0.9600
O11—C171.193 (6)C13—H13C0.9600
C1—C21.513 (6)C14—H14A0.9700
C1—H10.9800C14—H14B0.9700
C2—C31.507 (5)C15—C161.492 (7)
C2—H20.9800C16—H16A0.9600
C3—C41.513 (6)C16—H16B0.9600
C3—H30.9800C16—H16C0.9600
C4—C51.516 (6)C17—C181.454 (7)
C4—H40.9800C18—H18A0.9600
C5—C141.506 (6)C18—H18B0.9600
C5—H50.9800C18—H18C0.9600
C6—C71.477 (7)
C1—O1—C5111.2 (3)H8A—C8—H8B108.0
C6—O2—C1118.3 (3)C8—C9—H9A109.5
C10—O4—C2119.0 (3)C8—C9—H9B109.5
C12—O6—C3115.7 (3)H9A—C9—H9B109.5
C15—O8—C4117.8 (3)C8—C9—H9C109.5
C17—O10—C14118.0 (4)H9A—C9—H9C109.5
O2—C1—O1105.7 (3)H9B—C9—H9C109.5
O2—C1—C2107.8 (3)O5—C10—O4122.2 (4)
O1—C1—C2111.6 (3)O5—C10—C11125.5 (4)
O2—C1—H1110.6O4—C10—C11112.3 (4)
O1—C1—H1110.6C10—C11—H11A109.5
C2—C1—H1110.6C10—C11—H11B109.5
O4—C2—C3108.6 (3)H11A—C11—H11B109.5
O4—C2—C1107.7 (3)C10—C11—H11C109.5
C3—C2—C1108.9 (3)H11A—C11—H11C109.5
O4—C2—H2110.5H11B—C11—H11C109.5
C3—C2—H2110.5O7—C12—O6122.5 (4)
C1—C2—H2110.5O7—C12—C13125.5 (5)
O6—C3—C2108.6 (3)O6—C12—C13112.0 (4)
O6—C3—C4111.8 (3)C12—C13—H13A109.5
C2—C3—C4110.2 (3)C12—C13—H13B109.5
O6—C3—H3108.7H13A—C13—H13B109.5
C2—C3—H3108.7C12—C13—H13C109.5
C4—C3—H3108.7H13A—C13—H13C109.5
O8—C4—C3109.6 (3)H13B—C13—H13C109.5
O8—C4—C5107.7 (3)O10—C14—C5104.2 (3)
C3—C4—C5108.8 (3)O10—C14—H14A110.9
O8—C4—H4110.2C5—C14—H14A110.9
C3—C4—H4110.2O10—C14—H14B110.9
C5—C4—H4110.2C5—C14—H14B110.9
O1—C5—C14106.8 (3)H14A—C14—H14B108.9
O1—C5—C4109.7 (3)O9—C15—O8123.8 (5)
C14—C5—C4113.9 (4)O9—C15—C16125.6 (5)
O1—C5—H5108.8O8—C15—C16110.6 (4)
C14—C5—H5108.8C15—C16—H16A109.5
C4—C5—H5108.8C15—C16—H16B109.5
O3—C6—O2122.7 (4)H16A—C16—H16B109.5
O3—C6—C7124.6 (5)C15—C16—H16C109.5
O2—C6—C7112.6 (5)H16A—C16—H16C109.5
C6—C7—C8107.7 (5)H16B—C16—H16C109.5
C6—C7—H7A110.2O11—C17—O10121.9 (5)
C8—C7—H7A110.2O11—C17—C18126.5 (5)
C6—C7—H7B110.2O10—C17—C18111.6 (4)
C8—C7—H7B110.2C17—C18—H18A109.5
H7A—C7—H7B108.5C17—C18—H18B109.5
C9—C8—C7111.6 (7)H18A—C18—H18B109.5
C9—C8—H8A109.3C17—C18—H18C109.5
C7—C8—H8A109.3H18A—C18—H18C109.5
C9—C8—H8B109.3H18B—C18—H18C109.5
C7—C8—H8B109.3
C6—O2—C1—O199.1 (4)C1—O1—C5—C14173.6 (3)
C6—O2—C1—C2141.5 (4)C1—O1—C5—C462.5 (4)
C5—O1—C1—O2178.6 (3)O8—C4—C5—O159.6 (4)
C5—O1—C1—C261.7 (4)C3—C4—C5—O159.2 (4)
C10—O4—C2—C3134.7 (4)O8—C4—C5—C1460.1 (4)
C10—O4—C2—C1107.5 (4)C3—C4—C5—C14178.9 (3)
O2—C1—C2—O469.9 (4)C1—O2—C6—O34.1 (7)
O1—C1—C2—O4174.5 (3)C1—O2—C6—C7178.8 (4)
O2—C1—C2—C3172.6 (3)O3—C6—C7—C896.6 (7)
O1—C1—C2—C357.0 (4)O2—C6—C7—C886.3 (6)
C12—O6—C3—C2156.7 (3)C6—C7—C8—C9179.1 (7)
C12—O6—C3—C481.5 (4)C2—O4—C10—O51.4 (7)
O4—C2—C3—O665.8 (4)C2—O4—C10—C11179.6 (4)
C1—C2—C3—O6177.2 (3)C3—O6—C12—O71.4 (6)
O4—C2—C3—C4171.4 (3)C3—O6—C12—C13179.5 (5)
C1—C2—C3—C454.4 (4)C17—O10—C14—C5164.4 (4)
C15—O8—C4—C3104.4 (4)O1—C5—C14—O10177.8 (3)
C15—O8—C4—C5137.4 (4)C4—C5—C14—O1060.9 (5)
O6—C3—C4—O859.4 (4)C4—O8—C15—O92.7 (7)
C2—C3—C4—O861.5 (4)C4—O8—C15—C16178.6 (4)
O6—C3—C4—C5177.0 (3)C14—O10—C17—O110.2 (7)
C2—C3—C4—C556.1 (4)C14—O10—C17—C18179.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O11i0.982.473.362 (5)152
C5—H5···O11i0.982.573.443 (6)149
C11—H11B···O5ii0.962.493.293 (7)141
C16—H16C···O9iii0.962.603.441 (7)147
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC18H26O11
Mr418.39
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)9.2079 (9), 8.5034 (5), 14.3199 (12)
β (°) 100.804 (9)
V3)1101.35 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.32 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6393, 2160, 1582
Rint0.028
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.147, 1.03
No. of reflections2160
No. of parameters268
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O11i0.982.473.362 (5)152
C5—H5···O11i0.982.573.443 (6)149
C11—H11B···O5ii0.962.493.293 (7)141
C16—H16C···O9iii0.962.603.441 (7)147
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y1/2, z.
 

Acknowledgements

The work was supported financially by the National Natural Science Foundation of China (No. 30870553) and the Key Inter­national S&T Cooperation Project, China (No. 2010DFA34370).

References

First citationFeldman, K. S., Lawlor, M. D. & Sahasrabudhe, K. (2000). J. Org. Chem. 65, 8011–8019.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, R., Tiwari, P., Maulik, P. R. & Misra, A. K. (2005). Carbohydr. Res. 340, 2335–2339.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Z.-J., Xiao, G.-Q. & Cai, M.-S. (1992). Chin. Chem. Lett. 9, 711–712.  Google Scholar
First citationLiu, H., Zou, A., Zhang, H., Wang, X. & Yang, Y. (2009). Acta Cryst. E65, o2725.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLoganathan, D. & Trivedi, G. K. (1987). Carbohydr. Res. 162, 117–125.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParkanyi, L., Kalman, A., Somsak, L. & Farkas, I. (1987). Carbohydr. Res. 168, 1–5.  CAS Google Scholar
First citationRoslund, M. U., Klika, K. D., Lehtila, R. L., Tahtinen, P., Sillanpaa, R. & Leino, R. (2004). J. Org. Chem. 69, 18–25.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSambaiah, T., Fanwick, P. E. & Cushman, M. (2001). Synthesis, 10, 1450–1452.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, A. B. III, Hale, K. J. & Rivero, R. A. (1986). Tetrahedron Lett. 27, 5813–5816.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds