organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[4-(Di­phenyl­amino)­phen­yl]-1-(pyridin-2-yl)prop-2-en-1-one

aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China, and bJiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
*Correspondence e-mail: wangxiaomeisuda@126.com

(Received 16 December 2011; accepted 21 December 2011; online 14 January 2012)

The title compound, C26H20N2O, belongs to a new family of organic two-photon absorption materials with triphenyl­amine and pyridine units. In the mol­ecule, the three benzene rings are arranged in a propeller-like fashion; the dihedral angles between the rings are 80.01 (14), 75.68 (13) and 56.93 (14)°. The pyridine ring is oriented at dihedral angles of 56.24 (14), 48.92 (15) and 22.02 (13)° with respect to the three benzene rings. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of two-photon absorption compounds, see: Fan et al. (2012[Fan, C.-B., Wang, X.-M., Wang, X.-H. & Luo, J.-F. (2012). Opt. Mater. 34, 609-615.]); He et al. (2008[He, G.-S., Tan, L.-S., Zheng, Q.-D. & Prasad, P.-N. (2008). Chem. Rev. 108, 1245-1330.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20N2O

  • Mr = 376.44

  • Monoclinic, P 21 /c

  • a = 12.0342 (3) Å

  • b = 17.4069 (4) Å

  • c = 9.4392 (2) Å

  • β = 91.757 (2)°

  • V = 1976.38 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 15074 measured reflections

  • 3488 independent reflections

  • 2210 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.167

  • S = 1.03

  • 3488 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.55 3.404 (3) 153
C6—H6⋯O1ii 0.93 2.58 3.505 (3) 179
Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic materials with two-photon absorption (TPA) properties have attracted increasing attention due to their versatile potential applications in two-photon excited fluorescence (Fan et al., 2012), three-dimensional microfabrication, high-density optical data storage, optical limiting, stabilization and reshaping (He et al., 2008). However, the basic structure-function relationships regarding enhanced TPA properties remain unclear. To further understand this important issue, we synthesized the two-photon absorption material with triphenylamine and pyridine units. This compound when dissolved in tetrahydrofuran shows absorption peak 430 nm. It must be noted that there is no linear absorption for the title chromophores beyond 800 nm. The laser pumped wavelength is 850 nm which is matching with absorption peak 430 nm, the linear absorption can be excluded because two-photon excitation via virtual intermediate state can proceed, consistent with the fact that the nonlinear absorption occurs at a frequency in the region of one-photon transparency. The title chromophore shows two-photon absorption fluorescence spectra at 546 nm when excited with 850 nm femtosecond laser pulses.

Related literature top

For applications of two-photon absorption compounds, see: Fan et al. (2012); He et al. (2008).

Experimental top

To a 100 mL methanol solution of 4-(diphenylamino) benzaldehyde (1.37 g, 5.0 mmol) was added 2-acetylpridine (0.61 g, 5.0 mmol) and 2% aqueous NaOH (0.44 g, 22 mL). The mixture was stirred for 2 h at room temperature (Scheme 1). The yellow precipitate formed was collected by filtration, and washed sequentially with water and methanol for three times, respectively.

Refinement top

All H atoms were placed in calculated positions with C—H equal 0.93 Å. They were included in the refinement in the riding model approximation with isotropic displacement parameters set equal to 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(E)-3-[4-(Diphenylamino)phenyl]-1-(pyridin-2-yl)prop-2-en-1-one top
Crystal data top
C26H20N2OF(000) = 792
Mr = 376.44Dx = 1.265 Mg m3
Monoclinic, P21/cMelting point: 467 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.0342 (3) ÅCell parameters from 2266 reflections
b = 17.4069 (4) Åθ = 2.5–21.1°
c = 9.4392 (2) ŵ = 0.08 mm1
β = 91.757 (2)°T = 296 K
V = 1976.38 (8) Å3Block, orange
Z = 40.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2210 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ϕ and ω scansh = 1414
15074 measured reflectionsk = 1720
3488 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.1969P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3488 reflectionsΔρmax = 0.17 e Å3
263 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0084 (18)
Crystal data top
C26H20N2OV = 1976.38 (8) Å3
Mr = 376.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0342 (3) ŵ = 0.08 mm1
b = 17.4069 (4) ÅT = 296 K
c = 9.4392 (2) Å0.20 × 0.20 × 0.18 mm
β = 91.757 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2210 reflections with I > 2σ(I)
15074 measured reflectionsRint = 0.046
3488 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
3488 reflectionsΔρmin = 0.16 e Å3
263 parameters
Special details top

Experimental. 1H NMR (CDCl3; 400 MHz; TMS): ppm: 7.00-7.03 (m, 2H, Ar-H), 7.09-7.18 (m, 6H, Ar-H), 7.26-7.36 (m, 7H, Ar-H, pyr-H), 7.46-7.49 (m, 1H, Ar-H), 7.57, 7.59 (d, 1H, -CH=), 7.67, 7.69 (d, 1H, -CH=), 7.87-7.92 (m, 1H, pyr-H), 8.13-8.20 (m, 1H, pyr-H), 8.72, 8.74 (d, 1H, pyr-H)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37944 (18)0.15352 (15)0.1848 (2)0.0604 (6)
C20.4306 (2)0.22083 (15)0.1472 (3)0.0724 (7)
H20.40130.24980.07210.087*
C30.5246 (2)0.24556 (18)0.2199 (3)0.0821 (8)
H30.55900.29110.19390.099*
C40.5675 (2)0.2031 (2)0.3304 (3)0.0829 (9)
H40.63050.22040.38030.099*
C50.5181 (2)0.13502 (18)0.3686 (3)0.0794 (8)
H50.54840.10590.44280.095*
C60.4231 (2)0.11022 (15)0.2955 (3)0.0686 (7)
H60.38900.06460.32100.082*
C70.28491 (19)0.11150 (14)0.0356 (2)0.0592 (6)
C80.1950 (2)0.12480 (17)0.1262 (3)0.0757 (8)
H80.12980.14500.09130.091*
C90.2017 (3)0.1082 (2)0.2684 (3)0.0987 (11)
H90.14020.11660.32850.118*
C100.2972 (3)0.0796 (2)0.3223 (3)0.1014 (11)
H100.30080.06830.41830.122*
C110.3868 (3)0.06786 (17)0.2342 (3)0.0889 (9)
H110.45260.04930.27060.107*
C120.3814 (2)0.08311 (15)0.0914 (3)0.0728 (7)
H120.44320.07420.03210.087*
C130.18324 (18)0.11941 (14)0.1885 (2)0.0615 (6)
C140.1670 (2)0.16653 (16)0.3048 (3)0.0728 (7)
H140.21850.20470.32770.087*
C150.0747 (2)0.15704 (16)0.3865 (3)0.0735 (7)
H150.06510.18940.46360.088*
C160.10415 (18)0.06364 (14)0.1553 (2)0.0630 (6)
H160.11330.03190.07730.076*
C170.01208 (19)0.05508 (15)0.2374 (3)0.0662 (7)
H170.04060.01800.21250.079*
C180.00423 (19)0.10043 (15)0.3566 (3)0.0634 (6)
C190.0996 (2)0.08741 (15)0.4450 (3)0.0703 (7)
H190.15600.05650.40680.084*
C200.1147 (2)0.11495 (15)0.5740 (3)0.0700 (7)
H200.06120.14760.61380.084*
C210.2123 (2)0.09591 (15)0.6561 (3)0.0652 (7)
C220.21265 (18)0.11975 (13)0.8081 (3)0.0593 (6)
C230.2974 (2)0.09692 (16)0.8930 (3)0.0709 (7)
H230.35570.06740.85560.085*
C240.2956 (2)0.11791 (17)1.0331 (3)0.0776 (8)
H240.35190.10231.09200.093*
C250.2104 (2)0.16171 (17)1.0843 (3)0.0808 (8)
H250.20810.17821.17800.097*
C260.1279 (2)0.18110 (19)0.9946 (4)0.0951 (10)
H260.06830.20961.03120.114*
N10.28066 (15)0.12811 (12)0.1108 (2)0.0678 (6)
N20.12745 (18)0.16178 (14)0.8578 (3)0.0838 (7)
O10.29203 (14)0.06052 (12)0.60544 (19)0.0871 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0511 (12)0.0775 (17)0.0531 (13)0.0055 (12)0.0112 (11)0.0105 (12)
C20.0659 (15)0.0799 (19)0.0721 (16)0.0092 (14)0.0117 (13)0.0002 (14)
C30.0770 (18)0.088 (2)0.082 (2)0.0209 (16)0.0153 (16)0.0128 (16)
C40.0626 (16)0.113 (2)0.0733 (18)0.0179 (17)0.0095 (14)0.0329 (18)
C50.0730 (17)0.105 (2)0.0602 (16)0.0035 (17)0.0014 (14)0.0096 (15)
C60.0686 (15)0.0775 (17)0.0601 (15)0.0093 (13)0.0092 (13)0.0035 (13)
C70.0565 (13)0.0688 (16)0.0528 (13)0.0087 (11)0.0108 (11)0.0030 (11)
C80.0592 (15)0.102 (2)0.0659 (17)0.0043 (14)0.0051 (13)0.0095 (15)
C90.083 (2)0.149 (3)0.0627 (18)0.030 (2)0.0072 (16)0.0169 (18)
C100.104 (2)0.141 (3)0.0603 (17)0.049 (2)0.0226 (18)0.0211 (18)
C110.085 (2)0.102 (2)0.082 (2)0.0166 (17)0.0294 (17)0.0265 (17)
C120.0631 (15)0.090 (2)0.0660 (16)0.0002 (13)0.0146 (12)0.0121 (14)
C130.0496 (13)0.0759 (17)0.0596 (14)0.0029 (12)0.0119 (11)0.0001 (12)
C140.0644 (15)0.0803 (19)0.0751 (17)0.0125 (13)0.0238 (13)0.0141 (14)
C150.0672 (16)0.0824 (18)0.0719 (16)0.0018 (14)0.0205 (13)0.0113 (14)
C160.0568 (14)0.0767 (17)0.0559 (14)0.0016 (12)0.0077 (11)0.0004 (12)
C170.0561 (13)0.0777 (17)0.0651 (15)0.0067 (12)0.0088 (12)0.0049 (13)
C180.0532 (13)0.0729 (16)0.0649 (15)0.0024 (12)0.0119 (11)0.0076 (13)
C190.0601 (14)0.0805 (18)0.0710 (17)0.0008 (13)0.0165 (13)0.0107 (13)
C200.0548 (14)0.0858 (18)0.0705 (16)0.0019 (12)0.0173 (12)0.0074 (14)
C210.0528 (14)0.0754 (17)0.0680 (16)0.0014 (12)0.0106 (12)0.0091 (13)
C220.0477 (12)0.0608 (15)0.0699 (15)0.0034 (11)0.0119 (11)0.0023 (12)
C230.0572 (14)0.0858 (19)0.0705 (16)0.0067 (13)0.0139 (12)0.0055 (14)
C240.0697 (17)0.090 (2)0.0737 (18)0.0008 (15)0.0190 (14)0.0040 (15)
C250.0719 (17)0.097 (2)0.0740 (18)0.0114 (16)0.0064 (14)0.0146 (16)
C260.0718 (18)0.113 (2)0.101 (2)0.0186 (17)0.0135 (17)0.0349 (19)
N10.0469 (11)0.1011 (16)0.0559 (12)0.0106 (10)0.0117 (9)0.0101 (11)
N20.0690 (14)0.0918 (17)0.0919 (17)0.0185 (12)0.0224 (12)0.0184 (14)
O10.0638 (11)0.1250 (16)0.0731 (12)0.0188 (11)0.0105 (9)0.0031 (11)
Geometric parameters (Å, º) top
C1—C21.375 (3)C13—N11.410 (3)
C1—C61.379 (3)C14—C151.381 (3)
C1—N11.430 (3)C14—H140.9300
C2—C31.374 (4)C15—C181.392 (3)
C2—H20.9300C15—H150.9300
C3—C41.366 (4)C16—C171.380 (3)
C3—H30.9300C16—H160.9300
C4—C51.379 (4)C17—C181.394 (3)
C4—H40.9300C17—H170.9300
C5—C61.386 (3)C18—C191.457 (3)
C5—H50.9300C19—C201.326 (3)
C6—H60.9300C19—H190.9300
C7—C81.378 (3)C20—C211.466 (3)
C7—C121.382 (3)C20—H200.9300
C7—N11.414 (3)C21—O11.225 (3)
C8—C91.377 (4)C21—C221.493 (3)
C8—H80.9300C22—N21.333 (3)
C9—C101.365 (4)C22—C231.375 (3)
C9—H90.9300C23—C241.372 (4)
C10—C111.357 (4)C23—H230.9300
C10—H100.9300C24—C251.355 (4)
C11—C121.377 (4)C24—H240.9300
C11—H110.9300C25—C261.366 (4)
C12—H120.9300C25—H250.9300
C13—C141.389 (3)C26—N21.335 (3)
C13—C161.389 (3)C26—H260.9300
C2—C1—C6119.9 (2)C13—C14—H14119.8
C2—C1—N1120.6 (2)C14—C15—C18121.8 (2)
C6—C1—N1119.5 (2)C14—C15—H15119.1
C3—C2—C1120.4 (3)C18—C15—H15119.1
C3—C2—H2119.8C17—C16—C13120.4 (2)
C1—C2—H2119.8C17—C16—H16119.8
C4—C3—C2119.8 (3)C13—C16—H16119.8
C4—C3—H3120.1C16—C17—C18121.9 (2)
C2—C3—H3120.1C16—C17—H17119.1
C3—C4—C5120.6 (3)C18—C17—H17119.1
C3—C4—H4119.7C15—C18—C17116.9 (2)
C5—C4—H4119.7C15—C18—C19122.6 (2)
C4—C5—C6119.5 (3)C17—C18—C19120.5 (2)
C4—C5—H5120.2C20—C19—C18127.0 (3)
C6—C5—H5120.2C20—C19—H19116.5
C1—C6—C5119.8 (3)C18—C19—H19116.5
C1—C6—H6120.1C19—C20—C21122.6 (3)
C5—C6—H6120.1C19—C20—H20118.7
C8—C7—C12118.5 (2)C21—C20—H20118.7
C8—C7—N1121.4 (2)O1—C21—C20122.5 (2)
C12—C7—N1120.1 (2)O1—C21—C22119.3 (2)
C9—C8—C7120.1 (3)C20—C21—C22118.1 (2)
C9—C8—H8119.9N2—C22—C23122.0 (2)
C7—C8—H8119.9N2—C22—C21117.8 (2)
C10—C9—C8120.9 (3)C23—C22—C21120.2 (2)
C10—C9—H9119.5C24—C23—C22119.6 (3)
C8—C9—H9119.5C24—C23—H23120.2
C11—C10—C9119.3 (3)C22—C23—H23120.2
C11—C10—H10120.4C25—C24—C23118.9 (3)
C9—C10—H10120.4C25—C24—H24120.6
C10—C11—C12120.7 (3)C23—C24—H24120.6
C10—C11—H11119.7C24—C25—C26118.3 (3)
C12—C11—H11119.7C24—C25—H25120.8
C11—C12—C7120.5 (3)C26—C25—H25120.8
C11—C12—H12119.8N2—C26—C25124.2 (3)
C7—C12—H12119.8N2—C26—H26117.9
C14—C13—C16118.6 (2)C25—C26—H26117.9
C14—C13—N1119.2 (2)C13—N1—C7122.81 (19)
C16—C13—N1122.2 (2)C13—N1—C1118.08 (18)
C15—C14—C13120.4 (2)C7—N1—C1119.09 (18)
C15—C14—H14119.8C22—N2—C26116.9 (2)
C6—C1—C2—C30.5 (4)C18—C19—C20—C21177.7 (2)
N1—C1—C2—C3179.1 (2)C19—C20—C21—O18.4 (4)
C1—C2—C3—C40.1 (4)C19—C20—C21—C22170.5 (2)
C2—C3—C4—C50.9 (4)O1—C21—C22—N2176.4 (2)
C3—C4—C5—C61.1 (4)C20—C21—C22—N24.6 (3)
C2—C1—C6—C50.3 (4)O1—C21—C22—C235.1 (4)
N1—C1—C6—C5179.3 (2)C20—C21—C22—C23173.8 (2)
C4—C5—C6—C10.5 (4)N2—C22—C23—C240.3 (4)
C12—C7—C8—C91.5 (4)C21—C22—C23—C24178.7 (2)
N1—C7—C8—C9179.8 (3)C22—C23—C24—C250.8 (4)
C7—C8—C9—C101.0 (5)C23—C24—C25—C262.0 (4)
C8—C9—C10—C110.4 (5)C24—C25—C26—N22.3 (5)
C9—C10—C11—C121.2 (5)C14—C13—N1—C7150.5 (2)
C10—C11—C12—C70.7 (4)C16—C13—N1—C731.4 (4)
C8—C7—C12—C110.6 (4)C14—C13—N1—C130.6 (3)
N1—C7—C12—C11179.0 (2)C16—C13—N1—C1147.4 (2)
C16—C13—C14—C151.0 (4)C8—C7—N1—C1334.6 (4)
N1—C13—C14—C15177.2 (2)C12—C7—N1—C13147.1 (2)
C13—C14—C15—C180.4 (4)C8—C7—N1—C1146.6 (2)
C14—C13—C16—C170.6 (4)C12—C7—N1—C131.7 (3)
N1—C13—C16—C17177.5 (2)C2—C1—N1—C13119.3 (3)
C13—C16—C17—C181.1 (4)C6—C1—N1—C1360.2 (3)
C14—C15—C18—C172.0 (4)C2—C1—N1—C761.8 (3)
C14—C15—C18—C19177.4 (2)C6—C1—N1—C7118.6 (2)
C16—C17—C18—C152.4 (4)C23—C22—N2—C260.1 (4)
C16—C17—C18—C19177.0 (2)C21—C22—N2—C26178.5 (2)
C15—C18—C19—C2013.4 (4)C25—C26—N2—C221.2 (5)
C17—C18—C19—C20165.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.553.404 (3)153
C6—H6···O1ii0.932.583.505 (3)179
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H20N2O
Mr376.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.0342 (3), 17.4069 (4), 9.4392 (2)
β (°) 91.757 (2)
V3)1976.38 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15074, 3488, 2210
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.167, 1.03
No. of reflections3488
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.553.404 (3)153
C6—H6···O1ii0.932.583.505 (3)179
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (50973077), the Natural Science Foundation of Jiangsu Province Education Committee (11KJA430003), the Project of Persons with Ability of Jiangsu Province (2010-xcl-015) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for financial support.

References

First citationBruker (2007). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, C.-B., Wang, X.-M., Wang, X.-H. & Luo, J.-F. (2012). Opt. Mater. 34, 609–615.  Web of Science CrossRef CAS Google Scholar
First citationHe, G.-S., Tan, L.-S., Zheng, Q.-D. & Prasad, P.-N. (2008). Chem. Rev. 108, 1245-1330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds