organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(N-Cyclo­hexyl­carbamo­yl)propan-2-yl]-N-(2-iodo­phen­yl)prop-2-ynamide

aPeptide Chemistry Research Center, K. N. Toosi University of Technology, PO Box 15875-4416, Tehran, Iran, bOrganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany, and cShahid Beheshti University, Department of Chemistry, Evin, Tehran 1983963113, Iran
*Correspondence e-mail: balalaie@kntu.ac.ir

(Received 17 December 2011; accepted 21 December 2011; online 7 January 2012)

In the title compound, C19H23IN2O2, the cyclo­hexane ring adopts a chair conformation, and the mean plane of the propiolamide unit is approximately perpendicular to the benzene ring [dihedral angle = 88.12 (13)°]. Weak intra­molecular C—H⋯O hydrogen bonding is observed between the carbonyl group and the benzene ring. In the crystal, classical N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions are present.

Related literature

For background to multi-component reactions (MCRs), see: Dömling & Ugi (2000[Dömling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168-3210.]); Tietze (1996[Tietze, L. F. (1996). Chem. Rev. 96, 115-136.]); Tietze et al. (2006[Tietze, L., Brasch, G. & Gericke, K. M. (2006). In Domino Reactions in Organic Chemistry. Weinheim: Wiley-VCH.]); Dömling (2006[Dömling, A. (2006). Chem. Rev. 106, 17-89.]); Zhu & Bienayme (2005[Zhu, J. & Bienayme, H. (2005). In Multicomponent Reactions. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23IN2O2

  • Mr = 438.29

  • Orthorhombic, P 21 21 21

  • a = 7.7511 (3) Å

  • b = 10.0726 (4) Å

  • c = 24.6063 (9) Å

  • V = 1921.11 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 200 K

  • 0.19 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII Quazar diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). Tmin = 0.741, Tmax = 0.906

  • 25494 measured reflections

  • 4795 independent reflections

  • 4399 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.060

  • S = 1.04

  • 4795 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.90 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2041 Friedel pairs

  • Flack parameter: 0.237 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.79 (3) 2.25 (3) 3.016 (3) 164 (3)
C4—H4C⋯O6i 0.98 2.42 3.291 (3) 148
C26—H26⋯O1 0.95 2.57 3.270 (3) 131
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multicomponent reactions (MCRs) have attracted considerable interest owing to their exceptional synthetic efficiency (Dömling & Ugi, 2000; Tietze, 1996; Tietze et al., 2006). Especially isocyanide based MCRs (IMCRs) allow for the synthesis of a large number of different scaffolds. The design of novel IMCRs has attracted great attention for construction of different organic functional groups (Dömling, 2006; Zhu & Bienayme, 2005).

The iodophenyl group in the title compound is oriented orthogonal to the amid group, meaning that there is no conjugation between these two pi systems. The two amid groups themselves however are planar as expected, indicating a considerable amount of π- conjugation in the N—C=O units, thus partially double bond character and hindered rotation around the amide single bonds. The crystal lattice is stabilized by weak intermolecular N—H···O=C type hydrogen bonding with N1 acting as hydrogen donor and O6 as hydrogen acceptor, leading to one-dimenssional chains in crystallographic a direction. The N···O distance amounts to 3.015 (3) Å and the N—H···O angle to 163 (1)°. Intermolecular N—H···O and C—H···O hydrogen bond are effective in the stabilization of the crystal structure of the title compound (Table 1 & Fig. 2).

Related literature top

For background to multi-component reactions (MCRs), see: Dömling & Ugi (2000); Tietze (1996); Tietze et al. (2006); Dömling (2006); Zhu & Bienayme (2005).

Experimental top

The product was obtained via a four-component reaction of acetone, 2-iodo-aniline, propiolic acid, and cyclohexylisocyanide in methanol at room temperature. To a solution of acetone (58 mg, 1 mmole) in methanol (5 mL) 2-iodo-aniline (219 mg, 1 mmol) was added. The reaction mixture was stirred at room temperature for 1 h. Then propiolic acid (70 mg, 1 mmol) was added and stirring was continued for 15 min, followed by the addition of cyclohexylisocyanide (1 mmol, 123 mg). After stirring for 24 h at room temperature the reaction mixture was neutralized with 30 mL saturated aqueous NaHCO3 solution and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried with anhydrous magnesium sulfate and the solvent was evaporated. The residue was crystallized from acetonitrile.

Refinement top

Imino H atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.95–1.00 Å and constrained to ride on their parent atoms, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for title compound.
N-[2-(N-Cyclohexylcarbamoyl)propan-2-yl]-N-(2- iodophenyl)prop-2-ynamide top
Crystal data top
C19H23IN2O2F(000) = 880
Mr = 438.29Dx = 1.515 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9927 reflections
a = 7.7511 (3) Åθ = 2.6–30.2°
b = 10.0726 (4) ŵ = 1.68 mm1
c = 24.6063 (9) ÅT = 200 K
V = 1921.11 (13) Å3Polyhedron, colourless
Z = 40.19 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII Quazar
diffractometer
4795 independent reflections
Radiation source: ImuS microsource4399 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001).
h = 1010
Tmin = 0.741, Tmax = 0.906k = 1313
25494 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0194P)2 + 1.3105P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4795 reflectionsΔρmax = 0.83 e Å3
224 parametersΔρmin = 0.90 e Å3
0 restraintsAbsolute structure: Flack (1983), 2041 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.237 (16)
Crystal data top
C19H23IN2O2V = 1921.11 (13) Å3
Mr = 438.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7511 (3) ŵ = 1.68 mm1
b = 10.0726 (4) ÅT = 200 K
c = 24.6063 (9) Å0.19 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII Quazar
diffractometer
4795 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001).
4399 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.906Rint = 0.024
25494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060Δρmax = 0.83 e Å3
S = 1.04Δρmin = 0.90 e Å3
4795 reflectionsAbsolute structure: Flack (1983), 2041 Friedel pairs
224 parametersAbsolute structure parameter: 0.237 (16)
0 restraints
Special details top

Experimental. Hydrogen atom positions were calculated according to geometrical criteria except the amide hydrogen atom H1, which was refined isotropically. The thermal parameters of the hydrogen atoms were set to be 1.2 times the Ueq of the preceding carbon atom, 1.5 for the methyl groups. The conformation of the methyl hydrogen atoms was allowed to refine. The symmetry of the crystal is chiral, albeit a racemic twinning parameter was introduced and refined to 24% racemic twinning.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.57763 (4)0.484096 (19)0.195485 (7)0.06160 (8)
C10.5745 (3)0.45305 (19)0.02668 (8)0.0263 (4)
O10.6285 (2)0.55977 (16)0.04340 (7)0.0345 (4)
N10.5421 (3)0.3503 (2)0.05975 (8)0.0309 (4)
H10.500 (4)0.286 (3)0.0467 (12)0.040 (9)*
C20.5255 (3)0.4367 (2)0.03397 (9)0.0267 (5)
C30.3395 (3)0.4863 (3)0.03893 (10)0.0359 (5)
H3A0.30700.49050.07740.054*
H3B0.33030.57490.02280.054*
H3C0.26210.42510.01980.054*
C40.5371 (3)0.2937 (2)0.05554 (10)0.0327 (6)
H4A0.65210.25780.04800.049*
H4B0.51670.29350.09490.049*
H4C0.44980.23870.03760.049*
N50.6435 (2)0.52550 (19)0.06570 (7)0.0235 (3)
C60.8158 (3)0.5074 (2)0.05990 (8)0.0260 (4)
O60.8799 (2)0.41486 (16)0.03473 (7)0.0335 (4)
C70.9261 (3)0.6074 (2)0.08547 (9)0.0293 (4)
C81.0242 (3)0.6882 (3)0.10125 (12)0.0403 (6)
H81.10320.75330.11400.048*
C110.5534 (3)0.3660 (2)0.11881 (9)0.0322 (5)
H110.64910.43010.12620.039*
C120.6003 (6)0.2373 (3)0.14650 (11)0.0576 (9)
H12A0.71010.20310.13140.069*
H12B0.50930.17040.13970.069*
C130.6195 (6)0.2595 (4)0.20757 (12)0.0733 (12)
H13A0.64570.17390.22550.088*
H13B0.71720.32060.21440.088*
C140.4561 (7)0.3178 (5)0.23188 (13)0.0853 (15)
H14A0.47380.33510.27110.102*
H14B0.36020.25350.22810.102*
C150.4094 (6)0.4470 (4)0.20299 (14)0.0775 (11)
H15A0.50010.51400.21000.093*
H15B0.29940.48140.21780.093*
C160.3911 (4)0.4258 (4)0.14159 (13)0.0591 (9)
H16A0.29240.36620.13420.071*
H16B0.36810.51200.12360.071*
C210.5826 (3)0.6458 (2)0.09059 (9)0.0260 (4)
C220.5475 (3)0.6514 (2)0.14595 (10)0.0330 (5)
C230.4942 (4)0.7698 (3)0.16949 (12)0.0459 (7)
H230.47120.77370.20740.055*
C240.4746 (4)0.8817 (3)0.13790 (13)0.0481 (8)
H240.43740.96240.15410.058*
C250.5086 (3)0.8773 (3)0.08294 (13)0.0430 (6)
H250.49460.95470.06130.052*
C260.5634 (4)0.7595 (2)0.05932 (10)0.0331 (5)
H260.58800.75660.02150.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.10850 (18)0.04834 (10)0.02796 (8)0.00472 (12)0.00363 (10)0.00355 (8)
C10.0263 (10)0.0266 (10)0.0261 (9)0.0010 (9)0.0000 (9)0.0007 (7)
O10.0449 (10)0.0277 (8)0.0308 (8)0.0074 (7)0.0019 (7)0.0011 (7)
N10.0416 (12)0.0262 (9)0.0248 (9)0.0054 (9)0.0019 (9)0.0003 (7)
C20.0308 (12)0.0244 (10)0.0250 (11)0.0029 (8)0.0007 (8)0.0048 (9)
C30.0266 (11)0.0392 (14)0.0420 (13)0.0034 (11)0.0014 (9)0.0066 (13)
C40.0435 (15)0.0254 (11)0.0294 (12)0.0066 (10)0.0008 (11)0.0001 (9)
N50.0254 (8)0.0219 (8)0.0233 (8)0.0010 (7)0.0015 (6)0.0034 (7)
C60.0282 (10)0.0234 (11)0.0264 (9)0.0031 (9)0.0002 (8)0.0019 (9)
O60.0319 (9)0.0286 (8)0.0401 (9)0.0064 (7)0.0021 (7)0.0075 (7)
C70.0265 (10)0.0293 (10)0.0320 (10)0.0021 (10)0.0015 (11)0.0016 (8)
C80.0374 (14)0.0369 (14)0.0465 (16)0.0044 (11)0.0019 (11)0.0054 (11)
C110.0388 (13)0.0325 (11)0.0252 (11)0.0060 (11)0.0009 (10)0.0008 (8)
C120.093 (3)0.0495 (16)0.0300 (13)0.0162 (19)0.0072 (17)0.0079 (12)
C130.117 (4)0.071 (2)0.0311 (16)0.002 (2)0.0048 (18)0.0153 (14)
C140.124 (4)0.104 (3)0.0283 (15)0.038 (3)0.023 (2)0.0124 (18)
C150.081 (2)0.101 (3)0.0510 (19)0.007 (2)0.017 (2)0.0330 (19)
C160.0514 (19)0.079 (2)0.0472 (17)0.0156 (17)0.0047 (14)0.0178 (16)
C210.0223 (9)0.0254 (10)0.0303 (10)0.0006 (9)0.0009 (10)0.0064 (8)
C220.0331 (13)0.0351 (12)0.0308 (12)0.0005 (10)0.0031 (10)0.0072 (9)
C230.0486 (16)0.0490 (17)0.0401 (15)0.0054 (13)0.0056 (12)0.0194 (13)
C240.0412 (15)0.0388 (15)0.0643 (19)0.0131 (12)0.0040 (13)0.0244 (14)
C250.0442 (14)0.0277 (12)0.0572 (17)0.0095 (11)0.0136 (13)0.0051 (12)
C260.0350 (13)0.0285 (11)0.0356 (12)0.0018 (11)0.0042 (12)0.0025 (9)
Geometric parameters (Å, º) top
I1—C222.093 (3)C12—C131.526 (4)
C1—O11.225 (3)C12—H12A0.9900
C1—N11.341 (3)C12—H12B0.9900
C1—C21.549 (3)C13—C141.519 (6)
N1—C111.464 (3)C13—H13A0.9900
N1—H10.80 (3)C13—H13B0.9900
C2—N51.499 (3)C14—C151.526 (6)
C2—C31.531 (3)C14—H14A0.9900
C2—C41.538 (3)C14—H14B0.9900
C3—H3A0.9800C15—C161.532 (4)
C3—H3B0.9800C15—H15A0.9900
C3—H3C0.9800C15—H15B0.9900
C4—H4A0.9800C16—H16A0.9900
C4—H4B0.9800C16—H16B0.9900
C4—H4C0.9800C21—C261.387 (3)
N5—C61.356 (3)C21—C221.390 (3)
N5—C211.438 (3)C22—C231.389 (4)
C6—O61.225 (3)C23—C241.377 (4)
C6—C71.463 (3)C23—H230.9500
C7—C81.179 (3)C24—C251.379 (4)
C8—H80.9500C24—H240.9500
C11—C161.503 (4)C25—C261.388 (3)
C11—C121.509 (4)C25—H250.9500
C11—H111.0000C26—H260.9500
O1—C1—N1122.5 (2)H12A—C12—H12B108.2
O1—C1—C2120.06 (19)C14—C13—C12111.3 (3)
N1—C1—C2117.20 (19)C14—C13—H13A109.4
C1—N1—C11120.5 (2)C12—C13—H13A109.4
C1—N1—H1117 (2)C14—C13—H13B109.4
C11—N1—H1121 (2)C12—C13—H13B109.4
N5—C2—C3109.78 (17)H13A—C13—H13B108.0
N5—C2—C4110.11 (19)C13—C14—C15110.1 (3)
C3—C2—C4109.4 (2)C13—C14—H14A109.6
N5—C2—C1106.81 (17)C15—C14—H14A109.6
C3—C2—C1105.83 (19)C13—C14—H14B109.6
C4—C2—C1114.71 (19)C15—C14—H14B109.6
C2—C3—H3A109.5H14A—C14—H14B108.2
C2—C3—H3B109.5C14—C15—C16111.3 (3)
H3A—C3—H3B109.5C14—C15—H15A109.4
C2—C3—H3C109.5C16—C15—H15A109.4
H3A—C3—H3C109.5C14—C15—H15B109.4
H3B—C3—H3C109.5C16—C15—H15B109.4
C2—C4—H4A109.5H15A—C15—H15B108.0
C2—C4—H4B109.5C11—C16—C15110.3 (3)
H4A—C4—H4B109.5C11—C16—H16A109.6
C2—C4—H4C109.5C15—C16—H16A109.6
H4A—C4—H4C109.5C11—C16—H16B109.6
H4B—C4—H4C109.5C15—C16—H16B109.6
C6—N5—C21118.79 (19)H16A—C16—H16B108.1
C6—N5—C2117.79 (19)C26—C21—C22119.3 (2)
C21—N5—C2121.66 (17)C26—C21—N5119.6 (2)
O6—C6—N5123.7 (2)C22—C21—N5121.0 (2)
O6—C6—C7120.31 (19)C23—C22—C21120.1 (2)
N5—C6—C7116.0 (2)C23—C22—I1118.8 (2)
C8—C7—C6173.3 (3)C21—C22—I1121.10 (17)
C7—C8—H8180.0C24—C23—C22120.0 (3)
N1—C11—C16111.3 (2)C24—C23—H23120.0
N1—C11—C12111.7 (2)C22—C23—H23120.0
C16—C11—C12112.2 (3)C23—C24—C25120.4 (2)
N1—C11—H11107.1C23—C24—H24119.8
C16—C11—H11107.1C25—C24—H24119.8
C12—C11—H11107.1C24—C25—C26119.8 (3)
C11—C12—C13110.0 (3)C24—C25—H25120.1
C11—C12—H12A109.7C26—C25—H25120.1
C13—C12—H12A109.7C21—C26—C25120.4 (2)
C11—C12—H12B109.7C21—C26—H26119.8
C13—C12—H12B109.7C25—C26—H26119.8
O1—C1—N1—C116.4 (4)C11—C12—C13—C1456.8 (4)
C2—C1—N1—C11168.3 (2)C12—C13—C14—C1556.6 (4)
O1—C1—C2—N532.0 (3)C13—C14—C15—C1656.0 (5)
N1—C1—C2—N5153.1 (2)N1—C11—C16—C15177.5 (3)
O1—C1—C2—C384.9 (3)C12—C11—C16—C1556.5 (4)
N1—C1—C2—C390.0 (2)C14—C15—C16—C1155.7 (5)
O1—C1—C2—C4154.3 (2)C6—N5—C21—C2684.0 (3)
N1—C1—C2—C430.8 (3)C2—N5—C21—C2680.6 (3)
C3—C2—N5—C6171.13 (19)C6—N5—C21—C2294.0 (3)
C4—C2—N5—C668.3 (3)C2—N5—C21—C22101.4 (3)
C1—C2—N5—C656.8 (2)C26—C21—C22—C230.1 (4)
C3—C2—N5—C216.5 (3)N5—C21—C22—C23177.9 (2)
C4—C2—N5—C21127.0 (2)C26—C21—C22—I1179.06 (19)
C1—C2—N5—C21107.8 (2)N5—C21—C22—I11.1 (3)
C21—N5—C6—O6172.8 (2)C21—C22—C23—C240.5 (4)
C2—N5—C6—O67.7 (3)I1—C22—C23—C24179.5 (2)
C21—N5—C6—C76.7 (3)C22—C23—C24—C250.4 (4)
C2—N5—C6—C7171.79 (19)C23—C24—C25—C260.2 (4)
C1—N1—C11—C1682.0 (3)C22—C21—C26—C250.5 (4)
C1—N1—C11—C12151.7 (3)N5—C21—C26—C25178.5 (2)
N1—C11—C12—C13177.2 (3)C24—C25—C26—C210.6 (4)
C16—C11—C12—C1357.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.79 (3)2.25 (3)3.016 (3)164 (3)
C4—H4C···O6i0.982.423.291 (3)148
C26—H26···O10.952.573.270 (3)131
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC19H23IN2O2
Mr438.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)7.7511 (3), 10.0726 (4), 24.6063 (9)
V3)1921.11 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.19 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII Quazar
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001).
Tmin, Tmax0.741, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
25494, 4795, 4399
Rint0.024
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.060, 1.04
No. of reflections4795
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.90
Absolute structureFlack (1983), 2041 Friedel pairs
Absolute structure parameter0.237 (16)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.79 (3)2.25 (3)3.016 (3)164 (3)
C4—H4C···O6i0.982.42003.291 (3)148.00
C26—H26···O10.952.57003.270 (3)131.00
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

We are grateful to the K. N. Toosi University of Technology for financial support.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDömling, A. (2006). Chem. Rev. 106, 17–89.  Web of Science PubMed Google Scholar
First citationDömling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168–3210.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTietze, L. F. (1996). Chem. Rev. 96, 115–136.  CrossRef PubMed CAS Web of Science Google Scholar
First citationTietze, L., Brasch, G. & Gericke, K. M. (2006). In Domino Reactions in Organic Chemistry. Weinheim: Wiley-VCH.  Google Scholar
First citationZhu, J. & Bienayme, H. (2005). In Multicomponent Reactions. Weinheim: Wiley-VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds