organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o290-o291

N-[4-(Propyl­sulfamo­yl)phen­yl]acetamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 22 December 2011; accepted 23 December 2011; online 7 January 2012)

In the title compound, C11H16N2O3S, the S atom has a distorted tetra­hedral geometry [maximum deviation: O—S—O = 119.48 (15)°]. The dihedral angles between the benzene ring and its propyl­sulfonamide and methyl­amide substituents are 71.8 (2) and 5.8 (1)°, respectively. In the crystal, mol­ecules are linked by Nm—H⋯Os (m = methyl­amide and s = sulfonamide) hydrogen bonds, forming C(8) chains along the a axis. The two mol­ecule chains are connected by N—H⋯O hydrogen bonds, generating R32(18) rings. The crystal packing is further stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to sulfonamides, see: Adams (2001[Adams, H. R. (2001). Veterinary Pharmacology and Therapeutics, 8th ed., p. 79. USA: Blackwell Publishing.]); Ahrens (1996[Ahrens, F. A. (1996). Pharmacology, p. 208. USA: Lippincott Williams & Wilkins.]); Betts et al. (2003[Betts, R. F., Chapman, S. W. & Penn, R. L. (2003). Reese & Betts' A Practical Approach to Infectious Diseases, p. 1084. USA: Lippincott Williams & Wilkins.]); Faryal et al. (2011[Faryal, K., Farrukh, M. A., Qureshi, F. A., Ahmad, S., Adnan, A. & Akkurt, M. (2011). Acta Cryst. E67, o2100.]); Mayers (2009[Mayers, D. L. (2009). Antimicrobial Drug Resistance: Mechanisms of Drug Resistance, p. 258. New York: Humana Press.]); Root (1999[Root, R. K. (1999). Clinical Infectious Diseases: A Practical Approach, p. 313. USA: Oxford University Press.]). For related structures, see: Faryal et al. (2011[Faryal, K., Farrukh, M. A., Qureshi, F. A., Ahmad, S., Adnan, A. & Akkurt, M. (2011). Acta Cryst. E67, o2100.]); Ahmad et al. (2011a[Ahmad, S., Farrukh, M. A., Qureshi, F. A., Adnan, A. & Akkurt, M. (2011a). Acta Cryst. E67, o303-o304.],b[Ahmad, S., Farrukh, M. A., Qureshi, F. A., Faryal, K. & Akkurt, M. (2011b). Acta Cryst. E67, o1909.]). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Motherwell et al. (1999[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044-1056.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16N2O3S

  • Mr = 256.33

  • Orthorhombic, P b c a

  • a = 8.7791 (6) Å

  • b = 14.1747 (11) Å

  • c = 20.1577 (14) Å

  • V = 2508.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 22013 measured reflections

  • 3103 independent reflections

  • 1579 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.173

  • S = 1.01

  • 3103 reflections

  • 164 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 (2) 2.07 (2) 2.904 (3) 165 (2)
N2—H2N⋯O2ii 0.85 (2) 2.25 (2) 3.075 (3) 164 (2)
C9—H9⋯O1iii 0.93 2.59 3.308 (3) 135
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides are derivatives of p-aminobenzene sulfonic acid (Ahrens, 1996) belong to the oldest group of antibiotics which are also being used now-a-days. These are white crystalline powder derived from azo dye (Adams, 2001) and have weak organic acid characteristics with a structural resemblance to p-aminobenzoic acid which is an intermediate required for the synthesis of folic acid in bacteria (Ahrens, 1996). The sensitivity of sulfonamides is dependent on the mode in which organisms fulfill their folic acid requirements. Sulfonamides are considered as bacteriostatic drugs (Mayers, 2009 & Betts et al., 2003) which are used for the treatment of systematic infections and are absorbed in the gastrointestinal tract (Root, 1999).

As part of our ongoing studies (Faryal et al., 2011, Ahmad et al. (2011a,b), we synthesized the title compound, (I), and report herein its crystal structure.

In the title compound, (Fig. 1), the dihedral angles between the benzene ring (C4—C9) and the propylsulfonamide (C1,C2,C3,N1,S1) and methylamide (N2,C10,O3,C11) moieties are 71.8 (1) and 5.8 (1)°, respectively. The S atom has a distorted tetrahedral geometry [maximum deviation: O—S—O = 119.48 (15)°]. The C—S—N—C torsion angles are 66.1 (2)°.

In the crystal, the molecules are linked by Nm—H···Os (m = methylamide, s = sulfonamide) hydrogen bonds, forming C(8) chains along the a axis (Table1, Fig. 2). The two molecule chains also connect by N—H···O hydrogen bonds, generating R32(18) rings (Bernstein et al., 1995; Etter et al., 1990; Motherwell et al., 1999; Table 1, Fig. 2). The crystal packing is further stabilized by the intermolecular C—H···O hydrogen bonds.

Related literature top

For background to sulfonamides, see: Adams (2001); Ahrens (1996); Betts et al. (2003); Faryal et al. (2011); Mayers (2009); Root (1999). For related structures, see: Faryal et al. (2011); Ahmad et al. (2011a,b). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999).

Experimental top

10 mM of 4-acetamido benzene sulfonyl chloride was taken in the reaction flask and about 20 ml distilled water was added in it. Mixed it well. Then 10 mM of propylamine hydrochloride was added in it. 3% Na2CO3 was used to maintain the pH at 8–10. The reaction was stirred for about 2 h to get the maximum yield. Precipitates obtained was filtered and dried. They are recrystallized in the mixture of methanol and ethyl acetate 1:1. The reaction was monitored by TLC.

Refinement top

The N-bound H atoms were located in difference Fourier maps and isotropically refined with the N–H distance restraint [0.86 (1) Å)]. The C-bound H atoms were geometrically placed using a riding model with C—H = 0.93 - 0.97 Å, and Uiso(H)= 1.2Ueq(Caromatic, Cmethylene) and Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of the molecules linked by N—H···O hydrogen bonds as the R32(18) ring motifs. H atoms not involved in hydrogen bonds (dashed lines) and C—H···O intreractions have been omitted for clarity.
N-[4-(Propylsulfamoyl)phenyl]acetamide top
Crystal data top
C11H16N2O3SF(000) = 1088
Mr = 256.33Dx = 1.357 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1934 reflections
a = 8.7791 (6) Åθ = 2.9–21.9°
b = 14.1747 (11) ŵ = 0.26 mm1
c = 20.1577 (14) ÅT = 296 K
V = 2508.5 (3) Å3Block, colourless
Z = 80.13 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1579 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.077
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
ϕ and ω scansh = 1011
22013 measured reflectionsk = 1818
3103 independent reflectionsl = 2623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.2926P]
where P = (Fo2 + 2Fc2)/3
3103 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
C11H16N2O3SV = 2508.5 (3) Å3
Mr = 256.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.7791 (6) ŵ = 0.26 mm1
b = 14.1747 (11) ÅT = 296 K
c = 20.1577 (14) Å0.13 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1579 reflections with I > 2σ(I)
22013 measured reflectionsRint = 0.077
3103 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
3103 reflectionsΔρmin = 0.28 e Å3
164 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08384 (8)0.62424 (6)0.34117 (4)0.0520 (3)
O10.0871 (3)0.55742 (16)0.28801 (9)0.0662 (8)
O20.0349 (2)0.61902 (17)0.38968 (11)0.0702 (9)
O30.6209 (3)0.63450 (16)0.58686 (10)0.0681 (9)
N10.0734 (3)0.7275 (2)0.30872 (12)0.0530 (9)
N20.6813 (3)0.61300 (18)0.47900 (11)0.0492 (9)
C10.2273 (4)0.8744 (3)0.1670 (2)0.0893 (16)
C20.1289 (4)0.8443 (3)0.22353 (19)0.0803 (16)
C30.1785 (3)0.7554 (2)0.25581 (13)0.0557 (10)
C40.2588 (3)0.61648 (19)0.38364 (13)0.0431 (10)
C50.2664 (3)0.6361 (2)0.45047 (14)0.0532 (10)
C60.4031 (3)0.6343 (2)0.48376 (14)0.0546 (10)
C70.5362 (3)0.61413 (19)0.44927 (13)0.0419 (9)
C80.5275 (3)0.5935 (2)0.38184 (13)0.0474 (10)
C90.3906 (3)0.5945 (2)0.34959 (13)0.0492 (10)
C100.7159 (4)0.6219 (2)0.54421 (15)0.0494 (11)
C110.8829 (3)0.6153 (2)0.56009 (17)0.0667 (14)
H1A0.327300.889300.183100.1340*
H1B0.183900.929000.146200.1340*
H1C0.234100.824100.135200.1340*
H1N0.071 (3)0.7722 (14)0.3372 (10)0.047 (9)*
H2A0.127800.894100.256500.0960*
H2B0.025500.836300.207500.0960*
H2N0.754 (2)0.604 (2)0.4517 (12)0.060 (10)*
H3A0.183600.705600.222900.0670*
H3B0.279700.763800.274200.0670*
H50.177600.650700.473500.0640*
H60.406500.646600.529100.0660*
H80.615800.579000.358500.0570*
H90.386200.580200.304600.0590*
H11A0.928900.676400.555500.1000*
H11B0.930900.571800.530100.1000*
H11C0.895600.593400.604800.1000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0345 (4)0.0769 (6)0.0447 (4)0.0061 (4)0.0052 (3)0.0085 (4)
O10.0641 (15)0.0778 (16)0.0568 (12)0.0094 (12)0.0178 (11)0.0047 (12)
O20.0343 (12)0.116 (2)0.0604 (13)0.0096 (12)0.0010 (10)0.0234 (13)
O30.0522 (14)0.1056 (19)0.0465 (12)0.0005 (12)0.0017 (11)0.0090 (12)
N10.0418 (15)0.0712 (19)0.0461 (14)0.0069 (13)0.0014 (12)0.0017 (13)
N20.0309 (14)0.0773 (18)0.0395 (13)0.0056 (12)0.0018 (11)0.0019 (12)
C10.051 (2)0.117 (3)0.100 (3)0.003 (2)0.003 (2)0.049 (2)
C20.055 (2)0.103 (3)0.083 (3)0.014 (2)0.008 (2)0.037 (2)
C30.0451 (18)0.075 (2)0.0471 (16)0.0035 (17)0.0025 (14)0.0057 (16)
C40.0339 (16)0.0585 (19)0.0370 (14)0.0018 (13)0.0012 (11)0.0061 (13)
C50.0311 (16)0.085 (2)0.0436 (16)0.0025 (15)0.0065 (13)0.0038 (15)
C60.0385 (17)0.092 (2)0.0334 (14)0.0001 (16)0.0019 (13)0.0000 (14)
C70.0328 (15)0.0541 (18)0.0388 (14)0.0023 (13)0.0016 (12)0.0059 (13)
C80.0353 (16)0.063 (2)0.0438 (16)0.0039 (14)0.0058 (12)0.0025 (14)
C90.0422 (18)0.069 (2)0.0363 (15)0.0029 (14)0.0004 (13)0.0001 (14)
C100.0410 (18)0.056 (2)0.0512 (18)0.0010 (15)0.0058 (14)0.0038 (14)
C110.043 (2)0.092 (3)0.065 (2)0.0018 (17)0.0138 (16)0.0075 (18)
Geometric parameters (Å, º) top
S1—O11.431 (2)C8—C91.367 (4)
S1—O21.431 (2)C10—C111.504 (4)
S1—N11.606 (3)C1—H1A0.9600
S1—C41.762 (3)C1—H1B0.9600
O3—C101.211 (4)C1—H1C0.9600
N1—C31.465 (4)C2—H2A0.9700
N2—C71.408 (4)C2—H2B0.9700
N2—C101.355 (4)C3—H3A0.9700
N1—H1N0.86 (2)C3—H3B0.9700
N2—H2N0.85 (2)C5—H50.9300
C1—C21.492 (5)C6—H60.9300
C2—C31.484 (5)C8—H80.9300
C4—C91.381 (4)C9—H90.9300
C4—C51.377 (4)C11—H11A0.9600
C5—C61.375 (4)C11—H11B0.9600
C6—C71.389 (4)C11—H11C0.9600
C7—C81.392 (4)
O1—S1—O2119.48 (15)C2—C1—H1C109.00
O1—S1—N1107.43 (13)H1A—C1—H1B109.00
O1—S1—C4107.77 (14)H1A—C1—H1C109.00
O2—S1—N1106.49 (14)H1B—C1—H1C109.00
O2—S1—C4107.44 (13)C1—C2—H2A109.00
N1—S1—C4107.73 (13)C1—C2—H2B109.00
S1—N1—C3120.5 (2)C3—C2—H2A109.00
C7—N2—C10127.9 (3)C3—C2—H2B109.00
S1—N1—H1N113.8 (13)H2A—C2—H2B108.00
C3—N1—H1N107.7 (16)N1—C3—H3A109.00
C7—N2—H2N113.9 (15)N1—C3—H3B109.00
C10—N2—H2N118.2 (15)C2—C3—H3A109.00
C1—C2—C3114.1 (3)C2—C3—H3B109.00
N1—C3—C2111.3 (2)H3A—C3—H3B108.00
C5—C4—C9119.4 (2)C4—C5—H5119.00
S1—C4—C5120.3 (2)C6—C5—H5119.00
S1—C4—C9120.2 (2)C5—C6—H6120.00
C4—C5—C6121.1 (3)C7—C6—H6120.00
C5—C6—C7119.6 (3)C7—C8—H8120.00
N2—C7—C6123.4 (2)C9—C8—H8120.00
N2—C7—C8117.6 (2)C4—C9—H9120.00
C6—C7—C8119.1 (2)C8—C9—H9120.00
C7—C8—C9120.7 (2)C10—C11—H11A109.00
C4—C9—C8120.2 (2)C10—C11—H11B109.00
O3—C10—C11122.0 (3)C10—C11—H11C109.00
N2—C10—C11114.8 (3)H11A—C11—H11B109.00
O3—C10—N2123.2 (3)H11A—C11—H11C109.00
C2—C1—H1A110.00H11B—C11—H11C109.00
C2—C1—H1B110.00
O1—S1—N1—C349.8 (3)C7—N2—C10—O31.6 (5)
O2—S1—N1—C3178.9 (2)C1—C2—C3—N1177.3 (3)
C4—S1—N1—C366.1 (2)S1—C4—C5—C6177.2 (2)
N1—S1—C4—C982.9 (3)S1—C4—C9—C8176.5 (2)
N1—S1—C4—C594.4 (2)C5—C4—C9—C80.9 (4)
O1—S1—C4—C5149.9 (2)C9—C4—C5—C60.1 (4)
O2—S1—C4—C520.0 (3)C4—C5—C6—C71.2 (4)
O1—S1—C4—C932.8 (3)C5—C6—C7—N2178.4 (3)
O2—S1—C4—C9162.8 (2)C5—C6—C7—C81.8 (4)
S1—N1—C3—C2167.9 (2)N2—C7—C8—C9179.2 (3)
C10—N2—C7—C66.5 (5)C6—C7—C8—C91.1 (4)
C7—N2—C10—C11178.6 (3)C7—C8—C9—C40.3 (4)
C10—N2—C7—C8173.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.86 (2)2.07 (2)2.904 (3)165 (2)
N2—H2N···O2ii0.85 (2)2.25 (2)3.075 (3)164 (2)
C9—H9···O1iii0.932.593.308 (3)135
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y, z; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H16N2O3S
Mr256.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.7791 (6), 14.1747 (11), 20.1577 (14)
V3)2508.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22013, 3103, 1579
Rint0.077
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.173, 1.01
No. of reflections3103
No. of parameters164
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.86 (2)2.07 (2)2.904 (3)165 (2)
N2—H2N···O2ii0.85 (2)2.25 (2)3.075 (3)164 (2)
C9—H9···O1iii0.932.593.308 (3)135
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y, z; (iii) x+1/2, y, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: akhyar100@gmail.com.

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University Lahore.

References

First citationAdams, H. R. (2001). Veterinary Pharmacology and Therapeutics, 8th ed., p. 79. USA: Blackwell Publishing.  Google Scholar
First citationAhmad, S., Farrukh, M. A., Qureshi, F. A., Adnan, A. & Akkurt, M. (2011a). Acta Cryst. E67, o303–o304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmad, S., Farrukh, M. A., Qureshi, F. A., Faryal, K. & Akkurt, M. (2011b). Acta Cryst. E67, o1909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhrens, F. A. (1996). Pharmacology, p. 208. USA: Lippincott Williams & Wilkins.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetts, R. F., Chapman, S. W. & Penn, R. L. (2003). Reese & Betts' A Practical Approach to Infectious Diseases, p. 1084. USA: Lippincott Williams & Wilkins.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFaryal, K., Farrukh, M. A., Qureshi, F. A., Ahmad, S., Adnan, A. & Akkurt, M. (2011). Acta Cryst. E67, o2100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMayers, D. L. (2009). Antimicrobial Drug Resistance: Mechanisms of Drug Resistance, p. 258. New York: Humana Press.  Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRoot, R. K. (1999). Clinical Infectious Diseases: A Practical Approach, p. 313. USA: Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o290-o291
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds