metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(N,N-di­ethyl­pyridine-3-carboxamide-κN1)bis­­{4-[2-(2,4-dioxo­pentan-3-yl­­idene)hydrazin-1-yl]benzoato-κO}copper(II)

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 December 2011; accepted 29 December 2011; online 11 January 2012)

In the title compound, [Cu(C12H11N2O4)2(C10H14N2O)2(H2O)2], the CuII atom lies on a center of inversion and is coordinated by carboxyl­ate O atoms, pyridine N atoms and two water mol­ecules in an elongated octa­hedral geometry. The pyridine ring is oriented at a dihedral angle of 74.83 (12)° with respect to the benzene ring. Intra­molecular O—H⋯O and N—H⋯O hydrogen bonding is observed. The water mol­ecule is a hydrogen-bond donor to the carbonyl O atom of an adjacent carboxyl­ate group, generating a chain running along the a axis. One of the ethyl groups is disordered over two sets of sites in a 0.787 (5):0.213 ratio.

Related literature

For a related structure, see: Maharramov et al. (2011[Maharramov, A. M., Mardanova, V. I., Chyraqov, F., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, m708-m709.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H11N2O4)2(C10H14N2O)2(H2O)2]

  • Mr = 950.49

  • Triclinic, [P \overline 1]

  • a = 7.7429 (4) Å

  • b = 8.7029 (4) Å

  • c = 19.0069 (9) Å

  • α = 85.695 (1)°

  • β = 83.218 (1)°

  • γ = 64.882 (1)°

  • V = 1151.12 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.854, Tmax = 0.899

  • 13589 measured reflections

  • 5775 independent reflections

  • 4780 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.04

  • 5775 reflections

  • 305 parameters

  • 38 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9661 (15)
Cu1—N3 2.0151 (17)
Cu1—O1W 2.531 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.88 1.88 2.558 (3) 132
O1w—H11⋯O2 0.84 2.06 2.712 (3) 135
O1w—H12⋯O5i 0.84 2.12 2.955 (3) 172
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have been investigating the adducts of 3-diethylpridine-3-carboxamide with copper(II) salts; a previous study reported the copper bis(thienoylacetonate) adduct (Maharramov et al., 2011). The reaction of the N-heterocycle with copper bis(4-[(2,4-dioxopentan-3-yl)diazenyl]benzoate yielded the title diaqua bis-adduct (Scheme I). The CuII atom in Cu(H2O)2(C10H14N2O)2(C12H11N2O4)2 lies on a center-of-inversion, and is coordinated to the O atom of the carboxylate ion, the N atom of the N-heterocycle and a water molecule in an all-trans octahedral geometry (Fig.1). The water molecule is hydrogen-bond donor to the the double-bond carbonyl O atom of adjacent carboxylate and N-heterocycle to generate a linear chain running along the a-axis of the triclinic unit cell (Table 1).

Related literature top

For a related structure, see: Maharramov et al. (2011).

Experimental top

4-[(2,4-Dioxopentan-3-yl)diazenyl]benzoic acid and N,N-diethylpyridine-3-carboxamide were purchased from a chemical supplier. The carboxylic acid (0.0248 g, 0.01 mol) in water (50 ml) and an excess of cardioamine (5 ml) were added to a solution of copper acetate hydrate (0.0156 g, 0.01 mol) in water (50 ml). The green solution was filtered and then set aside for the growth of crystals within a week; yield 70%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.98 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation.

The water and amino- H-atoms were similarly positioned [O–H 0.84 and N–H 0.88 Å; U(H) 1.2 to 1.5U(N,O)].

Omitted were (0 0 1) and (1 1 0).

One of the ethyl chains of the neutral N-heterocycle is disordered over two positions in a 0.787 (5): 0.213 ratio. The pair of N–C distances were restrained to 0.01 Å of each other, and were the pair of C–C distances. The acetylacetate part of the substituted benzoate show somewhat elongated ellipsoids; the anisotropic temperature factors of these five atoms were restrained to be nearly isotropic.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Cu(H2O)2(C10H14N2O)2(C12H11N2O4)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
Diaquabis(N,N-diethylpyridine-3-carboxamide-κN1)bis{4- [2-(2,4-dioxopentan-3-ylidene)hydrazin-1-yl]benzoato-κO}copper(II) top
Crystal data top
[Cu(C12H11N2O4)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 950.49F(000) = 499
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7429 (4) ÅCell parameters from 4939 reflections
b = 8.7029 (4) Åθ = 2.6–28.4°
c = 19.0069 (9) ŵ = 0.54 mm1
α = 85.695 (1)°T = 296 K
β = 83.218 (1)°Prism, blue
γ = 64.882 (1)°0.30 × 0.30 × 0.20 mm
V = 1151.12 (10) Å3
Data collection top
Bruker SMART APEX
diffractometer
5775 independent reflections
Radiation source: fine-focus sealed tube4780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.854, Tmax = 0.899k = 1111
13589 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0788P)2 + 0.3231P]
where P = (Fo2 + 2Fc2)/3
5775 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.87 e Å3
38 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu(C12H11N2O4)2(C10H14N2O)2(H2O)2]γ = 64.882 (1)°
Mr = 950.49V = 1151.12 (10) Å3
Triclinic, P1Z = 1
a = 7.7429 (4) ÅMo Kα radiation
b = 8.7029 (4) ŵ = 0.54 mm1
c = 19.0069 (9) ÅT = 296 K
α = 85.695 (1)°0.30 × 0.30 × 0.20 mm
β = 83.218 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5775 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4780 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.899Rint = 0.021
13589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04638 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.87 e Å3
5775 reflectionsΔρmin = 0.60 e Å3
305 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.50000.50000.03554 (14)
O10.3598 (2)0.6157 (2)0.41786 (8)0.0404 (4)
O20.5907 (3)0.6225 (3)0.33710 (10)0.0507 (4)
O30.3219 (4)0.6427 (5)0.09450 (14)0.1056 (11)
O40.1745 (8)0.8431 (10)0.0897 (2)0.227 (3)
O50.1024 (3)0.1348 (3)0.40938 (10)0.0572 (5)
O1W0.8200 (3)0.4833 (3)0.44344 (11)0.0595 (5)
H110.80570.53370.40360.089*
H120.89710.38110.43840.089*
N10.0399 (3)0.6766 (3)0.13788 (11)0.0530 (6)
H10.14070.65440.14920.064*
N20.0036 (4)0.7205 (4)0.07303 (12)0.0596 (6)
N30.5343 (3)0.2781 (2)0.46170 (9)0.0332 (4)
N40.2425 (3)0.1170 (3)0.29832 (12)0.0548 (6)
C10.4304 (3)0.6252 (3)0.35487 (12)0.0349 (4)
C20.3041 (3)0.6390 (3)0.29785 (11)0.0344 (4)
C30.1242 (3)0.6404 (3)0.31392 (11)0.0374 (5)
H30.07870.63350.36100.045*
C40.0114 (3)0.6519 (3)0.26069 (12)0.0415 (5)
H40.10870.65150.27180.050*
C50.0797 (4)0.6640 (3)0.19063 (12)0.0430 (5)
C60.2596 (4)0.6615 (4)0.17352 (13)0.0491 (6)
H60.30500.66870.12640.059*
C70.3706 (4)0.6480 (4)0.22731 (12)0.0441 (5)
H70.49220.64500.21610.053*
C80.4004 (7)0.7049 (9)0.0225 (3)0.129 (2)
H8A0.48990.65720.00640.193*
H8B0.31890.64370.06250.193*
H8C0.46890.82200.03610.193*
C90.2808 (5)0.6920 (6)0.03616 (17)0.0761 (10)
C100.1170 (4)0.7337 (5)0.02394 (15)0.0648 (8)
C110.0650 (7)0.7972 (8)0.0451 (2)0.1111 (18)
C120.1209 (7)0.8104 (8)0.0604 (2)0.1074 (16)
H12A0.11540.88410.10120.161*
H12B0.22160.69980.06970.161*
H12C0.14600.85600.02030.161*
C130.6999 (3)0.1395 (3)0.46307 (12)0.0377 (5)
H130.79860.14360.48530.045*
C140.7286 (4)0.0088 (3)0.43248 (14)0.0449 (5)
H140.84460.10380.43470.054*
C150.5843 (4)0.0161 (3)0.39847 (13)0.0432 (5)
H150.60250.11470.37670.052*
C160.4116 (3)0.1270 (3)0.39742 (11)0.0345 (4)
C170.3914 (3)0.2698 (3)0.43054 (11)0.0342 (4)
H170.27430.36440.43140.041*
C180.2401 (3)0.1260 (3)0.36835 (12)0.0372 (5)
C190.3737 (6)0.1654 (6)0.24655 (19)0.0557 (10)0.787 (5)
H19A0.43670.21700.27160.067*0.787 (5)
H19B0.29890.24880.21260.067*0.787 (5)
C19'0.4245 (16)0.0383 (16)0.2512 (7)0.056*0.213 (5)
H19C0.41220.02420.21340.067*0.213 (5)
H19D0.53150.03460.27740.067*0.213 (5)
C200.5230 (6)0.0140 (7)0.2076 (2)0.0766 (14)0.787 (5)
H20A0.60530.04940.17540.115*0.787 (5)
H20B0.46110.03530.18160.115*0.787 (5)
H20C0.59770.06860.24110.115*0.787 (5)
C20'0.439 (3)0.200 (2)0.2245 (11)0.077*0.213 (5)
H20D0.53860.21160.24630.115*0.213 (5)
H20E0.31930.29510.23610.115*0.213 (5)
H20F0.46910.19670.17400.115*0.213 (5)
C210.0848 (4)0.0938 (4)0.27090 (17)0.0589 (7)
H21A0.04480.02220.30410.071*
H21B0.13130.03600.22630.071*
C220.0839 (5)0.2577 (5)0.2597 (2)0.0864 (12)
H22A0.18210.23600.24190.130*
H22B0.04580.32830.22610.130*
H22C0.13230.31450.30390.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0516 (3)0.0368 (2)0.0268 (2)0.02437 (18)0.01424 (16)0.00124 (14)
O10.0516 (9)0.0441 (9)0.0290 (8)0.0215 (8)0.0134 (7)0.0016 (6)
O20.0466 (10)0.0675 (12)0.0454 (10)0.0294 (9)0.0143 (8)0.0039 (8)
O30.0876 (18)0.210 (4)0.0570 (15)0.099 (2)0.0132 (13)0.0126 (18)
O40.184 (4)0.498 (9)0.082 (2)0.224 (5)0.083 (3)0.115 (4)
O50.0441 (10)0.0895 (15)0.0458 (10)0.0355 (10)0.0040 (8)0.0016 (10)
O1W0.0570 (12)0.0683 (13)0.0441 (10)0.0167 (10)0.0075 (9)0.0026 (9)
N10.0507 (12)0.0858 (17)0.0326 (10)0.0375 (12)0.0123 (9)0.0053 (10)
N20.0576 (14)0.0968 (19)0.0350 (11)0.0416 (14)0.0148 (10)0.0078 (11)
N30.0383 (9)0.0379 (9)0.0295 (9)0.0203 (8)0.0083 (7)0.0015 (7)
N40.0488 (12)0.0846 (17)0.0400 (11)0.0339 (12)0.0082 (9)0.0130 (11)
C10.0445 (12)0.0303 (10)0.0326 (10)0.0164 (9)0.0117 (9)0.0010 (8)
C20.0416 (11)0.0357 (10)0.0283 (10)0.0175 (9)0.0088 (9)0.0011 (8)
C30.0415 (12)0.0445 (12)0.0265 (10)0.0183 (10)0.0045 (9)0.0014 (8)
C40.0389 (12)0.0551 (14)0.0337 (11)0.0228 (11)0.0056 (9)0.0023 (10)
C50.0456 (13)0.0589 (14)0.0300 (11)0.0259 (11)0.0113 (9)0.0023 (10)
C60.0511 (14)0.0775 (18)0.0263 (11)0.0347 (14)0.0050 (10)0.0025 (11)
C70.0432 (13)0.0639 (15)0.0329 (11)0.0303 (12)0.0062 (10)0.0045 (10)
C80.106 (3)0.240 (6)0.085 (3)0.110 (4)0.048 (3)0.023 (4)
C90.0617 (19)0.131 (3)0.0475 (17)0.050 (2)0.0140 (14)0.0019 (18)
C100.0590 (17)0.110 (3)0.0374 (14)0.0452 (18)0.0163 (12)0.0070 (15)
C110.101 (3)0.215 (6)0.051 (2)0.098 (4)0.033 (2)0.035 (3)
C120.105 (3)0.186 (5)0.061 (2)0.092 (3)0.014 (2)0.023 (3)
C130.0352 (11)0.0465 (12)0.0352 (11)0.0197 (10)0.0072 (9)0.0019 (9)
C140.0363 (12)0.0443 (12)0.0493 (14)0.0105 (10)0.0062 (10)0.0089 (10)
C150.0452 (13)0.0408 (12)0.0454 (13)0.0180 (10)0.0036 (10)0.0129 (10)
C160.0381 (11)0.0408 (11)0.0306 (10)0.0216 (9)0.0051 (8)0.0030 (8)
C170.0357 (11)0.0363 (10)0.0336 (10)0.0169 (9)0.0080 (9)0.0007 (8)
C180.0394 (12)0.0387 (11)0.0377 (11)0.0189 (9)0.0076 (9)0.0045 (9)
C190.063 (2)0.076 (3)0.0377 (17)0.038 (2)0.0095 (16)0.0061 (16)
C200.066 (3)0.101 (4)0.051 (2)0.026 (2)0.004 (2)0.001 (2)
C210.0562 (16)0.0630 (17)0.0628 (18)0.0236 (14)0.0216 (14)0.0170 (14)
C220.078 (2)0.076 (2)0.100 (3)0.0175 (19)0.039 (2)0.017 (2)
Geometric parameters (Å, º) top
Cu1—O11.9661 (15)C8—H8B0.9600
Cu1—O1i1.9661 (15)C8—H8C0.9600
Cu1—N32.0151 (17)C9—C101.450 (5)
Cu1—N3i2.0151 (17)C10—C111.466 (5)
Cu1—O1W2.531 (2)C11—C121.485 (6)
O1—C11.268 (3)C12—H12A0.9600
O2—C11.239 (3)C12—H12B0.9600
O3—C91.215 (4)C12—H12C0.9600
O4—C111.195 (5)C13—C141.376 (3)
O5—C181.222 (3)C13—H130.9300
O1W—H110.8400C14—C151.380 (3)
O1W—H120.8400C14—H140.9300
N1—N21.297 (3)C15—C161.389 (3)
N1—C51.411 (3)C15—H150.9300
N1—H10.8800C16—C171.377 (3)
N2—C101.322 (3)C16—C181.500 (3)
N3—C131.338 (3)C17—H170.9300
N3—C171.345 (3)C19—C201.507 (6)
N4—C181.337 (3)C19—H19A0.9700
N4—C211.476 (3)C19—H19B0.9700
N4—C19'1.493 (10)C19'—C20'1.506 (11)
N4—C191.497 (4)C19'—H19C0.9700
C1—C21.509 (3)C19'—H19D0.9700
C2—C31.386 (3)C20—H20A0.9600
C2—C71.387 (3)C20—H20B0.9600
C3—C41.384 (3)C20—H20C0.9600
C3—H30.9300C20'—H20D0.9600
C4—C51.387 (3)C20'—H20E0.9600
C4—H40.9300C20'—H20F0.9600
C5—C61.384 (4)C21—C221.491 (4)
C6—C71.379 (3)C21—H21A0.9700
C6—H60.9300C21—H21B0.9700
C7—H70.9300C22—H22A0.9600
C8—C91.500 (5)C22—H22B0.9600
C8—H8A0.9600C22—H22C0.9600
O1—Cu1—O1i180.00 (5)C10—C11—C12121.0 (3)
O1—Cu1—N388.22 (7)C11—C12—H12A109.5
O1i—Cu1—N391.78 (7)C11—C12—H12B109.5
O1—Cu1—N3i91.78 (7)H12A—C12—H12B109.5
O1i—Cu1—N3i88.22 (7)C11—C12—H12C109.5
N3—Cu1—N3i180.00 (9)H12A—C12—H12C109.5
O1—Cu1—O1W94.78 (7)H12B—C12—H12C109.5
O1i—Cu1—O1W85.22 (7)N3—C13—C14121.9 (2)
N3—Cu1—O1W94.61 (7)N3—C13—H13119.1
N3i—Cu1—O1W85.39 (7)C14—C13—H13119.1
C1—O1—Cu1127.21 (15)C13—C14—C15119.7 (2)
Cu1—O1W—H11109.5C13—C14—H14120.2
Cu1—O1W—H12109.5C15—C14—H14120.2
H11—O1W—H12109.5C14—C15—C16118.6 (2)
N2—N1—C5121.0 (2)C14—C15—H15120.7
N2—N1—H1119.5C16—C15—H15120.7
C5—N1—H1119.5C17—C16—C15118.5 (2)
N1—N2—C10120.8 (3)C17—C16—C18118.7 (2)
C13—N3—C17118.55 (18)C15—C16—C18122.47 (19)
C13—N3—Cu1121.68 (14)N3—C17—C16122.6 (2)
C17—N3—Cu1119.68 (15)N3—C17—H17118.7
C18—N4—C21118.4 (2)C16—C17—H17118.7
C18—N4—C19'122.4 (6)O5—C18—N4122.2 (2)
C21—N4—C19'111.2 (6)O5—C18—C16119.0 (2)
C18—N4—C19122.2 (2)N4—C18—C16118.8 (2)
C21—N4—C19118.0 (2)N4—C19—C20111.8 (4)
O2—C1—O1125.9 (2)N4—C19—H19A109.3
O2—C1—C2118.8 (2)C20—C19—H19A109.3
O1—C1—C2115.3 (2)N4—C19—H19B109.3
C3—C2—C7118.9 (2)C20—C19—H19B109.3
C3—C2—C1121.8 (2)H19A—C19—H19B107.9
C7—C2—C1119.3 (2)N4—C19'—C20'97.5 (11)
C4—C3—C2120.8 (2)N4—C19'—H19C112.3
C4—C3—H3119.6C20'—C19'—H19C112.3
C2—C3—H3119.6N4—C19'—H19D112.3
C3—C4—C5119.2 (2)C20'—C19'—H19D112.3
C3—C4—H4120.4H19C—C19'—H19D109.9
C5—C4—H4120.4C19—C20—H20A109.5
C6—C5—C4120.9 (2)C19—C20—H20B109.5
C6—C5—N1121.6 (2)H20A—C20—H20B109.5
C4—C5—N1117.5 (2)C19—C20—H20C109.5
C7—C6—C5119.0 (2)H20A—C20—H20C109.5
C7—C6—H6120.5H20B—C20—H20C109.5
C5—C6—H6120.5C19'—C20'—H20D109.5
C6—C7—C2121.2 (2)C19'—C20'—H20E109.5
C6—C7—H7119.4H20D—C20'—H20E109.5
C2—C7—H7119.4C19'—C20'—H20F109.5
C9—C8—H8A109.5H20D—C20'—H20F109.5
C9—C8—H8B109.5H20E—C20'—H20F109.5
H8A—C8—H8B109.5N4—C21—C22112.7 (3)
C9—C8—H8C109.5N4—C21—H21A109.1
H8A—C8—H8C109.5C22—C21—H21A109.1
H8B—C8—H8C109.5N4—C21—H21B109.1
O3—C9—C10120.1 (3)C22—C21—H21B109.1
O3—C9—C8118.5 (4)H21A—C21—H21B107.8
C10—C9—C8121.3 (3)C21—C22—H22A109.5
N2—C10—C9124.0 (3)C21—C22—H22B109.5
N2—C10—C11114.1 (3)H22A—C22—H22B109.5
C9—C10—C11121.9 (3)C21—C22—H22C109.5
O4—C11—C10120.1 (4)H22A—C22—H22C109.5
O4—C11—C12118.8 (4)H22B—C22—H22C109.5
N3—Cu1—O1—C177.11 (18)N2—C10—C11—O4166.7 (7)
N3i—Cu1—O1—C1102.89 (18)C9—C10—C11—O412.6 (10)
O1W—Cu1—O1—C117.37 (18)N2—C10—C11—C1211.7 (7)
C5—N1—N2—C10179.4 (3)C9—C10—C11—C12169.1 (5)
O1—Cu1—N3—C13138.76 (18)C17—N3—C13—C141.2 (3)
O1i—Cu1—N3—C1341.24 (18)Cu1—N3—C13—C14175.28 (18)
O1W—Cu1—N3—C1344.11 (18)N3—C13—C14—C150.8 (4)
O1—Cu1—N3—C1737.72 (17)C13—C14—C15—C161.3 (4)
O1i—Cu1—N3—C17142.28 (17)C14—C15—C16—C170.2 (4)
O1W—Cu1—N3—C17132.37 (16)C14—C15—C16—C18173.6 (2)
Cu1—O1—C1—O228.8 (3)C13—N3—C17—C162.8 (3)
Cu1—O1—C1—C2150.44 (15)Cu1—N3—C17—C16173.76 (16)
O2—C1—C2—C3179.1 (2)C15—C16—C17—N32.3 (3)
O1—C1—C2—C30.2 (3)C18—C16—C17—N3176.0 (2)
O2—C1—C2—C70.1 (3)C21—N4—C18—O58.4 (4)
O1—C1—C2—C7179.2 (2)C19'—N4—C18—O5154.6 (7)
C7—C2—C3—C40.5 (4)C19—N4—C18—O5158.5 (3)
C1—C2—C3—C4179.5 (2)C21—N4—C18—C16172.2 (2)
C2—C3—C4—C50.7 (4)C19'—N4—C18—C1626.0 (7)
C3—C4—C5—C61.2 (4)C19—N4—C18—C1620.9 (4)
C3—C4—C5—N1179.6 (2)C17—C16—C18—O564.4 (3)
N2—N1—C5—C614.1 (4)C15—C16—C18—O5109.1 (3)
N2—N1—C5—C4166.8 (3)C17—C16—C18—N4115.1 (3)
C4—C5—C6—C70.5 (4)C15—C16—C18—N471.5 (3)
N1—C5—C6—C7179.7 (3)C18—N4—C19—C20112.8 (4)
C5—C6—C7—C20.7 (4)C21—N4—C19—C2080.2 (4)
C3—C2—C7—C61.2 (4)C19'—N4—C19—C209.6 (9)
C1—C2—C7—C6179.7 (2)C18—N4—C19'—C20'99.5 (11)
N1—N2—C10—C93.8 (6)C21—N4—C19'—C20'112.1 (10)
N1—N2—C10—C11175.4 (4)C19—N4—C19'—C20'3.3 (9)
O3—C9—C10—N20.6 (7)C18—N4—C21—C2286.4 (4)
C8—C9—C10—N2178.2 (4)C19'—N4—C21—C22123.8 (6)
O3—C9—C10—C11178.6 (5)C19—N4—C21—C2281.0 (4)
C8—C9—C10—C112.7 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.881.882.558 (3)132
O1w—H11···O20.842.062.712 (3)135
O1w—H12···O5ii0.842.122.955 (3)172
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C12H11N2O4)2(C10H14N2O)2(H2O)2]
Mr950.49
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7429 (4), 8.7029 (4), 19.0069 (9)
α, β, γ (°)85.695 (1), 83.218 (1), 64.882 (1)
V3)1151.12 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.854, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
13589, 5775, 4780
Rint0.021
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.04
No. of reflections5775
No. of parameters305
No. of restraints38
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.60

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O11.9661 (15)Cu1—O1W2.531 (2)
Cu1—N32.0151 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.881.882.558 (3)132
O1w—H11···O20.842.062.712 (3)135
O1w—H12···O5i0.842.122.955 (3)172
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank Baku State University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMaharramov, A. M., Mardanova, V. I., Chyraqov, F., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, m708–m709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds