organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-3-cyclo­pentyl­sulfinyl-2,7-di­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 28 December 2011; accepted 29 December 2011; online 14 January 2012)

In the title compound, C15H17BrO2S, the cyclo­pentyl ring adopts an envelope conformation. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds. A slipped ππ inter­action occurs between the furan and benzene rings of adjacent mol­ecules [centroid–centroid distance = 3.892 (3) Å and slippage = 1.786 (3) Å]. The crystal structure also exhibits a weak C—Br⋯π [2.919 (3) Å] inter­action.

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the crystal structures of related compounds, see: Choi et al. (2011a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o1039.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1279.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17BrO2S

  • Mr = 341.26

  • Orthorhombic, P b c n

  • a = 19.5624 (8) Å

  • b = 8.3501 (4) Å

  • c = 17.5346 (7) Å

  • V = 2864.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.01 mm−1

  • T = 173 K

  • 0.36 × 0.19 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.414, Tmax = 0.899

  • 14696 measured reflections

  • 3561 independent reflections

  • 2232 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.094

  • S = 1.01

  • 3561 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.60 3.465 (3) 152
C9—H9B⋯O2i 0.98 2.55 3.489 (3) 161
C10—H10B⋯O1ii 0.98 2.60 3.480 (3) 149
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran derivatives have drawn much interest in view of their valuable biological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing study of 5-bromo-2,7-dimethyl-1-benzofuran derivatives containing either 3-cyclohexylsulfinyl (Choi et al., 2011a) or 3-cyclohexylsulfonyl (Choi et al., 2011b) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.020 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclopentyl ring is in the envelope form. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O hydrogen bonds (see, Table 1). The crystal packing (Fig. 3) is further stabilized by a weak intermolecular C—Br···π interaction between the bromine and the benzene ring of an adjacent molecule, with a C4—Br1···Cg2ii [2.919 (3) Å] (Cg2 is the centroid of the C2-C7 benzene ring). The crystal packing (Fig. 3) also exhibits a weak slipped π···π interaction between the furan and benzene rings of adjacent molecules, with a Cg1···Cg2i distance of 3.892 (4) Å and an interplanar distance of 3.458 (3) Å resulting in a slippage of 1.786 (3) Å (Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring).

Related literature top

For the biological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2011a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 5-bromo-3-cyclopentylsulfanyl-2,7-dimethyl-1-benzofuran (260 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 6 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 67%, m.p. 415–416 K; Rf = 0.51 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x, - y + 1, z + 1/2; (ii) - x + 1, - y + 2, - z + 1.]
[Figure 3] Fig. 3. A view of the C—Br···π and π···π interactions (dotted lines) in the crystal structure of the title compound. All H atoms were omitted for clarity. [Symmetry codes: (i) 1 - x, 1- y, 1 - z; (ii) - x + 3/2, y - 1/2, z; (iii) - x + 3/2, y + 1/2, z. ]
5-Bromo-3-cyclopentylsulfinyl-2,7-dimethyl-1-benzofuran top
Crystal data top
C15H17BrO2SF(000) = 1392
Mr = 341.26Dx = 1.583 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2605 reflections
a = 19.5624 (8) Åθ = 2.6–23.7°
b = 8.3501 (4) ŵ = 3.01 mm1
c = 17.5346 (7) ÅT = 173 K
V = 2864.2 (2) Å3Block, colourless
Z = 80.36 × 0.19 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3561 independent reflections
Radiation source: rotating anode2232 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.052
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.1°
ϕ and ω scansh = 1825
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.414, Tmax = 0.899l = 2317
14696 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.094H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0345P)2 + 1.0227P]
where P = (Fo2 + 2Fc2)/3
3561 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C15H17BrO2SV = 2864.2 (2) Å3
Mr = 341.26Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 19.5624 (8) ŵ = 3.01 mm1
b = 8.3501 (4) ÅT = 173 K
c = 17.5346 (7) Å0.36 × 0.19 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3561 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2232 reflections with I > 2σ(I)
Tmin = 0.414, Tmax = 0.899Rint = 0.052
14696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.01Δρmax = 0.43 e Å3
3561 reflectionsΔρmin = 0.51 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.746477 (15)0.35697 (4)0.531719 (18)0.04220 (13)
S10.58692 (4)0.79730 (10)0.30668 (4)0.0302 (2)
O10.49506 (9)0.7539 (2)0.50628 (9)0.0242 (4)
O20.61660 (12)0.6477 (3)0.27475 (11)0.0467 (6)
C10.55893 (14)0.7536 (3)0.39992 (14)0.0224 (6)
C20.59386 (14)0.6560 (3)0.45635 (14)0.0210 (6)
C30.65304 (14)0.5643 (3)0.45788 (14)0.0233 (6)
H30.68190.55420.41460.028*
C40.66740 (13)0.4885 (3)0.52599 (15)0.0249 (6)
C50.62665 (13)0.5023 (3)0.59087 (15)0.0236 (6)
H50.64000.45010.63660.028*
C60.56704 (14)0.5911 (3)0.58952 (15)0.0215 (6)
C70.55264 (13)0.6627 (3)0.52041 (14)0.0195 (6)
C80.50046 (14)0.8064 (3)0.43205 (15)0.0239 (6)
C90.52221 (14)0.6084 (3)0.65801 (15)0.0286 (7)
H9A0.52160.72080.67420.043*
H9B0.54000.54170.69950.043*
H9C0.47570.57420.64520.043*
C100.44272 (14)0.9041 (4)0.40406 (17)0.0332 (7)
H10A0.44900.92650.34960.050*
H10B0.44101.00530.43240.050*
H10C0.39990.84550.41160.050*
C110.65806 (14)0.9260 (3)0.33175 (15)0.0258 (7)
H110.69000.86870.36690.031*
C120.63212 (15)1.0808 (4)0.36924 (17)0.0356 (8)
H12A0.58151.08490.36860.043*
H12B0.64801.08830.42270.043*
C130.66218 (16)1.2156 (4)0.32140 (17)0.0371 (8)
H13A0.63121.30920.32050.044*
H13B0.70711.24950.34170.044*
C140.66965 (16)1.1439 (4)0.24250 (18)0.0385 (8)
H14A0.62521.14050.21560.046*
H14B0.70271.20550.21140.046*
C150.69583 (15)0.9771 (3)0.25871 (15)0.0298 (7)
H15A0.74590.97790.26690.036*
H15B0.68510.90370.21600.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0393 (2)0.0479 (2)0.0394 (2)0.01898 (17)0.00616 (15)0.00728 (15)
S10.0354 (5)0.0370 (4)0.0182 (4)0.0105 (4)0.0025 (3)0.0023 (3)
O10.0247 (11)0.0265 (11)0.0214 (10)0.0013 (10)0.0002 (8)0.0014 (8)
O20.0728 (17)0.0374 (13)0.0298 (12)0.0144 (12)0.0162 (11)0.0126 (10)
C10.0270 (16)0.0230 (15)0.0173 (14)0.0050 (13)0.0028 (12)0.0002 (11)
C20.0232 (15)0.0227 (15)0.0169 (14)0.0049 (13)0.0009 (12)0.0021 (11)
C30.0249 (16)0.0252 (15)0.0199 (15)0.0049 (13)0.0051 (12)0.0032 (12)
C40.0235 (16)0.0217 (15)0.0296 (16)0.0029 (13)0.0017 (13)0.0022 (12)
C50.0305 (16)0.0215 (14)0.0189 (14)0.0019 (13)0.0009 (12)0.0010 (12)
C60.0267 (16)0.0178 (14)0.0199 (14)0.0047 (12)0.0018 (12)0.0041 (11)
C70.0190 (15)0.0193 (14)0.0202 (14)0.0022 (12)0.0019 (12)0.0014 (11)
C80.0270 (17)0.0226 (15)0.0219 (14)0.0063 (13)0.0070 (12)0.0015 (12)
C90.0303 (17)0.0327 (17)0.0229 (15)0.0004 (14)0.0052 (13)0.0030 (12)
C100.0351 (18)0.0300 (17)0.0345 (18)0.0006 (14)0.0069 (14)0.0026 (14)
C110.0230 (16)0.0281 (16)0.0262 (15)0.0006 (13)0.0001 (13)0.0025 (12)
C120.0340 (19)0.0309 (18)0.0419 (19)0.0032 (15)0.0092 (15)0.0070 (14)
C130.0345 (19)0.0282 (18)0.049 (2)0.0037 (15)0.0022 (15)0.0062 (15)
C140.040 (2)0.0314 (18)0.044 (2)0.0028 (15)0.0053 (15)0.0088 (15)
C150.0290 (17)0.0310 (17)0.0295 (16)0.0032 (15)0.0038 (13)0.0040 (13)
Geometric parameters (Å, º) top
Br1—C41.900 (3)C9—H9B0.9800
S1—O21.487 (2)C9—H9C0.9800
S1—C11.762 (3)C10—H10A0.9800
S1—C111.813 (3)C10—H10B0.9800
O1—C81.378 (3)C10—H10C0.9800
O1—C71.382 (3)C11—C121.536 (4)
C1—C81.349 (4)C11—C151.539 (4)
C1—C21.453 (4)C11—H111.0000
C2—C71.384 (3)C12—C131.521 (4)
C2—C31.388 (4)C12—H12A0.9900
C3—C41.380 (3)C12—H12B0.9900
C3—H30.9500C13—C141.514 (4)
C4—C51.394 (3)C13—H13A0.9900
C5—C61.382 (4)C13—H13B0.9900
C5—H50.9500C14—C151.512 (4)
C6—C71.380 (3)C14—H14A0.9900
C6—C91.494 (4)C14—H14B0.9900
C8—C101.477 (4)C15—H15A0.9900
C9—H9A0.9800C15—H15B0.9900
O2—S1—C1107.27 (13)C8—C10—H10B109.5
O2—S1—C11106.84 (13)H10A—C10—H10B109.5
C1—S1—C1197.83 (12)C8—C10—H10C109.5
C8—O1—C7106.4 (2)H10A—C10—H10C109.5
C8—C1—C2107.3 (2)H10B—C10—H10C109.5
C8—C1—S1125.7 (2)C12—C11—C15106.4 (2)
C2—C1—S1127.0 (2)C12—C11—S1110.44 (19)
C7—C2—C3119.5 (2)C15—C11—S1109.33 (19)
C7—C2—C1104.8 (2)C12—C11—H11110.2
C3—C2—C1135.6 (2)C15—C11—H11110.2
C4—C3—C2116.0 (2)S1—C11—H11110.2
C4—C3—H3122.0C13—C12—C11105.0 (2)
C2—C3—H3122.0C13—C12—H12A110.8
C3—C4—C5123.5 (3)C11—C12—H12A110.8
C3—C4—Br1118.4 (2)C13—C12—H12B110.8
C5—C4—Br1118.1 (2)C11—C12—H12B110.8
C6—C5—C4120.9 (2)H12A—C12—H12B108.8
C6—C5—H5119.6C14—C13—C12104.4 (2)
C4—C5—H5119.6C14—C13—H13A110.9
C7—C6—C5114.8 (2)C12—C13—H13A110.9
C7—C6—C9122.9 (2)C14—C13—H13B110.9
C5—C6—C9122.3 (2)C12—C13—H13B110.9
C6—C7—O1124.2 (2)H13A—C13—H13B108.9
C6—C7—C2125.2 (3)C15—C14—C13103.0 (2)
O1—C7—C2110.6 (2)C15—C14—H14A111.2
C1—C8—O1110.8 (2)C13—C14—H14A111.2
C1—C8—C10133.6 (3)C15—C14—H14B111.2
O1—C8—C10115.5 (2)C13—C14—H14B111.2
C6—C9—H9A109.5H14A—C14—H14B109.1
C6—C9—H9B109.5C14—C15—C11104.4 (2)
H9A—C9—H9B109.5C14—C15—H15A110.9
C6—C9—H9C109.5C11—C15—H15A110.9
H9A—C9—H9C109.5C14—C15—H15B110.9
H9B—C9—H9C109.5C11—C15—H15B110.9
C8—C10—H10A109.5H15A—C15—H15B108.9
O2—S1—C1—C8139.5 (2)C3—C2—C7—C63.7 (4)
C11—S1—C1—C8110.1 (3)C1—C2—C7—C6177.7 (3)
O2—S1—C1—C240.8 (3)C3—C2—C7—O1177.3 (2)
C11—S1—C1—C269.6 (3)C1—C2—C7—O11.3 (3)
C8—C1—C2—C71.7 (3)C2—C1—C8—O11.5 (3)
S1—C1—C2—C7178.1 (2)S1—C1—C8—O1178.30 (18)
C8—C1—C2—C3176.6 (3)C2—C1—C8—C10177.6 (3)
S1—C1—C2—C33.6 (5)S1—C1—C8—C102.6 (5)
C7—C2—C3—C41.9 (4)C7—O1—C8—C10.7 (3)
C1—C2—C3—C4179.9 (3)C7—O1—C8—C10178.6 (2)
C2—C3—C4—C50.9 (4)O2—S1—C11—C12177.07 (19)
C2—C3—C4—Br1178.6 (2)C1—S1—C11—C1266.3 (2)
C3—C4—C5—C62.1 (4)O2—S1—C11—C1566.2 (2)
Br1—C4—C5—C6177.4 (2)C1—S1—C11—C15177.0 (2)
C4—C5—C6—C70.4 (4)C15—C11—C12—C135.9 (3)
C4—C5—C6—C9180.0 (2)S1—C11—C12—C13124.4 (2)
C5—C6—C7—O1178.7 (2)C11—C12—C13—C1428.9 (3)
C9—C6—C7—O11.7 (4)C12—C13—C14—C1541.2 (3)
C5—C6—C7—C22.5 (4)C13—C14—C15—C1137.0 (3)
C9—C6—C7—C2177.1 (3)C12—C11—C15—C1419.3 (3)
C8—O1—C7—C6178.5 (2)S1—C11—C15—C14100.0 (2)
C8—O1—C7—C20.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.603.465 (3)152
C9—H9B···O2i0.982.553.489 (3)161
C10—H10B···O1ii0.982.603.480 (3)149
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H17BrO2S
Mr341.26
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)19.5624 (8), 8.3501 (4), 17.5346 (7)
V3)2864.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)3.01
Crystal size (mm)0.36 × 0.19 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.414, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
14696, 3561, 2232
Rint0.052
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.094, 1.01
No. of reflections3561
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.51

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.603.465 (3)152.0
C9—H9B···O2i0.982.553.489 (3)161.1
C10—H10B···O1ii0.982.603.480 (3)149.3
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds