organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3-Dieth­­oxy-5-fluoro-2,3-di­hydro-1H-indol-2-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 January 2012; accepted 15 January 2012; online 21 January 2012)

The title ketal, C12H14FNO3, crystallized with two independent molecules in the asymmetric unit. In each molecule the fused ring system is essentially planar [maximum deviations of 0.0169 (11) and 0.0402 (13) Å]. The mol­ecules are each hydrogen bonded across a center of inversion into a dimer; adjacent dimers are linked by another N—H⋯O hydrogen bond, forming a chain running along [100].

Related literature

For 3,3-dimeth­oxy­indolin-2-one, see: De & Kitagawa (1991[De, A. & Kitagawa, Y. (1991). Acta Cryst. C47, 2384-2386.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14FNO3

  • Mr = 239.24

  • Triclinic, [P \overline 1]

  • a = 9.3218 (6) Å

  • b = 9.4320 (5) Å

  • c = 14.1544 (8) Å

  • α = 100.475 (5)°

  • β = 104.453 (5)°

  • γ = 90.238 (5)°

  • V = 1183.43 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.90 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.773, Tmax = 0.915

  • 8022 measured reflections

  • 4661 independent reflections

  • 4067 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.04

  • 4661 reflections

  • 315 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.85 (2) 2.30 (2) 3.010 (2) 142 (2)
N1—H1⋯O1i 0.85 (2) 2.34 (2) 3.043 (1) 141 (2)
N2—H2⋯O1ii 0.87 (2) 2.28 (2) 3.002 (2) 140 (2)
N2—H2⋯O4iii 0.87 (2) 2.33 (2) 3.057 (2) 142 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The parent compound, isatin, forms a ketal, 3,3-dimethoxyindolin-2-one (De & Kitagawa, 1991). The present compound, which has a fluorine atom in the ring, is expected to possess improved pharmaceutical activity. Fluorine-substituted C12H14FNO3 (Scheme I) exists as two independent molecules (Fig. 1) whose fused-rings are both planar. The molecules are each hydrogen-bonded across a center-of-inversion into a dimer; adjacent dimers are linked by another N–H···O hydrogen bond to form a chain running along [1 0 0] (Table 1).

Related literature top

For 3,3-dimethoxyindolin-2-one, see: De & Kitagawa (1991).

Experimental top

5-Fluoroisatin (1 mol) was heated under reflux for 3 h in ethanol (20 ml) in the presence of few drops of glacial acetic acid. The solvent was removed under reduced pressure and the product was crystallized from ethanol to yield the title compound (C12H14FNO3) as light brown crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fourier map, and were freely refined.

The (1 - 1 1) reflection was omitted.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the two molecules of C12H14FNO3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
3,3-Diethoxy-5-fluoro-2,3-dihydro-1H-indol-2-one top
Crystal data top
C12H14FNO3Z = 4
Mr = 239.24F(000) = 504
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.3218 (6) ÅCell parameters from 3789 reflections
b = 9.4320 (5) Åθ = 3.3–74.1°
c = 14.1544 (8) ŵ = 0.90 mm1
α = 100.475 (5)°T = 100 K
β = 104.453 (5)°Prism, light brown
γ = 90.238 (5)°0.30 × 0.20 × 0.10 mm
V = 1183.43 (12) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4661 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4067 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 3.3°
ω scanh = 118
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1110
Tmin = 0.773, Tmax = 0.915l = 1617
8022 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.3265P]
where P = (Fo2 + 2Fc2)/3
4661 reflections(Δ/σ)max = 0.001
315 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H14FNO3γ = 90.238 (5)°
Mr = 239.24V = 1183.43 (12) Å3
Triclinic, P1Z = 4
a = 9.3218 (6) ÅCu Kα radiation
b = 9.4320 (5) ŵ = 0.90 mm1
c = 14.1544 (8) ÅT = 100 K
α = 100.475 (5)°0.30 × 0.20 × 0.10 mm
β = 104.453 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4661 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4067 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.915Rint = 0.018
8022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
4661 reflectionsΔρmin = 0.23 e Å3
315 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.65631 (10)0.87322 (9)0.07446 (6)0.0377 (2)
F20.13605 (10)0.08585 (10)0.06203 (8)0.0442 (2)
O11.11315 (10)0.49565 (10)0.42494 (7)0.0253 (2)
O21.15077 (10)0.75706 (10)0.32386 (7)0.0233 (2)
O31.10671 (10)0.52344 (9)0.22746 (6)0.0221 (2)
O40.61151 (10)0.46293 (10)0.42320 (7)0.0253 (2)
O50.60229 (10)0.32961 (9)0.22563 (6)0.0223 (2)
O60.64294 (10)0.14599 (10)0.31984 (7)0.0244 (2)
N10.87973 (12)0.57806 (12)0.37342 (8)0.0241 (2)
H10.838 (2)0.544 (2)0.4122 (14)0.040 (5)*
N20.37762 (13)0.35119 (12)0.37406 (9)0.0253 (2)
H20.3385 (19)0.410 (2)0.4141 (14)0.037 (5)*
C10.80501 (14)0.65008 (13)0.29789 (10)0.0234 (3)
C20.65810 (15)0.68508 (15)0.27701 (12)0.0307 (3)
H2A0.59320.65890.31390.037*
C30.60863 (16)0.76044 (16)0.19961 (12)0.0336 (3)
H30.50840.78640.18250.040*
C40.70630 (16)0.79666 (15)0.14840 (10)0.0290 (3)
C50.85398 (15)0.76166 (14)0.16810 (9)0.0243 (3)
H50.91870.78820.13120.029*
C60.90179 (14)0.68592 (13)0.24451 (9)0.0211 (3)
C71.05296 (14)0.63435 (13)0.28796 (9)0.0200 (3)
C81.02300 (14)0.56035 (13)0.37198 (9)0.0210 (3)
C91.30237 (15)0.73120 (17)0.37099 (11)0.0310 (3)
H9A1.34490.66310.32460.037*
H9B1.30640.68930.43080.037*
C101.38741 (17)0.87367 (18)0.39909 (14)0.0429 (4)
H10A1.49110.86060.43160.064*
H10B1.34410.94010.44490.064*
H10C1.38280.91380.33930.064*
C111.13018 (16)0.55704 (15)0.13718 (10)0.0278 (3)
H11A1.18120.65360.15040.033*
H11B1.03410.55720.08770.033*
C121.22457 (18)0.44256 (17)0.09873 (11)0.0343 (3)
H12A1.24360.46230.03720.051*
H12B1.17250.34770.08540.051*
H12C1.31900.44320.14850.051*
C130.29953 (15)0.24155 (14)0.29679 (10)0.0251 (3)
C140.15128 (16)0.19850 (16)0.27473 (12)0.0335 (3)
H140.08850.24330.31360.040*
C150.09679 (16)0.08786 (16)0.19405 (13)0.0376 (4)
H150.00490.05630.17620.045*
C160.19158 (16)0.02415 (15)0.14008 (12)0.0329 (3)
C170.34117 (15)0.06529 (14)0.16144 (11)0.0269 (3)
H170.40410.01880.12330.032*
C180.39400 (14)0.17753 (13)0.24116 (10)0.0227 (3)
C190.54709 (14)0.25080 (13)0.28508 (9)0.0208 (3)
C200.52002 (14)0.36945 (14)0.37073 (9)0.0215 (3)
C210.62215 (17)0.24781 (15)0.13397 (10)0.0303 (3)
H21A0.52480.22080.08570.036*
H21B0.67310.15840.14590.036*
C220.7143 (2)0.34170 (18)0.09427 (13)0.0470 (5)
H22A0.73050.28900.03180.071*
H22B0.81010.36800.14270.071*
H22C0.66240.42940.08240.071*
C230.79515 (15)0.19686 (16)0.36725 (11)0.0313 (3)
H23A0.79920.27520.42500.038*
H23B0.84000.23490.31990.038*
C240.87762 (17)0.07179 (18)0.40046 (12)0.0370 (3)
H24A0.98120.10320.43360.055*
H24B0.87400.00450.34270.055*
H24C0.83180.03460.44690.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0425 (5)0.0345 (5)0.0326 (5)0.0107 (4)0.0018 (4)0.0134 (4)
F20.0342 (5)0.0300 (5)0.0570 (6)0.0055 (4)0.0041 (4)0.0101 (4)
O10.0267 (5)0.0309 (5)0.0204 (4)0.0060 (4)0.0067 (4)0.0089 (4)
O20.0220 (5)0.0228 (4)0.0236 (4)0.0025 (3)0.0037 (4)0.0036 (4)
O30.0279 (5)0.0230 (4)0.0174 (4)0.0047 (4)0.0085 (3)0.0049 (3)
O40.0269 (5)0.0275 (5)0.0203 (4)0.0006 (4)0.0056 (4)0.0019 (4)
O50.0273 (5)0.0219 (4)0.0191 (4)0.0002 (3)0.0088 (3)0.0033 (3)
O60.0222 (5)0.0231 (5)0.0284 (5)0.0053 (4)0.0053 (4)0.0076 (4)
N10.0245 (6)0.0258 (6)0.0255 (6)0.0037 (4)0.0105 (5)0.0084 (4)
N20.0263 (6)0.0246 (6)0.0273 (6)0.0024 (4)0.0121 (5)0.0035 (5)
C10.0248 (6)0.0194 (6)0.0256 (6)0.0021 (5)0.0058 (5)0.0040 (5)
C20.0252 (7)0.0271 (7)0.0417 (8)0.0041 (5)0.0104 (6)0.0089 (6)
C30.0258 (7)0.0292 (7)0.0430 (8)0.0060 (6)0.0028 (6)0.0076 (6)
C40.0342 (7)0.0222 (6)0.0264 (7)0.0051 (5)0.0012 (5)0.0064 (5)
C50.0296 (7)0.0203 (6)0.0211 (6)0.0006 (5)0.0038 (5)0.0030 (5)
C60.0227 (6)0.0184 (6)0.0199 (6)0.0008 (5)0.0030 (5)0.0012 (5)
C70.0222 (6)0.0203 (6)0.0168 (6)0.0003 (5)0.0048 (5)0.0022 (5)
C80.0242 (6)0.0208 (6)0.0177 (6)0.0007 (5)0.0062 (5)0.0013 (5)
C90.0219 (7)0.0384 (8)0.0309 (7)0.0031 (6)0.0012 (5)0.0097 (6)
C100.0292 (8)0.0405 (9)0.0497 (10)0.0086 (7)0.0063 (7)0.0099 (7)
C110.0370 (7)0.0313 (7)0.0189 (6)0.0080 (6)0.0109 (5)0.0091 (5)
C120.0458 (9)0.0385 (8)0.0258 (7)0.0144 (7)0.0183 (6)0.0112 (6)
C130.0264 (7)0.0205 (6)0.0307 (7)0.0026 (5)0.0096 (5)0.0075 (5)
C140.0270 (7)0.0260 (7)0.0507 (9)0.0022 (5)0.0166 (6)0.0062 (6)
C150.0245 (7)0.0268 (7)0.0599 (10)0.0023 (6)0.0109 (7)0.0037 (7)
C160.0303 (7)0.0208 (6)0.0422 (8)0.0020 (5)0.0036 (6)0.0002 (6)
C170.0272 (7)0.0213 (6)0.0319 (7)0.0032 (5)0.0070 (5)0.0053 (5)
C180.0229 (6)0.0199 (6)0.0269 (6)0.0031 (5)0.0066 (5)0.0079 (5)
C190.0225 (6)0.0210 (6)0.0198 (6)0.0034 (5)0.0060 (5)0.0058 (5)
C200.0241 (6)0.0236 (6)0.0189 (6)0.0049 (5)0.0065 (5)0.0076 (5)
C210.0411 (8)0.0278 (7)0.0224 (6)0.0042 (6)0.0136 (6)0.0016 (5)
C220.0753 (12)0.0366 (9)0.0373 (9)0.0098 (8)0.0369 (9)0.0035 (7)
C230.0218 (7)0.0320 (7)0.0373 (8)0.0046 (5)0.0028 (6)0.0053 (6)
C240.0309 (8)0.0417 (9)0.0378 (8)0.0095 (6)0.0021 (6)0.0152 (7)
Geometric parameters (Å, º) top
F1—C41.3667 (16)C10—H10A0.9800
F2—C161.3631 (16)C10—H10B0.9800
O1—C81.2233 (16)C10—H10C0.9800
O2—C71.4054 (15)C11—C121.5065 (19)
O2—C91.4467 (16)C11—H11A0.9900
O3—C71.4041 (14)C11—H11B0.9900
O3—C111.4378 (15)C12—H12A0.9800
O4—C201.2231 (16)C12—H12B0.9800
O5—C191.4021 (15)C12—H12C0.9800
O5—C211.4387 (15)C13—C141.3806 (19)
O6—C191.4080 (15)C13—C181.3920 (18)
O6—C231.4477 (16)C14—C151.387 (2)
N1—C81.3514 (17)C14—H140.9500
N1—C11.4093 (17)C15—C161.378 (2)
N1—H10.850 (19)C15—H150.9500
N2—C201.3513 (17)C16—C171.389 (2)
N2—C131.4074 (18)C17—C181.3858 (19)
N2—H20.868 (19)C17—H170.9500
C1—C21.3816 (19)C18—C191.5143 (17)
C1—C61.3892 (18)C19—C201.5645 (17)
C2—C31.397 (2)C21—C221.501 (2)
C2—H2A0.9500C21—H21A0.9900
C3—C41.374 (2)C21—H21B0.9900
C3—H30.9500C22—H22A0.9800
C4—C51.388 (2)C22—H22B0.9800
C5—C61.3862 (18)C22—H22C0.9800
C5—H50.9500C23—C241.494 (2)
C6—C71.5109 (17)C23—H23A0.9900
C7—C81.5638 (17)C23—H23B0.9900
C9—C101.494 (2)C24—H24A0.9800
C9—H9A0.9900C24—H24B0.9800
C9—H9B0.9900C24—H24C0.9800
C7—O2—C9115.97 (10)C11—C12—H12B109.5
C7—O3—C11116.02 (10)H12A—C12—H12B109.5
C19—O5—C21115.78 (10)C11—C12—H12C109.5
C19—O6—C23115.62 (10)H12A—C12—H12C109.5
C8—N1—C1111.67 (11)H12B—C12—H12C109.5
C8—N1—H1124.2 (12)C14—C13—C18122.18 (13)
C1—N1—H1124.0 (12)C14—C13—N2127.65 (13)
C20—N2—C13111.84 (11)C18—C13—N2110.17 (11)
C20—N2—H2122.1 (12)C13—C14—C15117.98 (14)
C13—N2—H2125.4 (12)C13—C14—H14121.0
C2—C1—C6122.39 (13)C15—C14—H14121.0
C2—C1—N1127.41 (12)C16—C15—C14119.40 (13)
C6—C1—N1110.20 (11)C16—C15—H15120.3
C1—C2—C3117.46 (13)C14—C15—H15120.3
C1—C2—H2A121.3F2—C16—C15118.37 (13)
C3—C2—H2A121.3F2—C16—C17118.15 (13)
C4—C3—C2119.40 (13)C15—C16—C17123.48 (14)
C4—C3—H3120.3C18—C17—C16116.68 (13)
C2—C3—H3120.3C18—C17—H17121.7
F1—C4—C3118.38 (13)C16—C17—H17121.7
F1—C4—C5117.76 (13)C17—C18—C13120.27 (12)
C3—C4—C5123.85 (13)C17—C18—C19131.42 (12)
C6—C5—C4116.34 (13)C13—C18—C19108.30 (11)
C6—C5—H5121.8O5—C19—O6113.37 (10)
C4—C5—H5121.8O5—C19—C18116.90 (10)
C5—C6—C1120.55 (12)O6—C19—C18107.38 (10)
C5—C6—C7130.95 (12)O5—C19—C20103.75 (9)
C1—C6—C7108.46 (11)O6—C19—C20113.04 (10)
O3—C7—O2113.26 (10)C18—C19—C20101.92 (10)
O3—C7—C6116.93 (10)O4—C20—N2126.88 (12)
O2—C7—C6107.15 (10)O4—C20—C19125.53 (11)
O3—C7—C8103.67 (9)N2—C20—C19107.57 (11)
O2—C7—C8113.47 (10)O5—C21—C22107.26 (11)
C6—C7—C8101.94 (10)O5—C21—H21A110.3
O1—C8—N1126.69 (12)C22—C21—H21A110.3
O1—C8—C7125.62 (11)O5—C21—H21B110.3
N1—C8—C7107.67 (10)C22—C21—H21B110.3
O2—C9—C10107.04 (12)H21A—C21—H21B108.5
O2—C9—H9A110.3C21—C22—H22A109.5
C10—C9—H9A110.3C21—C22—H22B109.5
O2—C9—H9B110.3H22A—C22—H22B109.5
C10—C9—H9B110.3C21—C22—H22C109.5
H9A—C9—H9B108.6H22A—C22—H22C109.5
C9—C10—H10A109.5H22B—C22—H22C109.5
C9—C10—H10B109.5O6—C23—C24107.58 (12)
H10A—C10—H10B109.5O6—C23—H23A110.2
C9—C10—H10C109.5C24—C23—H23A110.2
H10A—C10—H10C109.5O6—C23—H23B110.2
H10B—C10—H10C109.5C24—C23—H23B110.2
O3—C11—C12107.09 (11)H23A—C23—H23B108.5
O3—C11—H11A110.3C23—C24—H24A109.5
C12—C11—H11A110.3C23—C24—H24B109.5
O3—C11—H11B110.3H24A—C24—H24B109.5
C12—C11—H11B110.3C23—C24—H24C109.5
H11A—C11—H11B108.6H24A—C24—H24C109.5
C11—C12—H12A109.5H24B—C24—H24C109.5
C8—N1—C1—C2179.41 (13)C20—N2—C13—C14176.79 (14)
C8—N1—C1—C61.50 (15)C20—N2—C13—C182.93 (15)
C6—C1—C2—C30.6 (2)C18—C13—C14—C150.2 (2)
N1—C1—C2—C3178.38 (13)N2—C13—C14—C15179.54 (14)
C1—C2—C3—C40.2 (2)C13—C14—C15—C160.8 (2)
C2—C3—C4—F1178.54 (13)C14—C15—C16—F2179.01 (14)
C2—C3—C4—C50.6 (2)C14—C15—C16—C170.5 (2)
F1—C4—C5—C6179.04 (11)F2—C16—C17—C18179.93 (12)
C3—C4—C5—C60.1 (2)C15—C16—C17—C180.6 (2)
C4—C5—C6—C10.75 (18)C16—C17—C18—C131.27 (19)
C4—C5—C6—C7177.98 (12)C16—C17—C18—C19179.51 (13)
C2—C1—C6—C51.1 (2)C14—C13—C18—C170.9 (2)
N1—C1—C6—C5178.01 (11)N2—C13—C18—C17179.32 (12)
C2—C1—C6—C7178.93 (12)C14—C13—C18—C19179.68 (13)
N1—C1—C6—C70.22 (14)N2—C13—C18—C190.06 (14)
C11—O3—C7—O262.62 (14)C21—O5—C19—O663.57 (14)
C11—O3—C7—C662.73 (14)C21—O5—C19—C1862.18 (15)
C11—O3—C7—C8173.97 (10)C21—O5—C19—C20173.44 (10)
C9—O2—C7—O350.93 (14)C23—O6—C19—O550.91 (14)
C9—O2—C7—C6178.63 (10)C23—O6—C19—C18178.41 (11)
C9—O2—C7—C866.91 (14)C23—O6—C19—C2066.80 (14)
C5—C6—C7—O368.73 (17)C17—C18—C19—O566.09 (18)
C1—C6—C7—O3113.78 (12)C13—C18—C19—O5114.61 (12)
C5—C6—C7—O259.62 (17)C17—C18—C19—O662.58 (17)
C1—C6—C7—O2117.87 (11)C13—C18—C19—O6116.72 (11)
C5—C6—C7—C8179.04 (13)C17—C18—C19—C20178.39 (13)
C1—C6—C7—C81.55 (13)C13—C18—C19—C202.31 (13)
C1—N1—C8—O1176.06 (12)C13—N2—C20—O4174.25 (12)
C1—N1—C8—C72.48 (14)C13—N2—C20—C194.36 (14)
O3—C7—C8—O154.27 (15)O5—C19—C20—O452.78 (15)
O2—C7—C8—O169.00 (16)O6—C19—C20—O470.43 (15)
C6—C7—C8—O1176.13 (12)C18—C19—C20—O4174.63 (12)
O3—C7—C8—N1124.28 (11)O5—C19—C20—N2125.86 (11)
O2—C7—C8—N1112.44 (12)O6—C19—C20—N2110.93 (12)
C6—C7—C8—N12.42 (13)C18—C19—C20—N24.01 (12)
C7—O2—C9—C10177.52 (12)C19—O5—C21—C22166.65 (13)
C7—O3—C11—C12164.91 (11)C19—O6—C23—C24178.89 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.85 (2)2.30 (2)3.010 (2)142 (2)
N1—H1···O1i0.85 (2)2.34 (2)3.043 (1)141 (2)
N2—H2···O1ii0.87 (2)2.28 (2)3.002 (2)140 (2)
N2—H2···O4iii0.87 (2)2.33 (2)3.057 (2)142 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H14FNO3
Mr239.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3218 (6), 9.4320 (5), 14.1544 (8)
α, β, γ (°)100.475 (5), 104.453 (5), 90.238 (5)
V3)1183.43 (12)
Z4
Radiation typeCu Kα
µ (mm1)0.90
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.773, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
8022, 4661, 4067
Rint0.018
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.04
No. of reflections4661
No. of parameters315
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.85 (2)2.30 (2)3.010 (2)142 (2)
N1—H1···O1i0.85 (2)2.34 (2)3.043 (1)141 (2)
N2—H2···O1ii0.87 (2)2.28 (2)3.002 (2)140 (2)
N2—H2···O4iii0.87 (2)2.33 (2)3.057 (2)142 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank the Research Center of Pharmacy, King Saud University (project No. 080149) and the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDe, A. & Kitagawa, Y. (1991). Acta Cryst. C47, 2384–2386.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds