metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­(1,10-phenanthroline-κ2N,N′)(μ3-4-sulfonato­benzene-1,2-di­car­boxyl­ato-κ4O1:O2,O2′:O4)erbium(III)] dihydrate]

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 23 January 2012; accepted 26 January 2012; online 31 January 2012)

The 4-sulfophthalate trianion in the polymeric complex, {[Er(C8H3O7S)(C12H8N2)(H2O)2]·2H2O}n, bridges three water/phenanthroline-coordinated ErIII ions to form a three-dimensional network architecture. The metal atom is further chelated by a carboxyl­ate group and is covalently bonded to a monodentate carboxyl­ate group as well as to a monodentate sulfonate group in a distorted square anti­prismatic geometry. The coordinating water molecules and the lattice water molecules, one of which is disordered over two positions [major component 65 (3)%], are hydrogen bonded to the network.

Related literature

For a related aqua­(1,10-phenanthroline)EuIII derivative, see: Xiao et al. (2010[Xiao, S.-S., Zheng, X.-J., Yan, S.-H. & Deng, X.-B. (2010). CrystEngComm, 12, 3145-3151.]).

[Scheme 1]

Experimental

Crystal data
  • [Er(C8H3O7S)(C12H8N2)(H2O)2]·2H2O

  • Mr = 662.69

  • Monoclinic, P 21 /n

  • a = 14.3924 (1) Å

  • b = 9.6206 (2) Å

  • c = 17.4245 (3) Å

  • β = 105.840 (1)°

  • V = 2321.04 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.77 mm−1

  • T = 293 K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.500, Tmax = 1.000

  • 7081 measured reflections

  • 4014 independent reflections

  • 3799 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.09

  • 4014 reflections

  • 353 parameters

  • 33 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O5i 0.84 (1) 1.98 (2) 2.813 (6) 172 (7)
O1w—H12⋯O7ii 0.84 (1) 1.94 (2) 2.774 (6) 171 (8)
O2w—H21⋯O2 0.84 (1) 1.92 (2) 2.738 (7) 164 (7)
O2w—H22⋯O3w 0.84 (1) 1.84 (3) 2.65 (1) 162 (8)
O3w—H31⋯O7iii 0.84 (1) 2.03 (2) 2.80 (1) 152 (4)
O3w′—H33⋯O7iii 0.84 (1) 2.03 (2) 2.70 (2) 136 (3)
O4w—H41⋯O2iv 0.84 (1) 2.08 (3) 2.91 (1) 170 (13)
O4w—H42⋯O3w 0.84 (1) 1.98 (8) 2.65 (1) 136 (10)
O4w—H42⋯O3w 0.84 (1) 1.99 (4) 2.79 (2) 159 (10)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The deprotonated 4-sulfophthalic acid trianion forms a number of coordination polymers as its carboxyl and sulfo groups are capable of a variety of bonding modes. Among these, the 1,10-phenanthroline-coordinated europium derivative exists as a monoaqua coordination polymer adopting a chain motif (Xiao et al., 2010). The title ErIII analog is instead a diaqua coordination polymer adopting a three-dimensional network motif. The 4-sulfophthalate trianion bridges three water/phenanthroline-coordinated ErIII atoms to form a three-dimensional network architecture (Scheme I, Fig. 1). The metal atom is chelated by a carboxyl group and is covalently bonded to a unidentate carboxyl as well as to a unidentate sulfo group in a square antiprismatic geometry (Fig. 2). The lattice water molecules are hydrogen-bonded to the network. Other O–H···O hydrogen bonds are also present (Table 1).

Related literature top

For a related aqua(1,10-phenanthroline)EuIII derivative, see: Xiao et al. (2010).

Experimental top

4-Sulfophthalic acid (0.080 g), 1,10-phenanthroline (0.057 g), erbium trichloride hexahydrate (0.114 g) and water (10 ml) were placed in a 25 -ml Teflon-lined stainless-steel Parr bomb. The vessel was heated at 443 K for 3 days. Faint pink crystals were obtained when the vessel was cooled to room temperature slowly in about 40% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 and H···H 1.37±0.01 Å; their temperature factors were tied by a factor of 1.5 times.

The O3w water molecule is disordered over tw sites in a 0.65 (3): 0.35 ratio. The disorder components share a common H atom, which forms a hydrogen bond to an acceptor atom.

The anisotropic temperature factors of the lattice water O atoms were tightly restrained to be nearly isotropic.

The final difference Fourier map had a peak at 0.64 Å from Er1 and a hole at 1.26 Å from this heavy atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the formula unit of polymeric [Er(H2O)2(C12H8N2)(C8H3O7S)]n.2nH2O at the 570% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
[Figure 2] Fig. 2. Square-antiprismatic geometry of Er.
Poly[[diaqua(1,10-phenanthroline-κ2N,N')(µ3-4- sulfonatobenzene-1,2-dicarboxylato- κ4O1:O2,O2':O4)erbium(III)] dihydrate] top
Crystal data top
[Er(C8H3O7S)(C12H8N2)(H2O)2]·2H2OF(000) = 1300
Mr = 662.69Dx = 1.896 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5782 reflections
a = 14.3924 (1) Åθ = 1.6–25.0°
b = 9.6206 (2) ŵ = 3.77 mm1
c = 17.4245 (3) ÅT = 293 K
β = 105.840 (1)°Block, pink
V = 2321.04 (6) Å30.50 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4014 independent reflections
Radiation source: fine-focus sealed tube3799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1714
Tmin = 0.500, Tmax = 1.000k = 1011
7081 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0395P)2 + 16.686P]
where P = (Fo2 + 2Fc2)/3
4014 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.97 e Å3
33 restraintsΔρmin = 1.21 e Å3
Crystal data top
[Er(C8H3O7S)(C12H8N2)(H2O)2]·2H2OV = 2321.04 (6) Å3
Mr = 662.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.3924 (1) ŵ = 3.77 mm1
b = 9.6206 (2) ÅT = 293 K
c = 17.4245 (3) Å0.50 × 0.20 × 0.20 mm
β = 105.840 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4014 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3799 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 1.000Rint = 0.023
7081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03733 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0395P)2 + 16.686P]
where P = (Fo2 + 2Fc2)/3
4014 reflectionsΔρmax = 0.97 e Å3
353 parametersΔρmin = 1.21 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er10.605750 (18)0.47360 (3)0.260342 (15)0.02117 (11)
S10.36918 (11)0.32578 (18)0.16175 (9)0.0306 (3)
O10.4701 (3)0.3319 (5)0.2100 (3)0.0306 (10)
O20.3281 (4)0.4647 (6)0.1432 (3)0.0458 (13)
O30.3114 (4)0.2373 (7)0.1977 (3)0.0556 (15)
O40.4072 (4)0.4853 (5)0.1229 (3)0.0418 (13)
O50.3523 (3)0.3144 (4)0.2054 (2)0.0281 (9)
O60.2667 (3)0.0313 (4)0.1963 (3)0.0316 (10)
O70.4246 (3)0.0030 (5)0.1691 (3)0.0376 (11)
O1w0.6548 (3)0.2506 (5)0.2388 (3)0.0363 (11)
H110.7135 (16)0.234 (7)0.260 (4)0.054*
H120.628 (4)0.181 (5)0.213 (4)0.054*
O2w0.4707 (4)0.6125 (5)0.2474 (3)0.0421 (12)
H210.421 (4)0.582 (7)0.215 (4)0.063*
H220.471 (5)0.6997 (12)0.245 (5)0.063*
O3w0.4830 (11)0.8838 (11)0.2752 (10)0.067 (4)0.65 (3)
H310.491 (5)0.915 (11)0.2327 (18)0.100*0.65 (3)
H320.524 (9)0.918 (16)0.314 (2)0.100*0.65 (3)
O3w'0.4387 (18)0.872 (2)0.2221 (18)0.062 (7)0.35 (3)
H330.491 (5)0.915 (11)0.2327 (18)0.093*0.35 (3)
H340.421 (13)0.86 (3)0.173 (4)0.093*0.35 (3)
O4w0.3479 (5)1.0333 (8)0.3134 (5)0.077 (2)
H410.293 (4)1.015 (11)0.320 (8)0.116*
H420.362 (8)0.972 (9)0.284 (7)0.116*
N10.5895 (4)0.3629 (6)0.3847 (3)0.0305 (12)
N20.6445 (4)0.6325 (6)0.3796 (3)0.0333 (12)
C10.5629 (6)0.2322 (8)0.3879 (4)0.0421 (17)
H10.54730.18100.34080.051*
C20.5567 (7)0.1661 (9)0.4578 (5)0.056 (2)
H20.53770.07350.45680.067*
C30.5786 (6)0.2385 (10)0.5265 (5)0.053 (2)
H30.57500.19590.57350.064*
C40.6070 (5)0.3794 (9)0.5274 (4)0.0421 (18)
C50.6311 (6)0.4650 (10)0.5974 (4)0.052 (2)
H50.62650.42790.64560.063*
C60.6601 (6)0.5979 (10)0.5955 (4)0.051 (2)
H60.67580.65030.64210.061*
C70.6671 (5)0.6591 (9)0.5224 (4)0.0440 (19)
C80.6992 (6)0.7949 (10)0.5171 (5)0.059 (2)
H80.71830.84970.56270.070*
C90.7025 (7)0.8470 (9)0.4456 (5)0.061 (2)
H90.72330.93760.44180.073*
C100.6744 (6)0.7634 (8)0.3780 (5)0.0468 (19)
H100.67660.80080.32930.056*
C110.6411 (5)0.5800 (8)0.4513 (4)0.0315 (14)
C120.6118 (4)0.4375 (7)0.4544 (4)0.0310 (14)
C130.3714 (4)0.2483 (7)0.0701 (3)0.0275 (13)
C140.3788 (4)0.3306 (7)0.0066 (4)0.0288 (13)
H140.38700.42620.01320.035*
C150.3741 (4)0.2703 (6)0.0666 (3)0.0247 (12)
C160.3647 (4)0.1252 (6)0.0760 (3)0.0238 (12)
C170.3641 (5)0.0436 (6)0.0099 (4)0.0300 (14)
H170.36250.05280.01440.036*
C180.3657 (5)0.1048 (7)0.0627 (4)0.0327 (15)
H180.36300.05000.10600.039*
C190.3780 (4)0.3614 (7)0.1350 (3)0.0263 (13)
C200.3527 (4)0.0479 (6)0.1535 (4)0.0266 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.02381 (16)0.01893 (16)0.02072 (16)0.00118 (10)0.00599 (11)0.00058 (10)
S10.0253 (8)0.0428 (9)0.0233 (7)0.0038 (7)0.0058 (6)0.0019 (7)
O10.024 (2)0.029 (2)0.032 (2)0.0041 (18)0.0026 (18)0.0005 (19)
O20.042 (3)0.053 (3)0.037 (3)0.015 (2)0.001 (2)0.006 (2)
O30.054 (3)0.080 (4)0.039 (3)0.030 (3)0.023 (3)0.009 (3)
O40.076 (4)0.023 (2)0.026 (2)0.013 (2)0.013 (2)0.0003 (19)
O50.033 (2)0.022 (2)0.027 (2)0.0055 (18)0.0060 (18)0.0010 (17)
O60.027 (2)0.027 (2)0.037 (2)0.0018 (18)0.0021 (19)0.0045 (19)
O70.027 (2)0.036 (3)0.048 (3)0.003 (2)0.007 (2)0.012 (2)
O1w0.030 (2)0.020 (2)0.057 (3)0.0006 (19)0.008 (2)0.014 (2)
O2w0.036 (3)0.027 (3)0.063 (3)0.004 (2)0.014 (2)0.002 (2)
O3w0.082 (7)0.046 (5)0.081 (8)0.004 (5)0.040 (6)0.004 (5)
O3w'0.058 (10)0.059 (9)0.075 (11)0.009 (7)0.029 (8)0.004 (8)
O4w0.067 (4)0.084 (5)0.093 (5)0.010 (4)0.044 (4)0.009 (4)
N10.033 (3)0.033 (3)0.026 (3)0.003 (2)0.008 (2)0.003 (2)
N20.038 (3)0.035 (3)0.030 (3)0.008 (2)0.014 (2)0.008 (2)
C10.056 (5)0.032 (4)0.040 (4)0.005 (3)0.017 (3)0.010 (3)
C20.069 (6)0.049 (5)0.055 (5)0.006 (4)0.025 (4)0.022 (4)
C30.055 (5)0.069 (6)0.040 (4)0.004 (4)0.022 (4)0.023 (4)
C40.036 (4)0.065 (5)0.024 (3)0.005 (3)0.008 (3)0.008 (3)
C50.050 (5)0.091 (7)0.018 (3)0.020 (5)0.013 (3)0.007 (4)
C60.051 (5)0.070 (6)0.032 (4)0.014 (4)0.011 (3)0.011 (4)
C70.031 (4)0.065 (5)0.035 (4)0.003 (3)0.008 (3)0.016 (4)
C80.058 (5)0.069 (6)0.047 (5)0.012 (4)0.011 (4)0.030 (4)
C90.078 (6)0.046 (5)0.062 (6)0.019 (4)0.026 (5)0.025 (4)
C100.062 (5)0.033 (4)0.052 (5)0.009 (4)0.025 (4)0.012 (3)
C110.029 (3)0.042 (4)0.024 (3)0.002 (3)0.008 (3)0.007 (3)
C120.028 (3)0.045 (4)0.021 (3)0.004 (3)0.008 (3)0.001 (3)
C130.024 (3)0.035 (3)0.022 (3)0.001 (3)0.003 (2)0.001 (3)
C140.029 (3)0.027 (3)0.031 (3)0.002 (3)0.009 (3)0.000 (3)
C150.025 (3)0.026 (3)0.019 (3)0.001 (2)0.001 (2)0.001 (2)
C160.020 (3)0.025 (3)0.023 (3)0.003 (2)0.001 (2)0.002 (2)
C170.036 (3)0.022 (3)0.028 (3)0.001 (3)0.001 (3)0.000 (2)
C180.032 (3)0.037 (4)0.025 (3)0.003 (3)0.000 (3)0.009 (3)
C190.029 (3)0.029 (3)0.019 (3)0.000 (3)0.005 (2)0.004 (2)
C200.023 (3)0.024 (3)0.033 (3)0.002 (2)0.008 (3)0.002 (3)
Geometric parameters (Å, º) top
Er1—O6i2.233 (4)N2—C101.334 (9)
Er1—O2w2.319 (5)N2—C111.362 (8)
Er1—O1w2.321 (4)C1—C21.399 (10)
Er1—O12.346 (4)C1—H10.9300
Er1—O4ii2.384 (5)C2—C31.346 (12)
Er1—O5ii2.399 (4)C2—H20.9300
Er1—N12.483 (5)C3—C41.414 (12)
Er1—N22.516 (5)C3—H30.9300
S1—O31.447 (5)C4—C121.409 (9)
S1—O21.462 (5)C4—C51.434 (11)
S1—O11.468 (4)C5—C61.348 (13)
S1—C131.771 (6)C5—H50.9300
O4—C191.263 (8)C6—C71.430 (11)
O4—Er1ii2.384 (5)C6—H60.9300
O5—C191.264 (7)C7—C81.398 (13)
O5—Er1ii2.399 (4)C7—C111.415 (9)
O6—C201.268 (8)C8—C91.356 (13)
O6—Er1iii2.233 (4)C8—H80.9300
O7—C201.240 (8)C9—C101.392 (11)
O1w—H110.84 (1)C9—H90.9300
O1w—H120.84 (1)C10—H100.9300
O2w—H210.84 (1)C11—C121.439 (10)
O2w—H220.84 (1)C13—C181.386 (9)
O3w—H310.84 (1)C13—C141.388 (9)
O3w—H320.84 (1)C14—C151.385 (8)
O3w—H330.84 (1)C14—H140.9300
O3w'—H310.84 (1)C15—C161.408 (9)
O3w'—H330.84 (1)C15—C191.494 (8)
O3w'—H340.84 (1)C16—C171.397 (9)
O4w—H410.84 (1)C16—C201.510 (8)
O4w—H420.84 (1)C17—C181.390 (9)
N1—C11.320 (9)C17—H170.9300
N1—C121.371 (8)C18—H180.9300
O6i—Er1—O2w144.10 (17)C3—C2—C1118.9 (8)
O6i—Er1—O1w72.66 (16)C3—C2—H2120.5
O2w—Er1—O1w143.22 (17)C1—C2—H2120.5
O6i—Er1—O1142.63 (15)C2—C3—C4120.2 (7)
O2w—Er1—O173.08 (17)C2—C3—H3119.9
O1w—Er1—O170.17 (16)C4—C3—H3119.9
O6i—Er1—O4ii97.62 (19)C12—C4—C3117.1 (7)
O2w—Er1—O4ii88.5 (2)C12—C4—C5118.7 (8)
O1w—Er1—O4ii86.24 (18)C3—C4—C5124.2 (7)
O1—Er1—O4ii83.77 (16)C6—C5—C4121.9 (7)
O6i—Er1—O5ii78.60 (15)C6—C5—H5119.1
O2w—Er1—O5ii76.50 (17)C4—C5—H5119.1
O1w—Er1—O5ii126.94 (16)C5—C6—C7120.7 (7)
O1—Er1—O5ii128.25 (14)C5—C6—H6119.7
O4ii—Er1—O5ii54.39 (15)C7—C6—H6119.7
O6i—Er1—N191.84 (17)C8—C7—C11117.3 (7)
O2w—Er1—N193.20 (19)C8—C7—C6123.2 (7)
O1w—Er1—N181.37 (18)C11—C7—C6119.5 (8)
O1—Er1—N179.05 (16)C9—C8—C7120.1 (7)
O4ii—Er1—N1161.43 (17)C9—C8—H8120.0
O5ii—Er1—N1143.79 (16)C7—C8—H8120.0
O6i—Er1—N275.99 (17)C8—C9—C10119.3 (8)
O2w—Er1—N273.81 (19)C8—C9—H9120.4
O1w—Er1—N2133.36 (19)C10—C9—H9120.4
O1—Er1—N2129.52 (16)N2—C10—C9123.3 (8)
O4ii—Er1—N2131.89 (17)N2—C10—H10118.3
O5ii—Er1—N277.84 (16)C9—C10—H10118.3
N1—Er1—N265.95 (18)N2—C11—C7122.5 (7)
O3—S1—O2112.9 (4)N2—C11—C12118.2 (5)
O3—S1—O1111.8 (3)C7—C11—C12119.3 (6)
O2—S1—O1111.6 (3)N1—C12—C4122.3 (7)
O3—S1—C13107.3 (3)N1—C12—C11117.8 (5)
O2—S1—C13106.9 (3)C4—C12—C11119.9 (6)
O1—S1—C13105.9 (3)C18—C13—C14120.7 (6)
S1—O1—Er1146.1 (3)C18—C13—S1119.1 (5)
C19—O4—Er1ii93.2 (4)C14—C13—S1120.2 (5)
C19—O5—Er1ii92.5 (4)C15—C14—C13119.9 (6)
C20—O6—Er1iii163.2 (4)C15—C14—H14120.0
Er1—O1w—H11115 (4)C13—C14—H14120.0
Er1—O1w—H12136 (4)C14—C15—C16120.1 (6)
H11—O1w—H12110 (2)C14—C15—C19119.1 (5)
Er1—O2w—H21114 (6)C16—C15—C19120.8 (5)
Er1—O2w—H22125 (6)C17—C16—C15118.9 (5)
H21—O2w—H22109 (2)C17—C16—C20115.9 (5)
H31—O3w—H32110 (2)C15—C16—C20125.2 (5)
H32—O3w—H33110 (2)C18—C17—C16120.7 (6)
H31—O3w'—H34109 (2)C18—C17—H17119.6
H33—O3w'—H34109 (2)C16—C17—H17119.6
H41—O4w—H42109 (2)C13—C18—C17119.4 (6)
C1—N1—C12117.6 (6)C13—C18—H18120.3
C1—N1—Er1122.9 (5)C17—C18—H18120.3
C12—N1—Er1119.5 (4)O4—C19—O5119.8 (6)
C10—N2—C11117.5 (6)O4—C19—C15120.2 (5)
C10—N2—Er1123.9 (5)O5—C19—C15120.0 (5)
C11—N2—Er1118.5 (4)O7—C20—O6124.1 (6)
N1—C1—C2123.9 (7)O7—C20—C16119.4 (5)
N1—C1—H1118.0O6—C20—C16116.3 (5)
C2—C1—H1118.0
O3—S1—O1—Er1138.7 (5)C8—C9—C10—N20.5 (14)
O2—S1—O1—Er111.2 (6)C10—N2—C11—C70.5 (10)
C13—S1—O1—Er1104.8 (5)Er1—N2—C11—C7176.3 (5)
O6i—Er1—O1—S1155.0 (4)C10—N2—C11—C12178.1 (6)
O2w—Er1—O1—S129.7 (5)Er1—N2—C11—C122.3 (8)
O1w—Er1—O1—S1148.9 (5)C8—C7—C11—N21.4 (11)
O4ii—Er1—O1—S160.6 (5)C6—C7—C11—N2178.9 (6)
O5ii—Er1—O1—S126.9 (6)C8—C7—C11—C12177.2 (7)
N1—Er1—O1—S1126.5 (5)C6—C7—C11—C122.5 (10)
N2—Er1—O1—S180.7 (5)C1—N1—C12—C40.1 (10)
O6i—Er1—N1—C1106.2 (6)Er1—N1—C12—C4178.0 (5)
O2w—Er1—N1—C1109.3 (6)C1—N1—C12—C11179.9 (6)
O1w—Er1—N1—C134.1 (5)Er1—N1—C12—C112.0 (7)
O1—Er1—N1—C137.3 (5)C3—C4—C12—N10.5 (10)
O4ii—Er1—N1—C114.6 (9)C5—C4—C12—N1179.6 (6)
O5ii—Er1—N1—C1179.3 (5)C3—C4—C12—C11179.5 (6)
N2—Er1—N1—C1180.0 (6)C5—C4—C12—C110.4 (10)
O6i—Er1—N1—C1271.5 (5)N2—C11—C12—N10.3 (9)
O2w—Er1—N1—C1272.9 (5)C7—C11—C12—N1178.4 (6)
O1w—Er1—N1—C12143.7 (5)N2—C11—C12—C4179.8 (6)
O1—Er1—N1—C12145.0 (5)C7—C11—C12—C41.6 (9)
O4ii—Er1—N1—C12167.6 (5)O3—S1—C13—C1830.7 (6)
O5ii—Er1—N1—C121.6 (6)O2—S1—C13—C18152.0 (5)
N2—Er1—N1—C122.2 (4)O1—S1—C13—C1888.9 (5)
O6i—Er1—N2—C1079.3 (6)O3—S1—C13—C14149.3 (5)
O2w—Er1—N2—C1081.0 (6)O2—S1—C13—C1428.0 (6)
O1w—Er1—N2—C10128.2 (6)O1—S1—C13—C1491.1 (5)
O1—Er1—N2—C10131.8 (6)C18—C13—C14—C154.3 (9)
O4ii—Er1—N2—C108.4 (7)S1—C13—C14—C15175.7 (5)
O5ii—Er1—N2—C101.8 (6)C13—C14—C15—C161.9 (9)
N1—Er1—N2—C10177.8 (6)C13—C14—C15—C19177.4 (6)
O6i—Er1—N2—C1196.1 (5)C14—C15—C16—C172.5 (9)
O2w—Er1—N2—C11103.5 (5)C19—C15—C16—C17178.2 (6)
O1w—Er1—N2—C1147.3 (6)C14—C15—C16—C20176.1 (5)
O1—Er1—N2—C1152.7 (5)C19—C15—C16—C203.2 (9)
O4ii—Er1—N2—C11176.2 (4)C15—C16—C17—C184.6 (9)
O5ii—Er1—N2—C11177.2 (5)C20—C16—C17—C18174.1 (6)
N1—Er1—N2—C112.3 (4)C14—C13—C18—C172.2 (10)
C12—N1—C1—C20.3 (11)S1—C13—C18—C17177.8 (5)
Er1—N1—C1—C2177.5 (6)C16—C17—C18—C132.3 (10)
N1—C1—C2—C30.2 (13)Er1ii—O4—C19—O52.9 (6)
C1—C2—C3—C40.2 (13)Er1ii—O4—C19—C15176.8 (5)
C2—C3—C4—C120.5 (12)Er1ii—O5—C19—O42.8 (6)
C2—C3—C4—C5179.6 (8)Er1ii—O5—C19—C15176.9 (5)
C12—C4—C5—C61.6 (11)C14—C15—C19—O416.2 (9)
C3—C4—C5—C6178.3 (8)C16—C15—C19—O4164.5 (6)
C4—C5—C6—C70.6 (12)C14—C15—C19—O5164.1 (6)
C5—C6—C7—C8178.2 (8)C16—C15—C19—O515.2 (9)
C5—C6—C7—C111.4 (11)Er1iii—O6—C20—O7165.7 (11)
C11—C7—C8—C91.4 (12)Er1iii—O6—C20—C169.2 (18)
C6—C7—C8—C9178.9 (8)C17—C16—C20—O785.4 (7)
C7—C8—C9—C100.5 (14)C15—C16—C20—O796.0 (8)
C11—N2—C10—C90.5 (12)C17—C16—C20—O689.7 (7)
Er1—N2—C10—C9175.0 (7)C15—C16—C20—O688.8 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O5i0.84 (1)1.98 (2)2.813 (6)172 (7)
O1w—H12···O7iv0.84 (1)1.94 (2)2.774 (6)171 (8)
O2w—H21···O20.84 (1)1.92 (2)2.738 (7)164 (7)
O2w—H22···O3w0.84 (1)1.84 (3)2.65 (1)162 (8)
O3w—H31···O7ii0.84 (1)2.03 (2)2.80 (1)152 (4)
O3w—H33···O7ii0.84 (1)2.03 (2)2.70 (2)136 (3)
O4w—H41···O2v0.84 (1)2.08 (3)2.91 (1)170 (13)
O4w—H42···O3w0.84 (1)1.98 (8)2.65 (1)136 (10)
O4w—H42···O3w0.84 (1)1.99 (4)2.79 (2)159 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Er(C8H3O7S)(C12H8N2)(H2O)2]·2H2O
Mr662.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.3924 (1), 9.6206 (2), 17.4245 (3)
β (°) 105.840 (1)
V3)2321.04 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.77
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.500, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7081, 4014, 3799
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.09
No. of reflections4014
No. of parameters353
No. of restraints33
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0395P)2 + 16.686P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.97, 1.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O5i0.84 (1)1.98 (2)2.813 (6)172 (7)
O1w—H12···O7ii0.84 (1)1.94 (2)2.774 (6)171 (8)
O2w—H21···O20.84 (1)1.92 (2)2.738 (7)164 (7)
O2w—H22···O3w0.84 (1)1.84 (3)2.65 (1)162 (8)
O3w—H31···O7iii0.84 (1)2.03 (2)2.80 (1)152 (4)
O3w'—H33···O7iii0.84 (1)2.03 (2)2.70 (2)136 (3)
O4w—H41···O2iv0.84 (1)2.08 (3)2.91 (1)170 (13)
O4w—H42···O3w0.84 (1)1.98 (8)2.65 (1)136 (10)
O4w—H42···O3w'0.84 (1)1.99 (4)2.79 (2)159 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Priority Academic Program Development of Jiangsu Higher Education Institution and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, S.-S., Zheng, X.-J., Yan, S.-H. & Deng, X.-B. (2010). CrystEngComm, 12, 3145–3151.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds