metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m99-m100

Di­aqua­bis­­(hydrogen tartrato)cobalt(II) dihydrate

aDepartment of Chemical and Biochemical Engineering, Nanyang Institute of Technology, 473004 Nanyang, Henan, People's Republic of China, bSchool of Chemical Engineering and Environment, Beijing Institute of Technology, 100081 Beijing, People's Republic of China, and cCollege of Science, Nanjing University of Aeronautics and Astronautics, 211100 Nanjing, People's Republic of China
*Correspondence e-mail: chjdu@yahoo.com.cn

(Received 23 November 2011; accepted 18 December 2011; online 7 January 2012)

The title complex, [Co(C4H5O6)2(H2O)2]·2H2O, contains a CoII ion, two single deprotonated tartrate anions, two coordinated water mol­ecules and two lattice water mol­ecules. The coordination geometry of the CoII ion is a distorted octa­hedron with two O atoms from two coordinated water mol­ecules occupying cis positions in the equatorial plane and four O atoms from two hydrogen tartrate ions occupying the remaining positions. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background to chirality, see: Crassous (2009[Crassous, J. (2009). Chem. Soc. Rev. 38, 830-845.]). For coordination modes of the tartrate anion, see: Al-Dajani et al. (2010[Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, m774-m775.]); Li et al. (2004[Li, D.-X., Xu, D.-J. & Xu, Y.-Z. (2004). Acta Cryst. E60, m1982-m1984.]). Zhou et al. (2006[Zhou, Y.-X., Shen, X.-Q., Liu, H.-L., Zhang, H.-Y., Wu, Q.-A., Niu, C.-Y., Zhu, Y. & Hou, H.-W. (2006). Synth React Inorg. Met.-Org. Chem. 36, 563-568.]). For chiral diaqua­bis­(hydrogen tartrato)cobalt(II) dihydrat, see: Yashima et al. (2004[Yashima, E., Maeda, K. & Nishimura, T. (2004). Chem. Eur. J. 10, 42-51.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H5O6)2(H2O)2]·2H2O

  • Mr = 429.15

  • Orthorhombic, P 21 21 21

  • a = 7.166 (2) Å

  • b = 7.643 (2) Å

  • c = 27.802 (9) Å

  • V = 1522.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 296 K

  • 0.28 × 0.19 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.758, Tmax = 0.864

  • 7644 measured reflections

  • 2705 independent reflections

  • 2465 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.116

  • S = 1.03

  • 2705 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1303 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Selected bond lengths (Å)

Co1—O7 2.013 (3)
Co1—O13 2.043 (3)
Co1—O1 2.045 (3)
Co1—O3 2.087 (3)
Co1—O14 2.093 (3)
Co1—O9 2.201 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15A⋯O2i 0.89 1.96 2.682 (4) 137
O13—H13A⋯O11ii 0.81 2.20 2.982 (5) 161
O16—H16B⋯O8iii 0.88 2.34 2.752 (5) 109
O13—H13B⋯O15iv 0.82 1.88 2.702 (5) 174
O16—H16A⋯O5v 0.89 1.90 2.757 (5) 161
O11—H11⋯O8vi 0.81 1.73 2.542 (4) 171
O6—H6A⋯O2vii 0.82 2.58 3.269 (5) 143
O6—H6A⋯O1vii 0.82 1.86 2.648 (4) 160
O14—H14B⋯O16viii 0.82 1.97 2.796 (5) 174
O14—H14A⋯O4viii 0.82 2.20 2.934 (4) 149
O3—H3A⋯O15viii 0.82 1.82 2.629 (4) 166
O15—H15B⋯O12 0.89 1.97 2.834 (5) 166
O10—H10⋯O5 0.82 2.13 2.929 (5) 165
O9—H9⋯O16 0.82 1.85 2.631 (4) 160
O4—H4⋯O3 0.82 2.42 2.876 (5) 116
O4—H4⋯O9 0.82 2.39 3.123 (5) 149
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) x-1, y-1, z; (v) x, y-1, z; (vi) x+1, y, z; (vii) x, y+1, z; (viii) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chirality is a signature of life, of biological molecules, and of various inert objects (corkscrew etc). In chemistry, it is expressed not only at the molecular level but also at the supramolecular level and in materials. Chirality in materials involve the dissymmetric arrangement of molecules in a noncovalent assembly (Crassous, 2009). L-Tartaric acid is a simple and cheap chiral ligand source. In the title chiral cobalt(II) complex (scheme 1), the hydroxy and carboxyl group of the tartrate monoanion form a chelate coordination to the CoII atom, this is an unusual coordination mode for the tartrate anion (Al-Dajani et al., 2010); Li et al., 2004; Zhou et al., 2006). Chiral diaquabis(hydrogen tartrato)cobalt(II) dihydrate crystals formed by intermolecular O—H···O hydrogen bonds supramolecular sssembly chiral amplification (Yashima et al., 2004).

The zero-dimensional molecular structure of the title compound is illustrated in Fig. 1. The six-coordinated CoII atom is surrounded by two tartrate monoanions and two water molecules in a distorted octahedral geometry. Two water molecules coordinate to the CoII atom in a cis configuration with a normal O13—Co1—O14 bond angle [90.89 (14)]. Two tartrate monoanions chelate to the CoII atom with an unusual coordination mode. the hydroxy O atom and one O atom of the carboxyl group are involved in the chelate bonding but other O atoms are uncoordinated in each ligand. Thus, the carboxyl group binds in a monodentate manner to the CoII atom.

The complex hydrogen-bond network is illustrated in Fig. 2. The hydrogen-bond donors (O3, O4, O6, O9, O10, O11, O13, O14, O15 and O16) from coordinated and uncoordinated hydroxy group, uncoordinated carboxyl group, coordinated and uncoordinated water molecules are connected to neiboring O hydrogen-bond acceptors (Table 2) to form a three dimension infinate network.

Related literature top

For general background to chirality, see: Crassous (2009). For coordination modes of the tartrate anion, see: Al-Dajani et al. (2010); Li et al. (2004). Zhou et al. (2006). For chiral diaquabis(hydrogen tartrato)cobalt(II) dihydrat, see: Yashima et al. (2004).

Experimental top

L-Tartaric acid (0.04 mol) was dissolved in 50 ml distilled water in a flat bottom flask with magnetic stirrer. Co(CH3COO)2 (0.02 mol) was added in small portions with continuous stirring for three hours at room temperature. Filtration to obtain clear pink solution after addtion two hours stir. The pink signal crystals suitable for X-ray analysis were obtained within one week by slow evaporation of the filtrate solution. Anal. yield: ca 78.6%.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.98 Å, O—H = 0.82 and 0.89 Å), and constrained to ride on the atom to which they are bonded, and were included in the refinement in the riding-model approximation. Uiso(H) values were set equal to 1.2Ueq(parent atom) for methine and 1.5Ueq(parent atom) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. three-dimensional hydrogen-bonded (dashed lines) network of the title compound.
Diaquabis(hydrogen tartrato)cobalt(II) dihydrate top
Crystal data top
[Co(C4H5O6)2(H2O)2]·2H2OF(000) = 884
Mr = 429.15Dx = 1.872 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3026 reflections
a = 7.166 (2) Åθ = 2.8–24.7°
b = 7.643 (2) ŵ = 1.22 mm1
c = 27.802 (9) ÅT = 296 K
V = 1522.7 (8) Å3Needle, pink
Z = 40.28 × 0.19 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2705 independent reflections
Radiation source: fine-focus sealed tube2465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 25.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 78
Tmin = 0.758, Tmax = 0.864k = 96
7644 measured reflectionsl = 2733
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.163P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2705 reflectionsΔρmax = 0.79 e Å3
227 parametersΔρmin = 0.53 e Å3
0 restraintsAbsolute structure: Flack (1983), 1303 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Co(C4H5O6)2(H2O)2]·2H2OV = 1522.7 (8) Å3
Mr = 429.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.166 (2) ŵ = 1.22 mm1
b = 7.643 (2) ÅT = 296 K
c = 27.802 (9) Å0.28 × 0.19 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2705 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2465 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.864Rint = 0.071
7644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.79 e Å3
S = 1.03Δρmin = 0.53 e Å3
2705 reflectionsAbsolute structure: Flack (1983), 1303 Friedel pairs
227 parametersAbsolute structure parameter: 0.02 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2015 (6)0.2982 (6)0.22522 (15)0.0254 (10)
C20.1659 (6)0.4900 (5)0.21248 (15)0.0218 (9)
H20.08780.54440.23730.026*
C30.3528 (7)0.5816 (6)0.21019 (17)0.0285 (10)
H30.40920.58000.24230.034*
C40.3299 (6)0.7714 (6)0.19428 (15)0.0271 (9)
C50.0059 (6)0.4188 (6)0.03795 (15)0.0261 (9)
C60.2193 (6)0.4079 (6)0.04133 (15)0.0232 (9)
H60.26640.32770.01660.028*
C70.3000 (6)0.5901 (6)0.03307 (16)0.0253 (9)
H70.26450.62810.00070.030*
C80.5121 (6)0.5873 (5)0.03585 (14)0.0232 (9)
H3A0.00170.58130.16480.035*
H40.40780.49560.15350.035*
H90.34700.26820.08320.035*
H100.28620.72810.09040.035*
H110.69880.47880.00200.035*
H6A0.21710.97010.22110.035*
H13A0.03040.01080.07550.035*
H14A0.29210.30640.17620.035*
H15A0.75610.78420.16650.035*
H16A0.44570.01210.11440.035*
H13B0.04030.06110.11650.035*
H14B0.31540.19210.14260.035*
H15B0.77100.70470.11960.035*
H16B0.58540.03410.07560.035*
Co10.02672 (7)0.26348 (7)0.13168 (2)0.02417 (18)
O10.1601 (5)0.1847 (4)0.19297 (11)0.0281 (7)
O20.2731 (5)0.2651 (5)0.26366 (11)0.0395 (8)
O30.0751 (4)0.4992 (4)0.16748 (12)0.0301 (7)
O40.4745 (5)0.4932 (4)0.17751 (14)0.0390 (8)
O50.3913 (6)0.8243 (5)0.15682 (13)0.0442 (9)
O60.2315 (5)0.8642 (4)0.22412 (12)0.0401 (9)
O70.0902 (4)0.3667 (4)0.07226 (11)0.0313 (7)
O80.0595 (4)0.4802 (5)0.00041 (12)0.0336 (8)
O90.2674 (4)0.3434 (4)0.08767 (11)0.0271 (7)
O100.2240 (5)0.7088 (4)0.06610 (12)0.0363 (8)
O110.5863 (4)0.4941 (5)0.00214 (12)0.0321 (7)
O120.5946 (5)0.6683 (5)0.06641 (14)0.0446 (9)
O130.0226 (5)0.0162 (4)0.10381 (12)0.0407 (8)
O140.2372 (4)0.2264 (5)0.16226 (11)0.0369 (8)
O150.8363 (4)0.7463 (4)0.14422 (11)0.0352 (7)
O160.5099 (5)0.0867 (4)0.09600 (12)0.0349 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.024 (2)0.026 (2)0.026 (2)0.0020 (17)0.0005 (17)0.0039 (18)
C20.026 (2)0.020 (2)0.020 (2)0.0041 (19)0.0001 (17)0.0012 (16)
C30.029 (2)0.021 (2)0.036 (3)0.001 (2)0.004 (2)0.0036 (19)
C40.028 (2)0.022 (2)0.032 (2)0.006 (2)0.0024 (18)0.0023 (19)
C50.024 (2)0.027 (2)0.027 (2)0.000 (2)0.0022 (18)0.0007 (17)
C60.019 (2)0.027 (2)0.024 (2)0.0020 (18)0.0022 (17)0.0001 (18)
C70.021 (2)0.025 (2)0.030 (2)0.0005 (19)0.0007 (18)0.0039 (18)
C80.022 (2)0.024 (2)0.024 (2)0.0007 (19)0.0002 (18)0.0036 (16)
Co10.0261 (3)0.0232 (3)0.0232 (3)0.0017 (2)0.0017 (2)0.0011 (2)
O10.0384 (17)0.0187 (15)0.0273 (16)0.0002 (14)0.0046 (14)0.0008 (12)
O20.0569 (19)0.0334 (18)0.0281 (17)0.0037 (19)0.0089 (15)0.0074 (15)
O30.0357 (17)0.0195 (14)0.0351 (18)0.0060 (14)0.0136 (14)0.0015 (13)
O40.0287 (16)0.0321 (16)0.056 (2)0.0060 (17)0.0059 (16)0.0032 (15)
O50.061 (2)0.0341 (18)0.037 (2)0.0042 (18)0.0137 (18)0.0076 (15)
O60.060 (2)0.0207 (16)0.039 (2)0.0093 (17)0.0176 (18)0.0007 (14)
O70.0240 (15)0.046 (2)0.0241 (17)0.0022 (15)0.0036 (13)0.0092 (14)
O80.0224 (16)0.050 (2)0.0282 (17)0.0008 (16)0.0040 (13)0.0106 (15)
O90.0245 (15)0.0301 (16)0.0267 (16)0.0037 (14)0.0003 (13)0.0065 (12)
O100.0374 (17)0.0328 (19)0.0388 (19)0.0030 (15)0.0070 (15)0.0054 (15)
O110.0205 (15)0.0425 (19)0.0334 (18)0.0038 (15)0.0002 (13)0.0079 (15)
O120.0339 (18)0.050 (2)0.050 (2)0.0003 (18)0.0088 (17)0.0170 (18)
O130.059 (2)0.0296 (16)0.0334 (18)0.0025 (19)0.0121 (18)0.0087 (13)
O140.0297 (15)0.0430 (19)0.0380 (17)0.0017 (17)0.0082 (13)0.0089 (16)
O150.0335 (14)0.0378 (18)0.0343 (17)0.0057 (18)0.0044 (13)0.0027 (15)
O160.0340 (17)0.0323 (16)0.0383 (18)0.0030 (16)0.0010 (15)0.0030 (13)
Geometric parameters (Å, º) top
C1—O21.212 (5)C8—O111.292 (5)
C1—O11.282 (5)Co1—O72.013 (3)
C1—C21.530 (6)Co1—O132.043 (3)
C2—O31.412 (5)Co1—O12.045 (3)
C2—C31.513 (6)Co1—O32.087 (3)
C2—H20.9800Co1—O142.093 (3)
C3—O41.429 (6)Co1—O92.201 (3)
C3—C41.525 (6)O3—H3A0.8221
C3—H30.9800O4—H40.8224
C4—O51.201 (5)O6—H6A0.8200
C4—O61.300 (5)O9—H90.8195
C5—O71.242 (5)O10—H100.8215
C5—O81.256 (5)O11—H110.8148
C5—C61.534 (6)O13—H13A0.8150
C6—O91.422 (5)O13—H13B0.8225
C6—C71.526 (6)O14—H14A0.8240
C6—H60.9800O14—H14B0.8243
C7—O101.401 (5)O15—H15A0.8923
C7—C81.522 (6)O15—H15B0.8877
C7—H70.9800O16—H16A0.8926
C8—O121.207 (5)O16—H16B0.8809
O2—C1—O1125.0 (4)O7—Co1—O1392.59 (14)
O2—C1—C2118.4 (4)O7—Co1—O1173.65 (13)
O1—C1—C2116.6 (4)O13—Co1—O192.89 (13)
O3—C2—C3110.4 (3)O7—Co1—O397.03 (13)
O3—C2—C1109.3 (3)O13—Co1—O3169.06 (14)
C3—C2—C1107.8 (3)O1—Co1—O377.23 (12)
O3—C2—H2109.8O7—Co1—O1490.58 (13)
C3—C2—H2109.8O13—Co1—O1490.89 (14)
C1—C2—H2109.8O1—Co1—O1492.53 (13)
O4—C3—C2110.4 (4)O3—Co1—O1494.21 (13)
O4—C3—C4109.3 (4)O7—Co1—O976.20 (12)
C2—C3—C4110.9 (4)O13—Co1—O993.28 (13)
O4—C3—H3108.7O1—Co1—O9100.29 (12)
C2—C3—H3108.7O3—Co1—O984.00 (13)
C4—C3—H3108.7O14—Co1—O9166.29 (12)
O5—C4—O6124.7 (4)C1—O1—Co1119.5 (3)
O5—C4—C3122.2 (4)C2—O3—Co1117.1 (2)
O6—C4—C3113.1 (4)C2—O3—H3A114.3
O7—C5—O8124.4 (4)Co1—O3—H3A120.7
O7—C5—C6119.2 (4)C3—O4—H498.7
O8—C5—C6116.4 (4)C4—O6—H6A122.9
O9—C6—C7111.1 (3)C5—O7—Co1121.7 (3)
O9—C6—C5108.4 (3)C6—O9—Co1114.2 (2)
C7—C6—C5108.6 (4)C6—O9—H9106.0
O9—C6—H6109.5Co1—O9—H9115.8
C7—C6—H6109.5C7—O10—H10116.3
C5—C6—H6109.5C8—O11—H11119.3
O10—C7—C8111.4 (4)Co1—O13—H13A126.8
O10—C7—C6110.2 (3)Co1—O13—H13B120.7
C8—C7—C6111.0 (4)H13A—O13—H13B105.6
O10—C7—H7108.1Co1—O14—H14A121.4
C8—C7—H7108.1Co1—O14—H14B112.8
C6—C7—H7108.1H14A—O14—H14B102.9
O12—C8—O11126.3 (4)H15A—O15—H15B108.1
O12—C8—C7121.2 (4)H16A—O16—H16B113.2
O11—C8—C7112.5 (4)
O2—C1—C2—O3177.5 (4)C2—C1—O1—Co16.6 (5)
O1—C1—C2—O35.5 (5)O13—Co1—O1—C1179.3 (3)
O2—C1—C2—C362.5 (5)O3—Co1—O1—C14.1 (3)
O1—C1—C2—C3114.4 (4)O14—Co1—O1—C189.7 (3)
O3—C2—C3—O464.4 (4)O9—Co1—O1—C185.4 (3)
C1—C2—C3—O454.8 (5)C3—C2—O3—Co1116.2 (3)
O3—C2—C3—C456.9 (5)C1—C2—O3—Co12.2 (4)
C1—C2—C3—C4176.2 (4)O7—Co1—O3—C2177.8 (3)
O4—C3—C4—O57.5 (6)O13—Co1—O3—C226.5 (9)
C2—C3—C4—O5114.4 (5)O1—Co1—O3—C20.6 (3)
O4—C3—C4—O6175.4 (4)O14—Co1—O3—C291.0 (3)
C2—C3—C4—O662.7 (5)O9—Co1—O3—C2102.6 (3)
O7—C5—C6—O93.1 (6)O8—C5—O7—Co1178.2 (3)
O8—C5—C6—O9177.3 (4)C6—C5—O7—Co11.3 (6)
O7—C5—C6—C7124.0 (4)O13—Co1—O7—C589.3 (4)
O8—C5—C6—C756.4 (5)O3—Co1—O7—C585.4 (4)
O9—C6—C7—O1062.8 (4)O14—Co1—O7—C5179.8 (3)
C5—C6—C7—O1056.4 (4)O9—Co1—O7—C53.4 (3)
O9—C6—C7—C861.0 (4)C7—C6—O9—Co1124.9 (3)
C5—C6—C7—C8179.8 (3)C5—C6—O9—Co15.6 (4)
O10—C7—C8—O126.1 (6)O7—Co1—O9—C65.0 (3)
C6—C7—C8—O12117.0 (5)O13—Co1—O9—C686.9 (3)
O10—C7—C8—O11172.6 (3)O1—Co1—O9—C6179.6 (3)
C6—C7—C8—O1164.2 (5)O3—Co1—O9—C6103.8 (3)
O2—C1—O1—Co1176.7 (3)O14—Co1—O9—C620.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O2i0.891.962.682 (4)137
O13—H13A···O11ii0.812.202.982 (5)161
O16—H16B···O8iii0.882.342.752 (5)109
O13—H13B···O15iv0.821.882.702 (5)174
O16—H16A···O5v0.891.902.757 (5)161
O11—H11···O8vi0.811.732.542 (4)171
O6—H6A···O2vii0.822.583.269 (5)143
O6—H6A···O1vii0.821.862.648 (4)160
O14—H14B···O16viii0.821.972.796 (5)174
O14—H14A···O4viii0.822.202.934 (4)149
O3—H3A···O15viii0.821.822.629 (4)166
O15—H15B···O120.891.972.834 (5)166
O10—H10···O50.822.132.929 (5)165
O9—H9···O160.821.852.631 (4)160
O4—H4···O30.822.422.876 (5)116
O4—H4···O90.822.393.123 (5)149
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x1, y1, z; (v) x, y1, z; (vi) x+1, y, z; (vii) x, y+1, z; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C4H5O6)2(H2O)2]·2H2O
Mr429.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.166 (2), 7.643 (2), 27.802 (9)
V3)1522.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.28 × 0.19 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.758, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
7644, 2705, 2465
Rint0.071
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.116, 1.03
No. of reflections2705
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.53
Absolute structureFlack (1983), 1303 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O72.013 (3)Co1—O32.087 (3)
Co1—O132.043 (3)Co1—O142.093 (3)
Co1—O12.045 (3)Co1—O92.201 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O2i0.891.962.682 (4)137.0
O13—H13A···O11ii0.812.202.982 (5)160.9
O16—H16B···O8iii0.882.342.752 (5)108.9
O13—H13B···O15iv0.821.882.702 (5)174.1
O16—H16A···O5v0.891.902.757 (5)160.7
O11—H11···O8vi0.811.732.542 (4)171.1
O6—H6A···O2vii0.822.583.269 (5)142.9
O6—H6A···O1vii0.821.862.648 (4)159.9
O14—H14B···O16viii0.821.972.796 (5)174.2
O14—H14A···O4viii0.822.202.934 (4)148.5
O3—H3A···O15viii0.821.822.629 (4)166.4
O15—H15B···O120.891.972.834 (5)165.8
O10—H10···O50.822.132.929 (5)165.3
O9—H9···O160.821.852.631 (4)159.7
O4—H4···O30.822.422.876 (5)116.3
O4—H4···O90.822.393.123 (5)148.9
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x1, y1, z; (v) x, y1, z; (vi) x+1, y, z; (vii) x, y+1, z; (viii) x1, y, z.
 

References

First citationAl-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, m774–m775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrassous, J. (2009). Chem. Soc. Rev. 38, 830–845.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, D.-X., Xu, D.-J. & Xu, Y.-Z. (2004). Acta Cryst. E60, m1982–m1984.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYashima, E., Maeda, K. & Nishimura, T. (2004). Chem. Eur. J. 10, 42–51.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, Y.-X., Shen, X.-Q., Liu, H.-L., Zhang, H.-Y., Wu, Q.-A., Niu, C.-Y., Zhu, Y. & Hou, H.-W. (2006). Synth React Inorg. Met.-Org. Chem. 36, 563–568.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m99-m100
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds